
Citation:
Altahhan, A (2016) Self-reflective deep reinforcement learning. Proceedings of the Inter-
national Joint Conference on Neural Networks. pp. 4565-4570. ISSN 2161-4407 DOI:
https://doi.org/10.1109/IJCNN.2016.7727798

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/4503/

Document Version:
Article (Published Version)

Creative Commons: Attribution 4.0

Electronic ISBN: 978-1-5090-0620-5 USB ISBN: 978-1-5090-0619-9 Print on Demand(PoD) ISBN:
978-1-5090-0621-2

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/4503/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Self-reflective Deep Reinforcement Learning

Abdulrahman Altahhan

School of Computing, Electronics and Math.

Coventry University

Coventry, UK.

abdulrahman.altahhan@coventry.ac.uk

Abstract— In this paper we present a new concept of self-

reflection learning to support a deep reinforcement learning

model. The self-reflective process occurs offline between episodes

to help the agent to learn to navigate towards a goal location and

boost its online performance. In particular, a so far optimal

experience is recalled and compared with other similar but

suboptimal episodes to reemphasize worthy decisions and

deemphasize unworthy ones using eligibility and learning traces.

At the same time, relatively bad experience is forgotten to remove

its confusing effect. We set up a layer-wise deep actor-critic

architecture and apply the self-reflection process to help to train

it. We show that the self-reflective model seems to work well and

initial experimental result on real robot shows that the agent

accomplished good success rate in reaching a goal location.

Keywords— self-reflective deep reinforcement learning; deep

learning; actor-critic; neural networks; robot navigation;

I. INTRODUCTION

On-line reinforcement learning agents is difficult to train. It
takes long to train because the agent does not have direct
answer to the input in hand, it has to rely on own assessment of
how good or bad the last action was (in the long run) to achieve
a goal. For real world agent the difficulty is escalated due to
partial observability and variability of experience as well as
unfeasibility of deliberate repetition of this experience.
Experiences vary from state and action perspectives.
Subsequently, even when the agent starts form the same
position and takes the same action the outcome is going to vary
slightly due to the continuum of possible states at any location
and due to inaccuracy of actions taken. This is especially true
for agents with loos mechanics which are encountered in
games and DYI robots. Moreover, it is physically difficult or
undesirable to let the agent run through many episodes.
Therefore, the agent needs to maximize the advantage of
available experience with the least amount of time and
repetition; hence offline reflection on past experience can play
an important role to mitigate these difficulties.

II. THE MODEL

A. Actor-critic and Neural Networks

We consider actor-critic architecture to tackle the above
problem. This architecture is interesting because it allows for
explicit natural separation of concern between a performer, that
tries to learn the best set of actions in certain situations, and a
critic that tries to maximize overall future gain strategically. As
we shall see later a specific advantage of the proposed

architecture is that it unifies both the actor and the critic in one
neural network that can be readily trained using
backpropagation. For the learner everything can be summed up
in terms of a reward signal whether it is positive (success in
reaching the goal) or negative (increased number of steps). Any
negative rewards (cost) can be thought of as positive and the
target would be to minimize the sum of future cost. Equally, if
the agent uses only positive rewards then it would need to
maximize the sum of the expected accumulated future rewards.

B. Operating under Positive and Negative Rewards

Mixing both negative and positive cost and rewards has its
own perceived advantages such as enriching the agent
experience, possible shortening of the training phase (instead of
training through two consequent phases one for reward and one
for the cost) and adding a more natural touch to the behaviour
of the agent even during training. However, problems arise due
to conflict of interest intrinsic in both forms. If we assign one
reward function that encompasses and mingles cost and reward
in each step then it would be difficult for the agent to trace
what went wrong or right and what decision caused a bad or
good experience in order to self-reflect on own actions.

