
Citation:
Akerele, O and Ramachandran, M and Dixon, MB (2014) Evaluating the Impact of Critical Factors
in Agile Continuous Delivery Process: A System Dynamics Approach. International Journal of
Advanced Computer Science and Applications(IJACSA), 5 (3). 133 - 143 (11). ISSN 2158-107X
DOI: https://doi.org/10.14569/IJACSA.2014.050319

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/465/

Document Version:
Article (Published Version)

Creative Commons: Attribution-Noncommercial 3.0

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/465/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

133 | P a g e

www.ijacsa.thesai.org

Evaluating the Impact of Critical Factors in Agile

Continuous Delivery Process: A System Dynamics

Approach

Olumide Akerele

School of Computing and Creative Technologies

Leeds Metropolitan University

Leeds, UK

Muthu Ramachandran, Mark Dixon

School of Computing and Creative Technologies

Leeds Metropolitan University

Leeds, UK

Abstract—Continuous Delivery is aimed at the frequent

delivery of good quality software in a speedy, reliable and

efficient fashion – with strong emphasis on automation and team

collaboration. However, even with this new paradigm,

repeatability of project outcome is still not guaranteed: project

performance varies due to the various interacting and inter-

related factors in the Continuous Delivery 'system'. This paper

presents results from the investigation of various factors, in

particular agile practices, on the quality of the developed

software in the Continuous Delivery process. Results show that

customer involvement and the cognitive ability of the QA have

the most significant individual effects on the quality of software

in continuous delivery.

Keywords—Agile software development; Continuous Delivery;

Delivery Pipeline; System Dynamics

I. INTRODUCTION

The Agile Manifesto places a high importance on the need
for the frequent delivery of working software: “Our highest
priority is to satisfy the customer through early and continuous
delivery of valuable software” [1]. This subtle principle
indicates that not all developed software is actually made
available to the customer for use where it actually adds value
to the customer's business. As Humble et al points out:

"It’s hard enough for software developers to write code that

works on their machine. But even when that’s done, there’s a

long journey from there to software that’s producing value -

since software only produces value when it’s in production”

[2].

Software delivery is inhibited by a number of post-
development issues: Configuration management problems,
insufficient testing in production-like environment and poor
collaboration among the various 'silos' in software projects are
the major problems that cause software rejection at this Stage
[2]. A practical example of such problem is the lateness by
the operations team to realize they can’t support a version of
developed software due to the incompatibility of the software
architecture with their available infrastructure. This is strictly
owed to the lack of involvement and collaboration of the
operations team in the development process, thus, resulting in
delivery failure. Such post-development problems are the
motivation for the Continuous Delivery (CD) initiative
[2][4][10].

Tests automation, strong team collaboration, effective
configuration management, deployment automation and good
team culture [2][10] are the major practices advocated in CD
to boost the effectiveness of a frequent delivery process .
However, these factors are not a surety to a smooth CD
process; while there have been overwhelming testimonies of
success with these practices ,most notably by Flickr and
IMVU – with up to 50 deployments a day [4], there have also
been numerous instances of failures [2][19]. This shouldn’t be
surprising: project outcomes in software projects is faced by
many limiting factors [5][6].

Various interacting and interconnected factors are present
in software projects and these are accountable for the
inconsistencies in the quality of software project results [7].
According to Brooks:

"no one thing seems to cause the difficulty (in software

projects)...but the accumulation of simultaneous and

interacting factors... ." [7].

The primary goal of this work is to investigate the dynamic
causal relationships of the variables within the CD 'system'
and develop a System Dynamics (SD) [8] model to evaluate
the impact of these pertinent factors on the quality of software
projects adopting CD. This can be used as a tool to evaluate
various managerial decisions and introduce reliability,
predictability and risk aversion in the CD process. Vensim [9],
free SD software is used for this research work.

A. Problem

Continuous integration, tests automation, good culture and
strong collaboration have been identified as the "pre-
requisites" for a successful CD process [2][3][4][10][19].
However, software projects are daunted with several
interrelated problems which make the project outcomes
unreliable [5][6] – even with the adoption of the
aforementioned "CD success pre-requisites" [2]. The success
of software delivery is impacted by a host of non-exhaustive
factors that interact in a continuous manner – creating
revolving loops within software projects [5].

Refactoring of an automated acceptance test suite, as an
example, is hypothesized to have a causal and dynamic effect
on CD process: As the acceptance test automation script
increases linearly with the project progress, the test suite
complexity, brittleness, as well as coupling increases –

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

134 | P a g e

www.ijacsa.thesai.org

gradually introducing test smell into the automated acceptance
test suite [11]. This is worsened by the presence of schedule
pressure; developers take short cuts by ignoring the test
coding standards and ideals in order to meet up with the
estimated work [6]. The test smell effect has a negative ripple
effect on the maintenance effort of writing automated
acceptance tests [10]. However, after refactoring the test suite,
there is a significant reduction in the test suite maintenance
effort due to the improved design of the test scripts [2][10].
Refactoring, of course, comes at a cost of extra effort [12].

Such causal effects of various practices are the
determinants of the failure and success of CD and there is a
wide gap in academic research within this context [18].
Without the managerial proactiveness of the effects of various
practices at various times in software projects, software
delivery will continue to be uncontrollable, leading to many
unpleasant surprises. A rigorous study of these variables, their
dynamic effects and their impact on the quality of the
developed software is vital to ensure repeatability and
predictability of an efficient CD process.

