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PV with multiple storage as function of geolocation to

reduce peak demand

Giuseppe Colantuono, Ah-Lian Kor, Colin Pattinson, Chris Gorse

Leeds Sustainability Institute, Leeds Beckett University, LS1 3HE Leeds, UK

Abstract

A system, modeled in two geolocations (Oxford, England; San Diego, Califor-
nia), consists of a PV array and two storage solutions (defined by distinct sets of
efficiencies/costs): short term (battery B) and long term (H, hydrogen reservoir
with electrolyzer/fuel cell). The system meets a 1-year, real domestic demand
totaling 5 MWh/year. First, it is configured as standalone (SA); then, as grid-
connected (GC), receiving 50% of the yearly integrated demand. H and PV are
dynamically sized as function of geolocation, B size and H efficiency.

With a 10 kWh battery and a 0.4 H cycle efficiency, required H capacity for
the SA case is ∼1230 kWh in Oxford and ∼750 kWh in San Diego (respectively,
∼830 kWh and ∼600 kWh in the GC case). Related array sizes are, respectively,
93% and 51% of the local reference 8 kWp system (51% and 28% in the GC
case). A trade-off between PV size and battery capacity exists: the former
grows significantly as B shrinks below 10 kWh. On the other hand, PV size is
insensitive to rising B above ∼10 kWh, a capacity large enough to cope with
short timescales.

With current PV and B costs, a SA system in Oxford (San Diego) can
stay within 104 $ CapEx if H’s cost does not exceed 4 $/kWh (8 $/kWh);
these figures increase to 7 $/kWh (10 $/kWh) with grid constantly/randomly
supplying a half of yearly energy.

Extending modeling over 18 years makes results varying to different extents,
depending on location; in any case, less than ±10% of the reference year.

Keywords: electricity storage, energy meteorology, solar energy, load
following, power grid

1. Introduction

Non-constant output is a major obstacle towards a widespread exploitation
of wind and solar photovoltaic (PV) generation, and a risk factor for the op-
erational integrity of power distribution networks (Boyle, 2012; Steinke et al.,
2013; Aghaei and Alizadeh, 2013). For this reason, energy storage is widely seen
as the necessary addition to integrate large fractions of renewables in the power
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grid, and to cope with demand drops caused by PV domestic installations’ out-
put during sunny days (Denholm et al., 2015). Storage on the users’ side can
also free the grid from the need of following demand. The price of batteries
was still relatively high at the beginning of the 2010s (Mulder et al., 2013; Juul,
2012) but has then started to decline sharply; by some analysts (Hensley et al.,
2012), this decreasing trend is projected to continue.

PV power is a typical example of highly inconstant renewable generation.
Time-variability of solar irradiance on the Earth surface is due to two main
astronomical facts, Earth rotation and revolution, which in turn correspond to
separated timescales: day-night and seasonal cycles. The third source of ir-
regularity is due to weather and climate, and is superimposed to the purely
deterministic astronomical oscillations. It is often termed as intermittency in
renewables literature and has a prominent effect on PV output, particularly in
cloudy regions (see for example Colantuono et al., 2014a). Energy meteorology
(Emeis, 2012; Kleissl, 2013; Olsson, 1994) is a growing field of research and testi-
fies the importance of environmental analysis for maximizing renewables’ output
and quantifying/reducing uncertainty (Correia et al., 2017; Prasad et al., 2015;
Colantuono et al., 2014b).

Storage coupled to PV power must therefore cope with these three sources
of output variance. Other more or less unpredictable local factors that can fur-
ther affect PV output range from module uncleanliness (Mani and Pillai, 2010),
age-induced degradation (Kaplanis and Kaplani, 2011) and failure, to build-
ings obstructing the horizon (Erdélyi et al., 2014) and tree growth (Dereli et al.,
2013). Domestic electricity demand is also affected by the discussed variability,
as lighting and heating needs depend on season and weather patterns. All these
environmental factors reach prominent importance when renewables supply a
relevant fraction of electricity, because they affect both the generation and the
demand side. PV is the only renewable source widely used on the domestic side,
or for otherwise “small” applications (“microgeneration”: typically, few kWp,
kWh of rated power, or less). From the distribution point of view, microgen-
eration reduces the customer’s demand (before any residual is uploaded to the
grid), while other renewables are integrated in the distribution network. The
present model requires microgeneration be used locally: first, in a standalone
(SA) configuration, and then in a grid-connected (GC) one.