C. The Problem Scenario

We consider an episodic scenario were the agent runs
through episodes of experiences each starts form a certain
location and should ends at a target location (goal oriented
navigation). Each episode could have a different number of
steps. Similar to a human learning experience, early episodes
are useful to learn from mistakes, so minimizing punishment
should be a priority. Whilst, the agent needs to optimize its
performance in late episodes and master the task at hand, hence
maximizing the rewards should be the priority in this case.
Dynamically changing reward function means that the agent
needs to adapt to different policies. It is critical to balance the
different learning stages so that previously learned experience
is not completely forgotten. A plausible proposal is to start with
a policy that try to maximize negative rewards (i.e. minimizes
the cost), then altering it towards the positive rewards. This
approach however has the potential risk of deforming the
initially learned policy and ending up with a completely
different policy that takes only the latest form of reward into
account. Hence, we will consider a mixed reward function that
penalizes the agent for wasting time during the episode and
only rewards it at the end for reaching the goal. What is more,
we will alternate between online and offline learning
approaches.

D. Self-reflective Learning

When pure cost (negative) function is considered, then
early bad decisions have more effect on generating bad
experience. Conventional eligibility traces help recognize this
effect exactly; they put more emphasis on the early decisions
so that those decisions get what they deserve of blame.
Equally, when using a pure reward (positive) function, late
decisions has more effect on finalizing the task and one might
want to increase their effect to receive the praise they deserve
to finalize the task. Conventional eligibility traces do not stress
this effect except when the reward they gain is very big in
comparison with other rewards of other steps. Therefore, we
will apply relatively high rewards for the end of the episode.
More importantly we will follow online learning approach,
(that is happening during the episode) by an offline learning
phase (that occur between episodes) to further emphasize the
effect of good actions that lead to finalizing the task.

 At the same time, when the experience is not good (agent
took very long to reach the target or did not reach it in the
maximum allowed number of steps) at the end of the episode
the model rewinds the learning that took place by reverting the
weights to their original values at the start of the episode. This
is because such episodes are not fit for the agent to learn from,
they will be discarded. We register the parameter changes
(learning) that took place and we simply undo them and repeat
the episode. We argue that the above is more like how human
and animal learn from their experience. Overall we do not
consider every single attempt (episode) that we do. Our brain
only stimulates learning when a novel and exciting thing
happen such as when the problem is solved in a shorter than
usual path (relative to past experience).

So self-reflective learning occurs after each episode. If the
episode is particularly good the agent reflects back to
emphasize the learned lesson (either by coincidence or by some
action that had a greater effect than expected). The self-
excitement comes from these outcomes which stimulate
remembering what has been done. We do exactly the same in
our model. When a particular episode is good it provokes the
agent to ponder what it has done well. So it needs either to
remember the whole path and analyze it to know what has led
to the success/failure as if the agent is rewinding the video of
past experience and learn from it. We do this by registering the
whole experience in a two conjugate gradient eligibility traces
one for the actor and one for the critic, as well as by registering
the exact accumulated changes done on the neural network
parameter on two learning traces one for the actor and one for
the critic. The four traces condense the past experience and
allow us to apply the learning experience again at the end of
the episode when the episode has proved to be optimal in
relation to past experience. It should be noted that in the case of
off-line updates and if one is using a toolbox with ready neural
network structure then one can simply store the chain of vector
features and estimated target value functions pairs (Fyt, VTt):
VTt =rt+1 + γVt+1 where Vt+1 is the estimated value function for
Fyt+1. And once these has been combined with conjugate
gradient updates then it has been proven in [14] that this is
indeed equivalent to a conjugate gradient eligibility traces.

Eligibility traces places more emphasis on the early actions
which makes sense for online learning. For the offline case we
would like to put more emphasis on the latest actions that
helped the agent to reach the goal. We would like to do that
before amalgamating the experience with further chain, hence
online is ideal. However, for our case we want a stronger
mechanism.

E. Deep Feature Represntation

Deep learning has been shown to overcome the bottleneck
representation problem that has long set back the success of
machine learning applications [9, 10]. This is especially
important for RL since RL normally takes a long time to
converge (although speeding approaches have been developed
for the problem under consideration [17]). Deep learning
showed very good results when combined with supervised
learning [11, 12]. When combined with RL it is also believed
to have a good potential [18, 19].