B. Literature Review

CD is a relatively new paradigm; this explains the reason
for the paucity of research work done in this field. At the time
of writing this paper, there isn't any research work
categorically done on CD. However, some works have been
done within considerably similar context: Kajko-Mattson [12]
developed a preliminary process model incorporating the two
parts of release management: the vendor and user side. Lahtela
et al [3] presented the challenges in the delivery of software by
performing a full case study. The authors identified 7 different
challenges encountered in the release of software. Van Der
Hoek et al [13] identified the problems of releasing software
from a component-based software engineering approach. The
authors developed a tool to solve the identified problems.
Krishnan [14] developed an economic model to optimize the
delivery cycle of delivering good quality software. These
works adopt a big-bang traditional waterfall approach to
delivery and not a repetitive delivery process – as is the case in
an agile development. This casts a major doubt on the
relevance of their findings to agile software projects. More so,
these works are empirical based and not simulation based
which indicates to a high degree that there is limitation on the
control over the identified factors. Though these works give an

insight into some of the problems with delivering software,
these problems are wholly generic and highly aggregated.

Abdel-Ahmed [5] was the first researcher to leverage SD
in software process simulations. He investigated the effect of
various management policies on development cycle time,
quality and effort were presented. However, his work was
based on the waterfall methodology approach which confines
the applicability of the results to waterfall projects. The actual
delivery process in software projects is also beyond the scope
of his work. Melis et al [16] developed a SD model to
investigate the impact of Test Driven Development (TDD) and
Paired Programming (PP) on the cycle time, effort and quality
of software projects. Cao [21] investigated the dynamics of
agile software development and the impact of agile practices
on cycle time and customer satisfaction using SD. With credit
to the impact of the work done by these authors in agile
software development, their works do not consider any post-
development activities relevant to software delivery.
Furthermore, there is complete exemption of the impact of
schedule pressure experienced by software project teams.

The authors of the paper assert that the successful
conclusion of this research work is going to be a pioneering
development in the field of CD and will create further insights
in which new research interests can evolve.

II. RESEARCH SCOPE

This research aims to develop a SD model that delivery
practitioners can adopt to have control over the delivery risk
factors, particularly cost overrun and schedule flaws.
Achieving this aim involves full investigation to determine the
pertinent factors impacting the outcome of the CD practices
described in section 1; the causal effects of agile practices on
these advocated CD practices within the delivery pipeline [17]
are also considered.

Fig.1 below presents an overview of the generic flow
process of CD. The entire process line is known as the delivery
pipeline, deployment pipeline or build pipeline [17]. The
complexity of the pipeline created by teams will vary
depending on the level of available resources, project risks
involved and criticality of the developed software [35]. This
research work is based on a standard 4-stage deployment
pipeline as represented in Fig. 1.

Legend:

Level: Entity that builds or diminishes over a specified period of time; Inflow/Outflow: Rate of change in level

Fig. 1. Generic SD Continuous Delivery Flow Process

integrated

stories

automated
acceptance tested

stories

manual tested

stories

delivery

candidates

continuous

integration
acceptance testing manual testing deployment to

production-like

environment

delivery

level
inflow outflow

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

135 | P a g e

www.ijacsa.thesai.org

Mathematically, the legend above is exemplified by:

level (t)= level (t-dt) + inflow * (dt) (1)

 Fig.1 above shows each activity and their corresponding
artifacts. The success of each initial stage is a criteria for the
commencement of the succeeding stage. Our work lies in this
pipeline to determine the relevant factors affecting the
efficiency of this 'journey' for frequent software delivery.

A. Research Goal

The goal of this work is to develop a SD model to act as a
tool for the delivery pipeline to ensure a repetitive, predictable
and risk-free CD activity for software projects. The model will
ensure a fully controllable delivery environment and help
management anticipate the results of their deliberate actions.

B. Research Questions

This research work is aimed at answering the following
major Research Questions (RQ):

RQ1: What are the key factors (environmental, human and

technological)in software projects that impacting the success

of CD? What are the agile practices that have an impact on

the quality of software projects in the CD process?
RQ2: What are the dynamic and causal effects of each of

these factors on the software quality in CD?

RQ3: What is the impact of the agile practices such as on-site

customer, TDD,PP and Pair Testing on software quality in

CD? What is the impact of the ability of the Quality Assurance

(QA) tester on the quality of the software

C. Research Benefits

A number of benefits would be achievable from the
success of this research work: Firstly, it will help to maintain a
total control of the available resources to achieve a stable,
repeatable and predictable CD process. The lack of such tool
has created a huge gap in the industry and made delivery
stability a difficult task. The stability that is realizable with
this tool will help organizations striving to achieve CMMI
levels 4 and 5 [22] accreditation.

This model may also be used as a risk management tool of
the delivery process. Since the impact of potential
technological and strategic decisions on outcomes such as
project completion dates and number of deliverable features is
possible via simulations, potential risks can be anticipated and
proactively planned against or avoided completely. Several
software organizations depend mainly on SD models as their
major risk management tools [5].

This model will act as an invaluable tool to project
managers, release managers and senior management of
software development organizations interested in the frequent
release of their software to customers.

In addition, the model can serve as a process improvement
tool by helping to determine points for optimization of
important variables like acceptance rate, build time, required
effort, and etcetera.