Some authors (e.g. Zhou et al., 2011; Glavin et al., 2008, although with dif-
ferent aims and goals with respect to the present work) have suggested the
coupling of different storage technologies to respond to different timescales. A
few others, like for example Cau et al. (2014), couple hydrogen storage with
batteries for SA systems/microgrids powered only by renewables, with the aim
of finding an optimal energy management strategy. Here, we consider the same
domestic load in two different geographical locations and climate. Firstly, de-
mand is satisfied by PV (defined by the installed peak power) as the only power
source, integrated with two coexisting storage reservoirs, schematized by their
efficiency and cost: a long term hydrogen reservoir, H, coupled to electrolyzer
and fuel cells, and a short term one, a lithium-ion battery, B. The sizes of the
two reservoirs and of the PV array are dynamically determined for the chosen
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locations by the requirement of matching the same domestic load’s yearly time-
series. PV size is expressed by means of the scaling factor X , the fraction of
the size of an 8 kWp array used as reference. The partition of storage into a
long-term reservoir and a short-term, more efficient and smaller one is justified
if a trade-off between storage cost and conversion inefficiency is possible.

Current storage technologies possess various efficiency levels; here, hydrogen
H and battery B are characterized by their round-trip efficiency values η

H
and

η
B
. H efficiency is given three values: η

H
=30%, 40% and 50%, a range similar to

what reported in Luo et al. (2015, Table 11 therein), while the battery efficiency
is fixed at η

B
=85% (ibid.). The latter value can fall either within the lithium-ion

(Rastler, 2010) or the Lead-acid (Beaudin et al., 2010) efficiency interval. The
smallest η

H
value is the closest to the currently available electrolysis/fuel-cell

cycle; significant improvements may be expected with standardization and mass
production, as hydrogen storage is still in the development phase (Luo et al.,
2015).

PV generation is then supplemented by a power grid able to provide only
constant power. This scenario is aimed at exploring storage as a substitute of
the current load-following pattern (e.g. Moshövel et al., 2015); the amount of
long- and short-term storage needed on the user’s side to accommodate such
a constant supply is quantified. This idea is further extended that a partly
random power provision is fed by utilities to domestic customers, to understand
how user’s storage may cope with a grid that, besides not following demand,
does not mitigate the variability on the supply side induced, for example, by
wind and solar farms.

The two compared geographical locations are Oxford in the South of Great
Britain and San Diego in Southern California. PV output and states of charge of
the storage reservoirs are expressed as function of time in the two geolocations;
PV arrays’ sizes and reservoirs’ capacities are determined in each location for
a number of system configurations. Engineering implementation is beyond the
scope of this analysis, the focus of which is energy balance. Exactly matching
storage to given yearly demand and PV generation timeseries is not sufficient
to size a real system, due to year-to-year variability. Further analysis is there-
fore performed to understand the behavior over many years, with the resulting
variations of required generation and storage capacity.

2. Modeling the system

2.1. Generalities

The examined system comprises a 1 year-long domestic load from central
France (Lichman, 2013) where the climate, loosely speaking, is somehow inter-
mediate between the analyzed locations. Storage is divided into two reservoirs:
a costly and efficient short-term storage B and an inexpensive and inefficient
long-term storage H. Load is normalized to set its yearly integrated value to
5 MWh. PV generation needs to be standardized accordingly: its yearly inte-
grated value in both locations must equal 5 MWh to match demand after the
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losses due to storage round-trip conversions are taken into account. This im-
plies that changing B reservoir’s size makes PV array’s area and H’s capacity
changing as well. Further case studies include power provision from the electric
grid in the amount of 50% of the yearly-integrated demand, with PV array’s
size reduced accordingly.