Our model starts by learning a concise and reduced feature
representation. The model obtains a reduced representation in
the first episode by deep convolutional neural network that is
translation invariant as in [13, 21]. First, a set of random
patches are extracted from the set of images collected in the
explorative episode, then a set of weights are trained using
those patches as an input and output for an autoencoder in
order to extract the most resilient and important features in the
environment (those images are representative for the
environment since the agent is let to run around in this
explorative episode to cover as much of the environment as
practical). Then a set of filters are built using the strapped
weights of the first autoencoder layer. The number of filters =
patch_pixles

2
× 3 (patch_size × channels). Each image received

by the agent then will be convoluted by the filters of the
autoencoder to build a set of features maps, which are then
pooled (features neighborhood averaged) to reach the final set
of features. The model is then shrinks the whole architecture to
fit the new reduced number of features, and this concludes the
deep learning phase for the feature representation layer. The
explorative episode aligns with how animals normally explore
a place by looking around.

F. Deep Reinforcemnet Learning Model

As it has been mentioned, the model adopts a special type
of Combined Deep-Actor-Critic architecture that seamlessly
unifies and integrates the policy learning process which is
suitable for deep action learning [16]. In each step, after the
actor layer takes its input form the deep convoluted and pooled
layer, it then decides to do a certain action, accordingly the
critic layer punishes or rewards the actor depending on the
reward it receives form the environment.

The initial features used are Differential Radial Basis
features [14] that make the goal image its referential point and
represent all the views relative to that goal. This is consistent
with home-aware localization and allows the agent to view the
world from the perspective of its current homing task and
hence its home views (taken before learning) are hard wired in
its behaviour. This Differential Radial Basis representation
will be applied on the deeply extracted features to calculate a
similarity index for the current scene and the goal location.

Formally, the presented model uses the following
components/stages shown in Fig. 1:

Goal representation: We said earlier that that the brain hard
wires the scenes to itself and compare it with the look of the
home. To do so we need to run into an initial identification
stage that identifies the home and embeds its views in the
agents’ goal-identification behaviour. To do so the agent takes
n snapshot for the home in different orientation and distances.
The feature vector is calculated in two stages; preliminary and
primary:

In the preliminary stage the agent learns a set of useful
filters using the method mentioned in previous section. The
deduced filters will be convoluted over each coming image in
each time step. The filters are calculated at the end of the first
explorative episode. This stage can be extended to span more
than one episode to give a denser environment sampling. Then
the model shrinks the whole architecture to fit the new reduced
number of features. This concludes the deep learning stage for
the feature representation layer. This stage is done once and
will not be repeated.

Fig. 1. The Blended Deep-Actor-Critic Neural Network Components and

Model’s Stages.

Each image was normalized and the number of patches
were chosen to be 1000 and were selected randomly form the
exploratory episode environment dataset. The size of the patch
was chosen to be 6 hence input size for the auto-encoder is
6×6×3 (RGB channels) =108. The number of filters (i.e.
number of neurons in the hidden layer) were chosen be 9. The
convolution procedure was set to go iteratively as a 2D
patch_size

2
 matrix that has all the weights for a specific neuron

(related to a specific channel).

The dimension of the features f is d1×d2×f where d1 and

d2 are the dimensions of the stride and f= is the number of

filters. The dimension of the reduced features f is n. The

features f are then used to calculate a similarity index deep-

NRB:

 is a deep representation of the stored image j

with filter f. is a channel c view of stored image j, and

 is deep representation of channel c of current image

st, while σ is a variance. The similarity measure that specifies
the termination of the episode and is given by to be normalized

radial basis function nssDeepNRB
n

f tft

1
)(. This

measure has been used along with two thresholds to set the
stopping and approaching conditions for the agent. Using deep
DeepNRB The reward function is given as a combination of
step cost in addition to a reward for going towards
(approaching) the goal as well as a reward for reaching the goal
[14].

Two important aspects related to the actions: when the
agent turns, it will acquire higher costs than when it goes
straight. This has the desired consequence of suppressing
unnecessary turns and emphasizing going straight. Also a
punishment for taking any action that leads to a reactive
behavior has been set. This reduces the costal behavior and
encourages going directly towards the goal.