III. METHODOLOGY

This section describes how the objectives of the research
work are planned to be achieved.

A. Data Sources

 Interview: Primarily, semi-structured interviews will be
conducted with experienced agile consultants, project
managers and developers to elicit the major active
variables to achieve the objectives of this research
work. A formal approach will be adopted to narrow
down these factors to the most relevant active factors.

 Questionnaire/Survey: This will be developed and sent
to practitioners within the CD field who will give their
responses based on the valuable experience in the area.
The responses will then be analyzed systematically.

 Literature review: Keywords such as "continuous
delivery (modeling)", "release management
(simulation)" and "software system dynamics" will be
used to search for related work in digital libraries.
Significant findings from related work will not only
help in identifying some factors but also help in the
quantification of the impact the factors have on other
variables in the project. The quantification of this
impact will be vital in the calibration of the SD model
for simulations.

 Author’s discretionary assumption: Where necessary,
author’s assumptions are used in the development of
the model. Such assumptions will be sanctioned and
perhaps, moderated by experienced agile practitioners
via interviews and questionnaire.

B. Simulation

Simulations provide the computerized prototype of an
actual system run over a specified period of time. They are
useful in software projects to improve project understanding
and knowledge base of project stakeholders.

Simulations offer a more realistic and cost-effective
approach to realizing the objectives of this work as opposed to
the 'rigidity' offered by empirical methods. The flexibility
provided by simulation techniques to alter the variables for
system behavior analysis will be impractical to achieve if the
conventional empirical methods are adopted [5][15].

SD, a continuous simulation technique, provides the full
functionalities to achieve the goals and objectives of this
research work, hence, its adoption for this work. SD facilitates
the visualization of the complex inter-relationship between
variables in a software project system and runs simulations to
study how complex project systems behave over time [6]. A
system dynamic model has a non-linear mathematical
structure of first order differential equations expressed as:

y'(t)= f(y,m) (2),
Where y represents vector of levels, f is a non-linear

function and m is a set of parameters.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

136 | P a g e

www.ijacsa.thesai.org

IV. CONTINUOUS DELIVERY MODEL AND

PARAMETERIZATION

The full CD model is designed into three sub-models for
ease of analysis: The schedule pressure sub-model, the
delivery pipeline sub-model, CD cost effectiveness sub-model.
Due to space constraints of this paper, only the automation
acceptance testing section of the delivery pipeline sub-model
is presented in this paper. This section is responsible for
estimating the AAT Pass Multiplier.

A. The AAT PASS Multiplier

This sub-model was designed to determine the impact of
various policies on the quality of automated acceptance tests.
Schedule pressure -- an occurrence triggered when actual time
left to finish the development of the software exceeds the
estimated time to finish the development of the software-
plays a pivotal role in the level of adoption of process
improvement practices [5]. The Figure below shows the
dynamic modelling of factors responsible for the quality of the
automated acceptance tests.

The authors have solely discussed the elicitation and
calibration of the tdd factor only as space constraints of this
paper makes it impossible to discuss all the active variables in
the model

TDD as a development technique has been a core practice
in agile software projects. TDD involves a sub-iterative and
incremental 6-step process in the following order: write failing
unit test - run to ensure failure - write functionality code - re-
run unit test to ensure success - refactor - proceed. This
iterative and incremental procedure instills a high degree of
reliability into the developed software and reduces redundancy
in the production code and test artifacts [23].

Some researchers have investigated the impact of tdd on
the quality of automated acceptance tests: A recent research
investigated the effects of TDD on external quality and
productivity by using meta-analytical techniques [24]. Results
of the analysis suggest that the TDD has a relatively small
positive impact on the quality of software; however, the
impact on productivity is non- conclusive.

George and Williams [25] carried out a controlled
experiment on 24 professional pair programmers to evaluate
the external code quality and speed of development of the
TDD adopters vis-a-vis waterfall approach adopters. 3
experiments were performed on 8 person-group teams at 3
different companies to program Martin's bowling game task
[26].

Fig. 2. Automated Acceptance Testing Section of the Delivery Pipeline Sub-Model

Passed AA
tests

failed AAT
tests

rejection rate

customer
influence
multiplier

reworked
AAT tests

AT rework rate

actual
customer

involvement
impact

story
acceptance

tests
automated

acceptance testing
rate

AAT pass
multiplier

tdd impact

pp impact

pair programming
multipl ier

actual degree
of tdd

tdd factor

actual degree
of PP

<schedule
presure>

time to AAT

continuous
integration rate

automated
acceptance tests

lookup

<Time>

loookup for SP
on PP

planned degree
of PP

lookup of SP for
tdd

tester skill
planned degree

of tdd

test quality

<requirement
volatilty>

degree of
customer

involvement

nominal customer
involvement impact

developer
skill

average non TDD
pass rate planned degree

of PT

total number of
AAT tests

total number of
failed AAT tests

Actual
Passing AAT

lookup

Actual AAT Pass
Rate

http://ieeexplore.ieee.org.ezproxy.leedsmet.ac.uk/stamp/stamp.jsp?tp=&arnumber=6197200

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

137 | P a g e

www.ijacsa.thesai.org

Results showed the tdd group passed roughly 18% more
tests than the control group that adopted the waterfall
approach. The results in the work are however may have been
confounded by the effects of PP.