Table 1: Main symbols

Symbol Definition

S () Heaviside’s step function

T = 1 yr Length of the problem in time
0≡ t0, t1, ...tn, ..., tN ≡T/t1 60 s time-steps; N = T/60s ≡ 525600
dB Power drawn from battery
dH Power from H to battery
uB Power fed to battery
uH Power fed to H
λ Electric power load in kW
γ PV power generation
δ Difference between generation and demand
X Fraction of the reference, 8 kWp PV array
B Battery (and its state of charge)
H Hydrogen storage (and its state of charge)
η
H

Energy efficiency of long term storage (H)
η
B

Efficiency of short term storage (battery)
Bm Minimum battery charge level
BM Battery capacity

A system with no battery (endowed with H only) has not been considered due
to the relatively slow start-up time of fuel cells. Battery is never discharged
below X ·max(λ) ∗ 600 s=0.91 ·X kWh, where X is the PV array scale factor
in terms of percentage of the reference, 8 kWp array; a 600 s interval is of
the order of H’s reservoir latency. Such a buffer should ensure power shortage
avoidance; it also causes effective B capacity to be lower than labeled. In a real
system, an additional small penalty, neglected here, would be present, because
a fraction of the power drawn from H would be routed through B in transient
phases, between the time H kicks-in until it reaches working conditions. The
number of such transients would be relatively small, as H tends to be switched
on/off with a much lower frequency with respect to battery.

2.2. Governing equations

We are aimed at determining storage reservoirs’ states of charge B(tn) and
H(tn) as function of previous states B(tn−1) and H(tn−1) and of generation
Xγ and load λ. X needs to be determined as well. Time dependency is
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henceforth omitted to simplify notation, barring cases where functions depend
on previous time step tn−1.

We first define δ, the difference between generation and load at any time tn:

δ = X · γ − λ ; (1)

X scales the generation timeseries γ to adapt PV array’s nominal power to
system’s features as they are varied throughout the model’s scenarios.

We then label uploaded and downloaded power as uX and dX . Conse-
quently, the non-negative variables uB and uH quantify the power uploaded to
battery B and to long-term reservoir H, respectively:

uB =S[BM − η
B
δ −B(tn−1)] · S(δ) · δ +

+ S
{

− [BM − η
B
δ −B(tn−1)]

}

· [BM −B(tn−1)] /ηB , (2)

uH =S
{

− [BM − η
B
δ −B(tn−1)]

}

·
{

δ + [B(tn−1)−BM ] /η
B

}

; (3)

symbols are detailed in Table 1, while

S(x) =

{

1, if x > 0 ;

0, otherwise

is the Heaviside’s step function according to the S(0)=0 convention (brackets
of any kind following S always denote its functional argument). This function
plays the role of a switch, defining the system’s regime: for example, when
δ changes from positive to negative, the quantity S(δ) goes from 1 to zero,
setting the first term of Eq. (2) to zero. This is all the more so for the second
term (and for the right-hand side of Eq. 3 as well), because δ ≤ 0 implies
η
B
· δ +B(tn−1)−BM ≤ 0.
Battery is being charged (uB > 0 ) when both generation is larger than λ

(that is, δ > 0 ) and B is not full; if either condition is not met, uB = 0 holds
instead. On the other hand, long-term storageH is being charged (uH >0 ) when
δ > 0 and B is completely filled up; that is, the relationships B(tn−1) =BM

and X · γ > λ are true at the same time. The first term of Eq. (2) represents
the case in which the 60 s “energy packet” to be loaded at the current time-step
does not saturate the capacity of the battery when added to the energy already
in it. The second term refers to the incoming packet saturating the battery, in
which case the packet can only be partially taken up. In the latter instance,
the energy uploaded to B corresponds to the difference between capacity BM

and B(tn−1), the level of charge resulting from balance at previous time-step.
The energy needed to fill such a capacity is the capacity itself divided by B’s
efficiency η

B
<1; this takes into account round-trip storage losses, for simplicity

attributed entirely to the uploading phase. The only term on the right-hand
side of Eq. (3) “completes” the action of the second term of Eq. (2): the fraction
of the incoming energy packet that does not fit in B (or the entire packet, if
B(tn−1)=BM ) is uploaded to H instead.
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Power downloaded from reservoirs is instead denoted by the non-negative
functions dB and dH :

dB = −S(−δ) · δ ; (4)

dH = −S(−δ) · S[Bm −B(tn−1)] · δ ; (5)

that is, the common, necessary condition for dB and dH to differ from zero is
X·γ< λ. dB also needs to satisfy Bm≤B(tn−1)≤BM (the Heaviside’s condition
expressing the latter inequality is automatically satisfied and therefore absent
from Eq. 5); dH must meet B(tn−1)< Bm instead.