G. Deep Blended Actor-critic Layered Architecture

The input feature layer is followed by an actor layer. The
actor outputs three distinctive estimations of action-value
function; each stands for one action. The three output of the
actions-value function are followed by a value function layer
that calculates the value function for the policy of the actor.
This last layer represents the critic. At the same time the three
action-values are passed through a winner takes all function
were the max value will be taken as the winner action at as
shown in Fig. 1. The learning occurs on the form of a reward
signal that is fed first to the value function then back
propagated to the previous actor layer. Fig. 1 shows the layers,
stages and component of the system.

By constructing the actor-critic architecture as two
consequent layers and by allowing the second layer to act as a
critic that contemplates the consequences of the actions of the
actor layer and sends a conjugate gradient signal to it to
indicate how well its current policy is, we created a deep
blended actor-critic architecture in one sound system that
depends on two eligibility traces. The value function layer
itself is taking its feedback form the reward function. The
action layer can learn independently of the critic layer by
utilizing an action-value function approach (for example
learning can occur on the wining action only). Whereas, the
critic layer cannot process independently since it needs the
actor layer to calculate the value function. However, the critic
layer can be trained independently by not back propagating to
the actor layer. In that sense the learning process can be
thought of as a layer by layer learning or deep learning
enabled. In the future we will explore training each layer
independently by freezing learning in each layer and then fine-
tune by utilizing the presented approach. So this model is deep

2

2

ˆ2

),()(
exp),(

jcvhcsh
jcs

ftf

tf

),(jcvhf

),(jcv

)(csh ti

An image at

time t and its

strides.

Fyt

for

…
…

…

…
…

…

…

…
 …

…

…

…
 …

After convolution

the filters yield a

set of features.

After pooling the final set of features

Fyt are fed to the Combined Deep-

Actor-critic neural network

V

Q(Fyt , al)

Q(Fyt , ar)

Q(Fyt , af)

Q(Fyt , ar)
at

V(Fyt)

Deep Autoencoder that yields a

set of filters, trained once after

exploratory episode using a set

of patches of a set of sample

images of the environment.

Discarded after

exploratory Episode

…
 …

…

in terms of its feature representation and has the potential to be
deep in terms of its action representation.

H. Actor-critic Combined Network with Double Eligibility

Traces

In this section we show the derivation of the learning
formulae for the layered actor-critic architecture. When
function approximation techniques are used to learn a
parametric estimate of the value function)(sV ,)(tt sV is

expressed in terms of a set of parameters
t . The mean

squared error performance function [4] can be used to drive the
learning process:

Ss

ttt sVsVsprMSEError
2

)()()()(

)(spr is a probability distribution weighting the errors

 22)()()(sVsVsErr tt of each state s, and expresses

the fact that better estimates should be obtained for more
frequent states. The function

tError needs to be minimized in

order to find an optimal solution *

t that best approximates the

value function. For on-policy learning if the sample
trajectories are being drawn according to pr through real or
simulated experience, then one can concentrate on minimizing

the error function)(2 sErrt
. By using two layered neural

network (one hidden layer and an output layer) and two
sigmoid activations the reinforcement learning problem of
learning an approximation of the value function and the action-
value function can be written as:

I

i

tt iwiQ
tt

e

sV

1

)()(

1

1
)(

K

k

tt kikF
t

e

iQ

1

),()(

1

1
)(

The update rule can be written as
ttt d

2

1
 ,

td

 is a

vector that drives the search for *

t in the direction that

minimizes the error function)(2 sErrt
, and 10 t is a step

size. This direction can be chosen in several ways. For
example, the update rules for weights that go opposite to the
gradient direction are:

)(

)(
)()()(

iw

sV
sVsViw

t

tt
ttttt

),(

)(
)()(),(

ki

sV
sVsVki

t

tt
ttttt

By bootstrapping and using the)(11 ttt sVr as an

approximation for)(tsV and be defining

)()(11 tttttt sVsVr we have

)(

)(
)(

iw

sV
iw

t

tt
ttt

),(

)(
),(

ki

sV
ki

t

tt
ttt

It should be noted that these rules are approximate gradient
descend.