A more relevant experiment was carried out on by Yenduri

[27]. A two 9-person groups of senior undergraduate students

to evaluate the impact of tdd on software quality and

productivity; one group used the test first approach and the

other using the test-last approach. Results showed 55%

improvement in the acceptance test pass rate of the tdd group.

The task developed however was described as a “small”
project which implies results could vary with larger projects.

Also, the size of the subjects is relatively small.

A survey was conducted by the authors directed at

experienced project managers and developers with over 5yrs

experience in tdd usage to determine the impact of tdd on

acceptance tests success. Analysis of the responses gave

values ranging from 30% to 60% improvement, with the mean

of approximately 54%. The authors assumed a modest value of
50% and this value was further supported by two interviewees.

One of the interviewees (I1)said:

"The high level of granularity of functionality testing during

TDD, when done effectively, guarantees the behavioural

requirement of the system is fulfilled, severely limiting the

causes of failures during functional testing to environmental

factors or inaccuracy in the requirement elicitation.
Conveniently, we achieve 50% better success during

acceptance testing than when we used to adopt the test-last

approach... . "

Baring other factors, the authors make a bold assumption
that a full adoption of TDD should guarantee 100% success of
acceptance tests. Hence, we estimate the success rate of
acceptance tests pass rate without TDD to be 67% so that a
full adoption of TDD will yield 100% success in our model.
The estimated acceptance pass rate of the test –last approach is
represented by the average non-TDD pass rate in the model.
This value is quite close to values of test-last adopters (75%)
in Williams' work [25].

The planned degree of tdd in the model represents the
planned level of tdd adoption in the development of the
software features for the project. No literature exists on the
average level of tdd adoption. However, the standard degree of
unit test coverage in the industry ranges from 80-90%.
[28].Some platform providers maintain a strict level of unit
test coverage before allowing promotion of software unto their
platform. Sales force, a leading PaaS provider, insists on
minimum unit test coverage of 75% before allowing
promotion of customer’s software unto their staging
environment [29]. In our project case study, the planned level
of tdd adoption is 100% for the project i.e. all features were
planned to be developed by tdd approach.

For ease of analysis, we assume that the test suite offers
complete coverage; implying all behavioral defects in the
system are detected during development when tdd is fully
adopted. This follows a similar assumption made by Williams
et al in the development of their economic model [30].

The actual degree of tdd adoption is affected by schedule
pressure [6][23]. Developers tend to “cut corners” when the
team is behind schedule to try and catch up . When a team is
behind schedule, the procedural steps f adopting tdd are easily
bypassed to increase development speed. The actual degree of
tdd is the effective percentage of features developed using the
tdd approach in the project throughout the project. There is no
published work on the estimated impact of schedule pressure
on the degree of tdd adoption prompting the authors to derive
simplistic mathematical model to estimate the impact of
schedule pressure on the planned degree of tdd adoption.
Effective and simple mathematical models can be developed
by researchers when reliable data is not available for model
parameterization. Forrester advised:

"A mathematical model should be based on the best

information that is readily available, but the design of a model

should not be postponed until all pertinent parameters have

been accurately measured. That day will never come. Values

should be estimated where necessary….” [31]

As the schedule pressure develops, the team responds to
falling behind in schedule by working extra hours and cutting
their slack time to try and meet up with the lost work [32].
This makes the initial effect of SP very minute, hence, the
initial flatness in the curve. However, as the pressure mounts,
the "threshold" is exceeded and the team responds by cutting
corners and reducing their adoption of TDD steps, instead,
following the test last approach. It then gets to a maximum
point where a increase in SP doesn't have an effect anymore.
This forms the tail end/flat end of the other extreme end of the
graph. This relationship is built in the variable lookup of SP
for tdd.

tdd factor, the variable representing the impact of tdd on the

estimated pass rate of the automated acceptance tests has the
formula : average non TDD pass rate+(actual degree of

tdd*tdd impact*average non TDD pass rate)

where actual degree of TDD = IF THEN ELSE(Time=11, 0,

planned degree of tdd*lookup of SP for tdd(schedule

presure)), TDD impact = 0.5 and average non TDD pass

rate=0.67.

V. MODEL VALIDATON

The model is validated in two folds, following the
approach described by Richardson et el [20]: structural phase
and behavioral phase. Structural validation is the examination
of the structure of the entire model. This involves the studying
of the inter-relationship and parameterization of the variables
to ensure they are credible enough to produce replicate real-
life scenarios. Experienced project managers, consultants and
developers were sought for this process, with critical feedback
used to rework the model in an iterative manner until the
structure is approved by the reviewers. The model was also
presented at two conferences and valuable feedback was
incorporated to rework the model.

 Behavioural validation aims to verify the model actually
produces results that are similar to real-life project outputs.
The model will be validated against data of output variables
from a completed software project with similar characteristics

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

138 | P a g e

www.ijacsa.thesai.org

that successfully implemented CD. Coherence in the results
between the simulation outputs and actual completed project
outputs prove the model is capable of producing real-life
project results, hence, validating the model. Also Success at
this stage is a critical prerequisite before the model could be
subjected to sensitivity analysis to answer the remaining
research questions outlined.

A. Project Data

Data was sourced from a complete project that adopted CD
and agile practices from a sales software vendor. The
developed software is part of a comprehensive software suite
used for enhancing sales of products by manufacturers.

The project case study used for this project was the
software development project for their sales modeling
solution. Data from the project is presented in the table 1.