The drop of battery level below the threshold value Bm is the event that
triggers H’s discharge (Eq. 5): as soon as the quantity Bm−B(tn−1) becomes
greater than zero, H starts to provide an amount of energy equal to |δ| that,
added to generation, satisfies demand. Battery level is restored at B=Bm or
higher as soon as δ becomes greater than zero. Until that occurs, H remains
active; that is, dH remains above zero.

We can finally quantify the energy level in both B and H reservoirs:

B =S(t2 − tn) ·BM + S(tn − t1) ·
{

B(tn−1) + η
B
uB + dH − dB

}

; (6)

H =S(t2 − tn) ·H(0) + S(tn − t1) · [H(tn−1) + η
H
uH − dH ] ; (7)

Heaviside’s conditions, in this case, separate reservoirs’ initial energy level (tn=
1) from the evolution that follows (tn>1).

In summary, both B and H depend on load λ and generation Xγ via δ
through Eqs. (2-4); B and H also depend on time, on the fixed parameters Bm,
BM , η

B
, η

H
, and on their prior states. Examples of the behavior of the seven

variables defined by Eqs. (1-7) are displayed in Appendix B.
The energy in the dH term is recorded as “in transit” through the battery

(penultimate monomial in Eq. 6) to stress that it is battery’s sub-threshold level
that triggers and keeps H’s discharging. However, dH is thought to bypass
B and satisfy demand without any intervening stage (keeping in mind what
discussed on H’s transients at bottom of Section 2.1): the η

B
energy penalty

is therefore not assigned to dH . Real-world systems could clearly be tweaked
with different criteria; the implementations of these range of conditions will be
use cases. The present implementation, which minimizes the required PV array
size by using the less efficient, long-term reservoir only when battery is full, has
the advantage of not requiring any kind of online computation.

The last equation needed to close the problem is given by the constraint

H(T ) + B(T ) = H(0) + BM . (8)

The requirement that the amount of long-term stored power at the end of the
yearly period equals the initial level (system is set to start with a full battery,
implying B(0) ≡ BM in Eq. 8) assures that yearly-integrated generation and
load are equal as well, once all conversion’s inefficiencies have been taken into
account. In order to find a practical, approximate solution, the equality in
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Eq. (8) will be considered satisfied if the two sides differ less than a predeter-
mined amount (“error”).

Once B’s capacity is fixed and both H and the PV array are sized accord-
ingly, the historical data (past generation and demand timeseries) will not be
necessary for operating a real system. The approach here is aimed at high-
lighting geographical/climate differences, and the behavior induced by various
battery sizes. The sizing of a real system would have to account, for exam-
ple, for year-to-year differences in solar generation and electricity consumption,
failure rate, and other unpredictable factors; consequently, some form of un-
certainty evaluation should be introduced, e.g. loss-of-load probability (LOLP,
discussed by Celik, 2007; Klein and Beckman, 1987; Schenk et al., 1984, and
many others). The impact of differences in PV generation over many years is
addressed in Section 5, as well as the effect of varying demand. LOLP esti-
mation is not addressed here, as it would not make substantial contribution to
frame the problem of multiple storage as function of climate and geolocation.

2.3. Solution of Eqs (1-8)

Equations are solved for every time tn as function of previous time tn−1,
for a guessed value of X; the procedure is being iterated until “error” falls
below a predetermined threshold. H at t = 0 contains an amount of energy
equal to 2 months of the yearly integrated load: H(0)=(5/6) MWh (the used
datasets are detailed in the next section). The first step (from 00:00 to 00:01,
January 1) simply updates battery storage, which is being depleted by 60 s
worth of load as PV generation is zero at nighttime. As time advances, the
appropriate Heaviside’s functions will transit from zero to 1 and vice versa. B
becomes progressively depleted, but the Sun later kicks in. B may therefore be
recharged or, if generation is insufficient, may fall below the minimum level Bm,
in which case H will start to feed the demand instead. At the end of the yearly
timeseries, the final value H(T )+B(T ) is recorded.