I. Conjugate Gradient Updates

In this section we extend the actor-critic setting to allow for
two conjugate gradient eligibility traces. We will follow the
same analogy of [14 and 16]. We update the error in (6)
opposite to the direction of the conjugate gradient of the output
and the action layers hence:

)(
)(

)(
)(1 ip

iw

sV
Erriw tt

t

tt
ttt

),(

),(

)(
),(1 kip

ki

sV
Errki tt

t

tt
ttt

Where β and β` factor can be specified in several ways, for
example for β we have:

11

1)(

t

T

t

t

T

tHS

t
pg

gg

11

)(

t

T

t

t

T

tFR

t
gg

gg

11

1)(

t

T

t

t

T

tPR

t
gg

gg

Conjugate gradient direction for the critic

1 ttwt pgp

t

twErrp

0

)(

)(
)()(2)(2

)(
k

sV
sVsVsErrg

t

tt
tttttk tt

t

tt
tttttww

w

sV
sVsVsErrg

tt

)(
)()(2)(2

Similar set of formulae can be defined for the actor.

Now we define)(

1

conj

te

and)(

1

conj

te

 as follows:

1

)(

1 t

t

tconj

ttt p
Err

e

1

)(

1

t

t

tconj

ttt p
Err

e

We can evaluate this in several ways; for example:

t

t
tt

Err

t

t
tt

Err

The updates can be rewritten as:

)()()(conj

tttttt esVsVw

)()()()()(kesVsVk conj

tttttt

)(

1

)()(conj

ttt

t

ttconj

t e
w

sV
e

)(

)(

)(
)()(

1 ke
k

sV
ke conj

ttt

t

tt
t

The above shows that eligibility traces are in fact
independent of the error that we use whether it is
approximation or exact. In fact, it distinctively shows that for
any error there is an eligibility trace that coincides with the
conjugate gradient; it varies with the reverse of the error.

tt , can be chosen in several ways other than the presented.

In general)(PR

t has been shown to perform better due to its

stability for nonlinear error functions [20].

This is in alignment with recent findings of [21] which is
based on complex definition for the reward function. Our
results show that we can find canonical eligibility traces that

varies with the error no matter what type of error we are using,
and that the reward discount should be varied according to the
direction of the conjugate.

For example, if we approximate the error using two layers
with bootstrapping and using the)(11 ttt sVr as an

approximation for)(tsV we have:

)(

1

conj

tttt ew

)()(1 kek tttt

)(

1

)()(conj

ttt

t

ttconj

t e
w

sV
e

)(

)(

)(
)(1 ke

k

sV
ke t

t

tt
t

Were δ being the temporal difference error. Eligibility
traces in reinforcement learning framework is similar to the
momentum for supervised learning. It establishes a way to
accommodate previous updates into current updates to guide
the search for the local optima. In RL it traces blame of current
decision back to older decisions that lead to the current
situation. Finally, a regularizer has been multiplied by the

two parameter sets to discount the old values of the parameters
(hence prevent overfitting).

When an episode has been signaled as an optimal (based on
its number of steps being minimal), the learned experience was
emphasized after the episode has finished in an offline learning
fashion as follows:

ep

ep

T

t

tTep www
1

ep

ep

T

t

tTep kkk
1

)()()(

Also when an episode has been signaled as bad (its number of
steps is worst), the model rewinds the learning done through
this experience: This was allowed after j initial non-reversing
episodes.

/)(
1

ep

epep

T

t

tTT www
 /))()(()(

1

ep

epep

T

t

tTT kkk

III. EXPERIMENTAL RESULTS

Fig. 2 shows the used robot and its environment. It is
basically an updated version of Lego Mindstorms that has been
used with additional camera module and processing unit that
was mounted and attached on top of it. This robot has a
relatively low level of sophistication in terms of the motor
commands, balance, senor reading as well as its shape. RWTH-
Mindstorms NXT Toolbox has been used to provide the
sensory reading and the actuator commands for the NXT robot.

Fig. 2. Left: A snapshot of the built robot with its sensors, actuators, and
camera module. Right: The training environment.

The robot was let to train for 30 episodes and to cool down for
5 episodes. Each episode starts by going from behind the
barrier location in the environment to the goal/home location. It
was allowed to run for a 500 steps before the episode is
considered a failure. Images with resolution of 160×120 were
sent form a Raspberry PI module wirelessly to an off-board
computer for processing. Learning took place in the off-board
computer then the action decision is sent to the actuators of the
robot via its Bluetooth. Threshold that specifies reaching the
goal was set to 0.97%.