Table 2 presents the data used to simulate the pressure
experienced by the team. The pressure influences the adoption
of major practices in the model and consequently the outcome
of the project [5][6]. Fig. 5 below shows the simulated
graphical representation of the SP experienced by the team.
Schedule pressure is determined across each iteration in the
project by the formula:

(Actual Work Left - Estimated Work Left)/ Estimated Work

Left (3).

TABLE I. GENERAL PROJECT INFORMATION

Programming Language Java

Project Duration 220 working days

Development Duration 203 working days

Iteration duration 2weeks

Team Size 5

Team Velocity 50

Agile Methodology Used XP/Scrum

Number of Stories 199

Version Control System Subversion

CI Server Go

Configuration Management Tool Chef

Unit Test Framework JUnit

Automated Acceptance Testing

Framework

BDD

Automated Acceptance Testing

Tool

JBehave

Team Experience Mix Average of 9years software
projects experience

Working hours/day 7.5

TABLE II. PROJECT DATA USED FOR SCHEDULE PRESSURE SIMULATION

Iteration

Estimate

d No of

Tasks

Committ

ed

Actual

No of

Tasks

Comm

itted

Actual

User

Storie

s

Comp

leted

Actual

Value of

Work

Complete

d(Points)

Production

Code Size

(LOC)

1 30 20 6 62 450

2 40 28 7 55 695

3 40 46 11 60 1123

4 40 44 11 51 1095

5 40 41 10 49 960

6 40 43 10 58 1145

7 40 38 9 62 967

8 40 34 8 41 888

9 40 27 6 47 620

10 40 25 7 50 540

11 20 0 0 59 0

12 40 53 14 61 1322

13 40 55 13 65 1485

14 40 48 12 64 1055

15 40 46 11 60 912

16 40 41 10 58 993

17 40 46 12 66 1211

18 15.6 53 15 69 1368

19 0 56.96 17 63 1420

Total 705.6 744.96 199 1099 18249

Fig. 3. Project Schedule Pressure

B. Simulation Results

The table below shows the extracted results from the
simulation model. "AA" denotes “automated acceptance" in
table 3.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

139 | P a g e

www.ijacsa.thesai.org

TABLE III. RESULTS COMPARISON OF ACTUAL PROJECT OUTCOME AND SIMULATED PROJECT OUTCOME

Iteration Actual # of

Passing AA

test cases

Actual AA

Pass Rate

Simulated # of

Passing AA

Test Cases

Simulated AA

Pass Rate

Actual #

Passing UA

test cases

Actual UA

Test pass

rate

Simulated #

passing UA test

cases

Simulated UAT

pass rate

1 31 83.78 33.83 91.44 23 74.19 21.37 68.94

2 40 80 44.30 88.61 26 68.4 26.58 69.96

3 62 89.85 60.14 87.17 36 75 34.51 71.90

4 55 82.08 59.77 89.22 39 82.9 34.95 74.39

5 58 90.62 56.75 88.68 40 81.63 37.58 76.70

6 63 90 62.84 89.78 50 87.71 45.15 79.22

7 57 95 52.29 87.15 41 75.92 43.99 81.47

8 44 83.01 46.71 88.14 48 87.27 45.77 83.23

9 33 84.61 34.54 88.57 39 81.25 40.46 84.31

10 42 91.30 39.50 85.89 40 90.9 36.93 83.95

11 0 0 0 56.20 0 0 0 68.34

12 46 63.01 53.51 73.31 35 59.32 39.38 66.76

13 56 80 52.24 74.6 38 71.69 37.97 71.64

14 47 75.80 46.48 74.98 41 68.33 43.43 73.33

15 38 69.09 39.67 72.13 37 75.51 34.51 70.44

16 43 79.62 38.64 71.56 42 76.36 37.73 68.60

17 36 70.58 35.64 69.89 31 63.26 33.19 67.75

18 50 76.92 46.58 71.66 35 64.81 36.69 67.95

19 49 69.01 51.85 73.04 51 82.25 42.25 68.15

Fig. 4. Graphical Comparison of Actual and Simulated Automated
Acceptance test (AAT) Pass Rate

Fig. 5. Graphical Comparison of Actual and Simulated User Acceptance Test

Pass Rate

The data provided in table 3 is used to examine the validity
of the model by comparing the actual project outcome with the
outcome produced by the developed simulation model. The
actual automated acceptance test pass rate and simulated
automated acceptance test pass rate represents the actual
number of passing automated acceptance and user acceptance
test cases expressed as a percentage of the total number of
automated acceptance and user acceptance test cases and
simulated number of passing automated acceptance and user
acceptance test cases expressed as a percentage of the total
number of automated acceptance and user acceptance test
cases respectively.

 Noticeably, the results from the model highly correlate
with the actual project outcome. There were two main points
of significant discrepancy in the values of the results for AAT
results: The 1st, 2nd and 12th iteration. In the first and second
iteration, the team recorded a low number of automated
acceptance test cases due to the relatively few number of
stories delivered which significantly reduced the total sample
for that iteration. Hence, the high impact on the % variation
between the simulated and actual results. It is plausible to
believe that the actual pass ratios for these iterations with low
test cases are exaggerated. In the 12th iteration, the team had
significantly more actual failing tests due to the impact of
major refactoring on the passing test suite which occurred in
the 11th iteration. It has been reported that that software
project teams generally experience problems of failing tests
after major redesign due to the coupling among various
components of the software [33]. The 11th iteration is not
recognized as a non- productive iteration by the simulation

0

20

40

60

80

100

1

3

5

7

9

11

13

15

17

19

Passing AA
test cases

Passing AA
test cases

0

20

40

60

80

100

1 3 5 7 9 11

13

15

17

19

Actual UAT
Pass Rate

Simulated
UAT Pass
Rate

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

140 | P a g e

www.ijacsa.thesai.org

model as the actual project progress was inhibited due to the
management decision to carry out major refactoring. This
behaviour is not built into the simulation model as this is a
manual decision made solely by the discretion of the team.