For the sake of computing a practical solution, Eq.(8) is replaced by the
following approximate condition, as anticipated above:

|H(T ) + B(T ) − H(0) − BM | < 10 kWh . (9)

If Eq. (9) is not satisfied and the argument of the absolute value on the left-hand
side is negative, the size of the PV array is increased by increasing X; if, on the
contrary, such an argument is positive, X will be reduced. After this update
the procedure is repeated and H updated again. The process is interrupted as
soon as the condition in Eq. (9) is met. Capacity of long-term storage H is
defined as

H = max [H(tn)] − min [H(tn)] . (10)

The 10 kWh allowed maximum difference (error) between initial and final H
value is here considered negligible with respect to the 5 MWh yearly integrated
load. The model allows to arbitrarily reduce the error, at expense of computa-
tional speed. From a coding point of view, a “while loop” is being employed to
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keep the model running and the iterations following one another until an ap-
propriate PV array’s size is found and the inequality at Eq. (9) satisfied. When
this occurs, yearly generation balances the yearly demand, storage’s round-trip
penalties included.

2.4. Demand and Generation data

A domestic consumption timeseries and a PV generation one are needed in
each geolocation in order to address the formulated problem. the same domestic-
load timeseries (Lichman, 2013) is used in both localities: Oxford, UK (hereafter
Oxford, Oxford PV array 2016) and San Diego, CA, USA (hereafter San Diego,
PVOutput.org 2017b). This choice has the downside of neglecting the local
correlation between PV generation and household power demand (e.g., on a
sunnier-than-average day, lower lighting demand may be expected, together
with relatively high PV output) but has the big advantage of comparing the
performance of both generation and storage in different locations against the
same demand curve, which is the main goal of this study. With the loss of co-
spatiality between generation and demand, contemporaneity loses its meaning,
too: timeseries have been therefore chosen to prioritize availability and data
integrity.

The load λ is normalized to 5 MWh of yearly generation, which cuts ap-
proximately by a half the original load’s size. This integrated value is consid-
erably lower than the average electrified USA home (∼ 12300 kWh in 2014,
Energy Efficiency Indicators 2016) but higher than the yearly consumption of
the average electrified home in the European Union in the same year (∼ 3600 kWh,
ibid.) and in China (∼ 1600 kWh).

As already specified, the PV scaling factor X expresses the size of the needed
PV array as a fraction of the reference 8 kWp PV array. The PV size needed
in San Diego to achieve Oxford’s output is 61% of Oxford’s array, for the yearly
timeseries used (Appendix A). This clearly introduces a dependency on the
particular year considered when comparing the two geolocations. In Section 5,
18-year long records are considered, to overcome this limitation and to determine
a range of variability for the model’s quantities in both places. The size of PV
arrays is expressed in kWp, to keep our conclusions with the highest possible
independence on the technology used. The two arrays have diverse orientations;
none of the azimuths is due south (see Appendix A), meaning that the two PV
arrays are surely sub-optimal. This does not diminish the significance of the
present analysis because climate differences are overwhelming and the differences
induced by systems’ configuration (battery size, H efficiency, grid supply) are
assessed by comparing results locally. Last but not least, orientation is rarely
optimal for real, domestic PV arrays (usually constrained by the existing built
environment, Colantuono et al. 2014a) and often known/reported by the owner
with significant approximation (ibid.).

More information on the used timeseries can be found in Appendix A.
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3. Results

3.1. Standalone systems

Standalone systems are useful analysis targets not only per se; they can be
viewed as the limiting case for grid-connected (GC) systems, with microgenera-
tion and storage, as grid-supplied electricity is progressively reduced. Eqs. (6-8)
are solved for B, H, and X thirty times for each location, in order to combine
three values of η

H
(0.3, 0.4, 0.5) with ten values of battery size (2 to 20 kWh

with 2 kWh increment). Solutions are sought by dynamically adjusting X such
that X · γ satisfies the demand λ (Lichman, 2013) for the chosen battery size
within the specified, 10 kWp error.