A. Agent Learning Behavior and Convergence

Fig. 3 shows the number of steps in each episode. Three
distinguished stages can be identified; each marks a certain
behavioral learning. Each stage is distinguished through its
average number of steps (red bar). Although the number of
steps needed to reach the goal is inevitably varying, however
each stage can be recognized by a different average. In the first
9 episodes the agent did not apply any self-reflection and the
average number of steps (recognized by the red doted bar) were
the highest (51.5). The second stage started from episode 10
onwards where agent did apply self-reflection on episodes 10,
14, 30 (recognized by green). Those were relatively minimal
comparing to past experience, the condition was set to apply
self-reflection if the finished episode has steps ≤ second
minimal past episode. The average in this stage is 25.05 steps.
The third stage is form 31 onwards where the agent just
enjoyed following its learned policy with no online learning,
average was 13.4 steps only. Agent applied self-reflection on
episode 31. Episode 22 was suitable for rewinding but it was
not applied due to a high number of steps in the first stage. This
proposes a future change of comparing only within the self-
reflection window rather than all previous episodes.

An important thing to realize is that after the agent learns a
suitable policy in the first 30 episodes, its performance
stabilizes on an optimal policy with minimum number of steps
the agent needed to reach the goal. This is a distinguished trait
of this model. Bearing in mind that no experience can be
reproduced by the agent, even when the agent finalizes the
learning stage, a developmental behaviour can be realized.
First, the agent developed a primitive behavior of moving
forward and occasionally turning to minimize its cost. Then the
agent started to develop inclination of going forwards and turn
with some costal behaviour. In fact, turning in one direction
was preferred and enforced over the other actions. This is
particularly evident when we look at the overall size of the
actor parameters in Fig 4.

Fig. 3. The convergence to a stable number of steps is shown to develop; the

red bar shows the avergae number of steps needed for each stage to reach the
goal.

Initial

learning

Self-reflection window

F
o

ll
o

w
 P

o
li

cy

Goal Location Robot initial position

The number of episodes is envisaged (as was evident in the
simulation in [14, 15 and 16]) to show a pattern of convergence
towards minimal number of steps if the robot where left to run
for a very long time. This was not needed in this realistic
robotics scenario since the agent reached a good policy in 30
episodes only. However, due to time and physical constraints,
this was difficult to do and a powerful and fast model was
developed to reach a suitable strategy. The experiments were
conducted by starting always form roughly the same position.
The variation is due to the different learning stages as well as
due to the continuum of possible states at any location and due
to inherited inaccuracy of actions taken (due to the mechanics
of the used robot). Our results show that out of 35(30 training +
5 testing) times, the agent reached the goal location in all of
them but 7 with not a desired orientation; the goal was not
directly inside the visual field of the robot. Hence, it can be
concluded that the success rate is 35/35 ≈ 100% while goal
orientation recognition is 80%.

Fig. 4. The model learned parameters for the actor and the critic; three

actions is shown where gradient eligibility trace is used; a tendency towards

going forward then turning left is developed by the agent.

B. Summary and future work

In this paper an initial self-reflective learning model that

depends of deep combined actor-critic layered architecture has

been introduced. Self-reflection entails that the agent should

further ponder on negative and positive experience and should

take advantage of negative and positive costs and rewards by

either duplicating the learning process for successful

experience or forgetting it for bad ones. Relatively optimal

past experience is recalled, offline between episodes, and

compared with other similar but suboptimal episodes to single

out which decision was particularly good and positively be

reemphasized, hence suboptimal decision is singled out and

deemphasized. Equally, relatively bad experience is forgotten,

offline between episodes, to remove its confusing effect. In the

future we will be looking at different ways to formalize the

approach further and conduct more experiments to verify its

suitability for different scenarios. Also it is intended to show

some other interesting properties of the model such as

convergence and the relationship between deep feature

learning and deep action learning.