The major point of disparity in the simulated and actual
pass rate in the UAT scenario is apparent in the 19th iteration.
A possible argument for this is that testers tend to overlook
many possible scenarios when a project is seemingly coming
to closure and build assumptions into the system to get the
project over with; in extreme cases, testers actually pass
failing tests and are not really ready to find faults to avoid
project extension and look forward celebrating project
completion. This phenomenon was further attested by an
interviewee (I2). This phenomenon may explain the
considerable disparity in the passing test rates in the final
iteration than that projected by the simulation model.

C. Model Experimentation

Experiments are performed to carry out sensitivity analysis
on the model to determine the impact of various policies on
the quality of the developed software by altering the planned
level of adoption of the major influencing agile practices. The
major practices of interest are: PP, PT, customer involvement
and TDD. The impact of the ability of the QA (cognitive
ability and domain savvy) is also investigated. Schedule
pressure plays a prominent role in the actual level of adoption
of the practices. The project data used for the model validation
is used and the level of adoption of each practice is altered.
Table 4 below shows the various scenarios typifying various
managerial policies regarding agile practices adoption.

TABLE IV. SCENARIOS FOR AAT MODEL SUB-SECTION

 PP TDD Customer

involvement

Scenario 1 0% 0% 0%

Scenario 2 100% 0% 0%

Scenario 3 0% 100% 0%

Scenario 4 0% 0% 100%

Scenario 5 100% 100% 0%

Scenario 6 100% 0% 100%

Scenario 7 0% 100% 100%

Scenario 8 100% 100% 100%

TABLE V. SIMULATED AUTOMATED ACCEPTANCE TEST PASS RATE

Iteration

Scenario #

1 2 3 4 5 6 7 8

1 22.7 25.9 34.1 56.9 38.9 64.9 85.3 97.4

2 2m1.9 25,3 32.9 54.9 37.9 63.2 82.3 94.8

3 21.6 24.9 32.3 54.0 37.3 62.4 80.8 93.4

4 22.1 25.5 33.2 55.4 38.1 63.7 83.0 95.4

5 22.0 25.3 32.9 55.0 37.9 63.4 82.4 94.9

6 22.3 25.6 33.4 55.8 38.3 64.1 83.6 95.9

7 21.6 24.9 32.4 54.1 37.3 62.3 81.0 93.2

8 21.9 25.2 32.8 54.9 37.6 63.0 82.0 94.1

9 22.1 25.3 33.0 55.3 37.8 63.3 82.5 94.5

10 21.8 24.7 32.1 54.6 36.5 61.9 80.4 91.2

11 21.4 23.5 21.4 53.6 23.5 58.7 53.6 58.7

12 22.3 22.5 29.2 55.8 29.4 25.2 73.0 73.5

13 21.7 22.4 29.3 54.2 30.3 56.0 73.3 75.8

14 21.7 22.5 29.4 54.3 30.5 56.2 73.6 76.3

15 21.4 21.8 28.5 53.6 29.1 54.7 71.3 72.8

16 21.8 21.9 28.5 54.6 28.7 54.9 71.3 71.7

17 21.5 21.5 27.9 53.7 27.9 53.7 69.8 69.8

18 22.0 22.0 28.6 55.1 28.6 55.1 71.6 71.6

19 22.4 22.4 29.2 56.1 29.2 56.1 73.0 73

Average 21.9 23.84 30.5 54.8 30.4 59.67 76.5 83.6

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

141 | P a g e

www.ijacsa.thesai.org

Fig. 6. Graph for Automated Acceptance Test Rate for Various Scenarios

Table 5 and Fig. 6 show the relative impact of applying
various managerial policies on the quality of the software with
the values rounded off to the nearest 1decimal point. Table 1
above shows the impact of various management policies on
the AAT pass rates. Clearly, scenario 8 (adoption of al
practices) provides the most outstanding results until iteration
5 when it levels up with scenario 7 (TDD and customer
involvement).

While scenario 4's performance (customer involvement) is
not the best, it provides the most stable pass ratios all through
the project irrespective of the schedule pressure.
Unsurprisingly, scenario 1 had the poorest results having not
adopting any of the practices.

TABLE VI. SCENARIOS FOR UAT MODEL SUB-SECTION

 PT QA

Cognitive

Ability

QA Domain

Knowledge

Scenario 1 0% low low

Scenario 2 100% low low

Scenario 3 0% high low

Scenario 4 0% low high

Scenario 5 100% high low

Scenario 6 100% low high

Scenario 7 0% high high

Scenario 8 100% high high

TABLE VII. SIMULATED UAT PASS RATE

Iteration

Scenario #

1 2 3 4 5 6 7 8

1 50.6 57.0 58.3 53.9 68.3 61.9 61.5 69.5

2 51.3 57.8 59.1 54.7 69.3 62.7 62.4 70.5

3 52.7 59.2 60.6 56.1 71 64.3 64 72.5

4 54.5 61.3 62.7 58 73.5 66.5 66.2 75

5 56.2 63.2 64.7 59.8 75.8 68.6 68.3 77.3

6 58.1 65.2 66.8 61.8 78.2 70.8 70.5 79.9

7 59.7 67.1 68.6 63.5 80.4 72.8 72.5 82.1

8 61 68.5 70.1 64.9 82 74.3 74 83.9

9 61.7 69.2 70.9 65.6 82.8 75 74.8 85

10 61.6 68.4 70.3 65.3 81.2 73.9 74 85.3

11 59.4 59.4 66.7 62.5 66.7 62.5 69.9 69.9

12 56.6 58.9 61.7 58.8 65.3 61.6 63.9 68.1

13 58.8 61.9 64.9 61.4 69.9 65.3 67.5 73.3

14 59.3 62.5 65.5 61.9 70.6 66 68.1 74.1

15 58.8 61.5 64.4 61.2 68.8 64.6 66.9 72

16 58.2 60.5 63.5 60.5 67.1 63.4 65.7 70

17 58 60.1 63 60 67.1 63.4 65.7 70

18 58.2 60.3 63.2 60.3 66.6 63 65.4 69.2

19 58.4 60.5 63.4 60.5 66.8 63.2 65.6 69.5

Average 57.5 62.23 64.65 60.5 72.1 66.5 67.7 74.5

Fig. 7. Graph for User Acceptance Testing Rate for Various Scenarios

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

142 | P a g e

www.ijacsa.thesai.org

Table 6 shows the various scenarios of factors affecting the
quality of user acceptance testing. The results for the UAT
pass multiplier with various scenarios are presented in table 7
and Fig.7. Various PT adoption policies were simulated as
well as determining the impact of management hiring options
of the pertinent to the ability of the QA tester. These factors
help improve the sad path test coverage and discover defects
that are only usually discoverable by the system end user
[34][36]. PT in the context of this paper is the practice of
developers pairing with the QA alone or with the QA and
onsite customer in writing and coding the test cases to run
behavioral examples of system features authored by the
customer[34].

As such, PT is not considered to have significant impact on
the AAT pass ratio since the test examples written by the
customers are unequivocally defined and does not necessarily
need the exploratory testing skill input of a second tester/
developer. The impact of SP is clearly seen to reduce the pass
ratio in some scenarios while it remains relatively inactive in
some scenarios. The cognitive ability of the QA is noticeable
to be most significant on the UAT pass rate in the project
followed closely by PT. The adoption of PT and having a QA
with high cognitive ability with commendable domain
savviness yield 17% improvement in the UAT pass rate to a
project with poor QA Ability without a pair tester. However, it
remains to be known if the savings made by deploying a
second tester and hiring a QA with immense domain savvy
and cognitive ability are more than the cost of their
introduction

D. Limitation of the Study

The calibration of the model was based on data from peer-
reviewed literature, surveys and interviews. Bias of any of the
sources could inhibit the validity of the model.

Furthermore, the sample size of the actual test cases per
iteration produced by the team is relatively small. This being
middle sized project, it may imply that this model is only
applicable to middle-large sized projects with numerous test
case developed due to high number of features; the model may
yield different results for small projects.

Most importantly, these effectiveness of the various factors
are valid under the conditions experienced by the project team,
most notable the schedule pressure experienced. Intuitively,
without the effects of schedule pressure process improvement
practices, the adoption of these factors will yield better results.

VI. CONCLUSIONS AND FUTURE WORK

This paper reports a developed SD model that acts as a
decision making and process improvement pool to software
development teams practicing CD. The goal of the model is to
improve the effectiveness of the CD process and help
managers optimize their development process. The impacts of
practices such as PP, TDD, PT, customer involvement on the
quality of the software were investigated. The authors also
investigated the impact of the QA ability on the quality of
software. The impact on SP experienced by teams is also
substantilized in this study. Validating the model against data
from a completed middle sized project, customer involvement
proves to have the most significant impact on the quality of

onsite AAT while the cognitive ability of the QA has the most
impact on the quality of UAT.

The authors are addressing the limitations of this work and
currently working on evaluating this model in an uninfluenced
and "ideal" environment by simulating an exploratory project
case study to fully evaluate the impact of various managerial
policies on the CD process.

Furthermore, it is not enough to determine the qualitative
impact of these various factors on the quality of the software
project. This work points attention for possible concerns to
address questions like: "what are the trade-offs of these
practices and the optimal level of adoption of these practices
on the CD performance metrics?"; what is the economic
effectiveness of the adoption of the agile practices on the CD
process?"; what is the extra resource requirement necessary to
adopt these practices?"; "is the extra cost necessary to
incorporate these practices better devoted to other value-
adding tasks such as development or QA?"; "do the
benefits(quality improvement) of the adoption of these
practices overweigh their associated costs?"

REFERENCES

[1] Beck, Kent; et al. (2001). Manifesto for Agile Software Development.

Agile Alliance. Retrieved 14 Jan 2012.

[2] Humble, J. and Farley, D. Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Addison

Wesley, 2010.

[3] Lahtela.A and Jantti.M, Challenges and problems in release
management process: A case study, in 2011 IEEE 2nd International

Conference on Software Engineering and Service Science (ICSESS),
2011, pp. 10 –13.