REFERENCES

[1] A. Vardy and R. Moller, “Biologically plausible visual homing methods
based on optical flow techniques”, Connection Science, vol. 17, pp. 47–
89, 2005.

[2] N. Tomatis et al, “Combining Topological and Metric: a Natural
Integration for Simultaneous Localization and Map Building”, presented
at Proc. Of the Fourth European Workshop on Advanced Mobile Robots
(Eurobot), 2001.

[3] Jochen Zeil, “Visual homing: an insect perspective, Current Opinion in
Neurobiology”, Volume 22, Issue 2, pp. 285-293, ISSN 0959-4388,
April 2012

[4] R. S. Sutton and A. Barto, “Reinforcement Learning, an introduction”,
Cambridge, Massachusetts: MIT Press, 1998.

[5] V. Konda and J. Tsitsiklis, “Actor-Critic algorithms”, presented at NIPS
12, 2000.

[6] O. Ziv and N. Shimkin, “Multigrid Methods for Policy Evaluation and
Reinforcement Learning”, presented at IEEE International Symposium
on Intelligent Control, Limassol, 2005.

[7] C. Zhang at al, “Efficient multi-agent reinforcement learning through
automated supervision”, presented at International Conference on
Autonomous Agents Estoril, Portugal, 2008.

[8] S. Bhatnagar et al, “Incremental Natural Actor-Critic Algorithms”,
presented at Neural Information Processing Systems (NIPS19), 2007.

[9] G. Hinton et al, “A fast learning algorithm for deep belief nets”. Neural
Computation,18(7):1527–1554, 2006.

[10] A. Coates et al, “An Analysis of Single-Layer Networks in
Unsupervised Feature Learning”, in AISTATS 14, 2011.

[11] P. Vincent et al, “Extracting and composing robust features with
denoising autoencoders”. In ICML, 2008

[12] A. Ng et al (2010), Tutorial in Deep Learning: Stanford University
[Online]. Available: http://ufldl.stanford.edu/tutorial/

[13] Y. LeCun et al, “Learning methods for generic object recognition with
invariance to pose and lighting”. In CVPR, 2004.

[14] A. Altahhan, “A Robot Visual Homing Model that Traverses Conjugate
Gradient TD to a Variable λ TD and Uses Radial Basis Features”, in
Advances in Reinforcement Learning, A. Mellouk, Ed. Vienna: InTech
Education and Publishing, 2011, pp. 225-254.

[15] A. Altahhan, “Robot Visual Homing using Conjugate Gradient
Temporal Difference Learning, Radial Basis Features and A Whole
Image Measure”, International Joint Conference on Neural Networks
(IJCNN), Barcelona, Spain, ISBN: 978-1-4244-6916-1, 2010.

[16] A. Altahhan et al, “Deep Feature-Action Processing with Mixture of
Updates”, Neural Information Processing Volume 9492 of the series
Lecture Notes in Computer Science pp 1-10, 2015

[17] A. Altahhan, A Fast Learning Home Aware Robot Navigation Learning
Using Simple Features and Variable Lambda TD, 2014 International
Joint Conference of Neural Network (IJCNN), China, IEEE, pp
ISBN:10.1109/ IJCNN.2014.6889845, 2014.

[18] A. Altahhan, ‘Navigating a Robot through Big Visual Sensory Data’,
INNS Conference on Big Data 2015 Program San Francisco, CA, USA
8-10 August, Procedia Computer Science, Volume 53, Pages 478–485
2015.

[19] V. Mnih et al, Playing Atari with Deep Reinforcement Learning, NIPS
Deep Learning Workshop 2013.

[20] Nocedal, Jorge, Wright, Stephen, 2006, Numerical Optimization,
Springer-Verlag New York, 978-0-387-30303-1, 2nd Edition

[21] R. S. Sutton et al, A new Q(lambda) with interim forward view and
Monte Carlo equivalence, Proceedings of the 31 st International
Conference on Machine Learning, Beijing, China, 2014. JMLR: W&CP
volume 32, 2014

[22] A. Coates et al, An Analysis of Single-Layer Networks in Unsupervised
Feature Learning, JMLR, 15:215-223, 2011.

http://ufldl.stanford.edu/tutorial/