[4] Fitz, T. Continuous Deployment at IMVU: Doing the impossible fifty

times a day.2009. Published on 2
nd

 October, 2009, Date accessed 2
nd

 Jan,
2013. http://timothyfitz.com/2009/02/10/continuous-deployment-at-

imvu-doing-the-impossible-fifty-times-a-day/

[5] Abdel-Hamid, T. and Madnick, S. Software Project Dynamics: An

Integrated Approach. Prentice Hall, 1991.

[6] Madachy, R.J. Software Process Dynamics. Wiley-IEEE Press, 2008.

[7] Brooks, Jr., F.P. The Mythical Man Month and Other Essays on
Software Engineering. Addison Wesley, 1995.

[8] Ogata, K. System Dynamics. Prentice Hall, 2003.

[9] Ventana Systems Inc, 2012, http://vensim.com/

[10] Gruver, G., Young, M., and Fulghum, P. A Practical Approach to

Large-Scale Agile Development: How HP Transformed LaserJet
FutureSmart Firmware. Addison Wesley, 2012.

[11] Borg, R. and Kropp, M. Automated Acceptance Test refactoring.
Proceedings of the 4th Workshop on Refactoring Tools, ACM (2011),

15–21.

[12] M. Kajko-Mattsson and F. Yulong, Outlining a Model of A Release
Management Process, J. Integr. Des. Process Sci., vol. 9, no. 4, pp. 13–

25, Oct. 2005.

[13] A. van der Hoek and A. L. Wolf, Software release management for
component-based software, Softw. Pract. Exper., vol. 33, no. 1, pp. 77–

98, Jan. 2003.

[14] M. S. Krishnan, Software release management: a business perspective,
in Proceedings of the 1994 conference of the Centre for Advanced

Studies on Collaborative research, 1994, p. 36.

[15] Madachy, R.J. System dynamics modeling of an inspection-based
process. , Proceedings of the 18th International Conference on Software

Engineering, 1996, (1996), 376 –386.

[16] Melis, M., Turnu, I., Cau, A., and Concas, G. Evaluating the impact of
test-first programming and pair programming through software process

simulation. Software Process: Improvement and Practice 11, 4 (2006),
345–360.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

143 | P a g e

www.ijacsa.thesai.org

[17] Humble, J., Read, C., and North, D. The deployment production line.

Agile Conference, 2006, (2006), 6 pp. –118.

[18] Mantle, M.W. and Lichty, R. Managing the Unmanageable: Rules,

Tools, and Insights for Managing Software People and Teams. Addison-
Wesley Professional, 2012.

[19] L. Klosterboer, Implementing ITIL Change and Release Management,

1st ed. IBM Press, 2008

[20] G. P. R. and A. L. P. III, Introduction to System Dynamics Modeling.
Pegasus Communications, 1981.

[21] Cao, L., Ramesh, B., and Abdel-Hamid, T., Modeling dynamics in agile

software development. ACM Trans. Manage. Inf. Syst. 1, 1 (2010), 5:1–
5:26.

[22] Inst, C.M.U.S.E. The Capability Maturity Model: Guidelines for

Improving the Software Process. Addison Wesley, 1995

[23] K. Beck, Test-driven development: by example. Boston: Addison-
Wesley, 2003.

[24] Y. Rafique and V. B. Misic, “The Effects of Test-Driven Development
on External Quality and Productivity: A Meta-Analysis,” IEEE

Transactions on Software Engineering, vol. 39, no. 6, pp. 835–856, Jun.
2013.

[25] B. George, “An initial investigation of test driven development in

industry,” in ACM Sympoium on Applied Computing, 2003, pp. 1135–
1139.

[26] R. C. Martin, Agile software development: principles, patterns, and

practices. Upper Saddle River, N.J.: Prentice Hall, 2003.

[27] S. Yenduri and L. Perkins, “Impact of Using Test-Driven Development:

A Case Study,” Software Eng. Research and Practice,pp. 126-129,
2006.]

[28] Cornett, S., "Code Coverage Analysis," Bullseye Testing Technology
http://www.bullseye.com/coverage.html , accessed 20th February 2014.

[29] Salesforce, Force.com Apex Code Developer's Guide,

http://www.salesforce.com/us/developer/docs/apexcode/, date accessed
10th January 2013]

[30] L. W. H. Erdogmus, “The Economics of Software Development by Pair

Programmers.”

[31] Forrester, J.W, Industrial Dynamics. Cambridge, MA: The
M.I.T.Press,1961

[32] B. W. Boehm, Software engineering economics. Englewood Cliffs, N.J.:

Prentice-Hall, 1981.

[33] [M. Fowler and K. Beck, Refactoring: improving the design of existing
code. Boston: Addison-Wesley, 2012.

[34] J. Russell and R. Cohn, Pair Testing. Book on Demand, 2012.

[35] O. Akerele, M. Ramachandran, and M. Dixon, “System Dynamics
Modeling of Agile Continuous Delivery Process,” 2013, pp. 60–63.

[36] O. Akerele, M. Ramachandran, and M. Dixon, “Testing in the Cloud:

Strategies, Risks and Benefits,” in Software Engineering Frameworks
for the Cloud Computing Paradigm, Z. Mahmood and S. Saeed, Eds.

Springer London, 2013, pp. 165–185.