Figure 1: Panel A. Curves represent long-term storage H throughout the year. H’s round-
trip efficiency η

H
(the second field in the legend, after geolocation) is being parametrically

varied. The third field represents X, the PV array scaling factor; a similar scaling coefficient
applies if PV’s area is considered instead of peak power, provided technology is the same for
all systems. The high degree of similarity at large-scale, between curves representing very
different battery sizes in the same geolocation, may be misleading; a zoom on small scales
features of the curves (Fig. 4) shoes the small-scales differences between systems with large and
small batteries. Oxford’s and San Diego’s bunches of curves are well separated; they can be
represented with the same line styles. H’s curves in Oxford (San Diego) boast higher (lower)
maxima and lower (higher) minima: more energy must be stored in Spring/Summer (Summer
from now on) to be used in Fall/Winter (hereafter Winter) in more poleward latitudes. Battery
has capacity BM =10 kWh. Panel B. Standalone (SA) systems compared to grid-connected
(GC) ones, supplied with constant power summing up to 50% of integrated yearly demand, for
the intermediate η

H
=0.4 value. GC case with 25% of random-varying power is not plotted as

virtually indistinguishable from the constant-power case. Required long-term storage capacity
in Oxford (San Diego) falls from ∼1230 KWh to ∼830 KWh (∼750 KWh to ∼600 KWh) with
constant grid supply; capacities are the same for GC case with random-component).

In Fig. 1A the effect of hydrogen conversion efficiency in the chosen ge-
olocations is shown. The difference between the maximum and the minimum
amount of energy contained in long-term storage defines the required H capa-
city. The chosen demand can be satisfied by the San Diego PV array (of the
specified orientation, see Appendix A) with size between 48% and 56% of the
8 kWp reference installed power, for a power-to-hydrogen round-trip conversion
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efficiency η
H

between 30% and 50% and a 10 kWp battery. The same conditions
in Oxford require an array ranging from 85% to 105% of the 8 kWp reference
power. The required PV size decreases with increasing η

H
because a more ef-

ficient H storage reduces conversion losses and, consequently, the generation
which is required to match demand. On the other hand, the required H ca-
pacity grows as a smaller PV array increases the need of storing energy from
Spring/Summer (Summer from now on) to Fall/Winter (Winter from now on).
In other terms, with a larger PV array and a less efficient seasonal storage H,
more power is proportionally wasted in Summer to load the hydrogen reservoir
(it is useful to recall that round-trip inefficiencies are here computed at once
when energy is uploaded to reservoirs) but less energy is actually uploaded, as
the larger array is closer to self-sufficiency in winter. Unlike Fig. 1A, where

Figure 2: Panel A. Like Fig. 1A, with battery capacity being parametrically varied. As
in Fig. 1A, the three San Diego curves reflect a much lower seasonal variability and are
well separated from Oxford’s ones. Legend’s fields indicate geolocation, B capacity and PV
array’s scaling factor X; such a value needs to be multiplied by 8 kWp, the array’s reference
size. Long-term storage round-trip conversion efficiency is here set to η

H
= 0.5, the highest

value. Panel B. Systems are compared from an alternative point of view, which highlights
the different usage of long-term storage when geolocation and η

H
are varied: “roughness”

r (Eq. 11) is depicted. Higher r values indicate higher reliance on H and a “rough” H’s
profile (Fig. 4): the long-term reservoir’s usage is proportionally higher on short timescales.
r is inversely related to battery size, and is higher in the poleward location.

curves depict diverse η
H

values, Fig. 2A’s curves represent battery size once the
most efficient hydrogen conversion efficiency has been picked (η

H
= 0.5). The

10 kWh curve is virtually identical to the 20 kWh one, both in Britain and in
California. This highlights that, for the given yearly demand curve, increasing
battery size from B=10 kWh to B=20 kWh offers only marginal improvement
as also testified by the associated small reduction of PV array size. On the other
hand, the difference between the PV size required for a 10 kWh and a 2 kWh
battery is significant because, when B is too small, the system is forced to rely
on relatively inefficient H storage for hourly and daily transactions which oc-
cur with high frequency, from hundreds to a few thousands of times per year,
compared to the few cycles per year (1 or 2) involved in seasonal storage. The
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difference in the PV array size required by B=2 kWh and B≥10 kWh suggests
that the separation between long-term (seasonal) and short-term (daily-hourly)
storage arises in a seamless and “natural” way when battery is large enough.
No energy-management algorithm is required to direct power to the appropriate
reservoir: the simple rule of first filling B up to capacity, and only subsequently
converting electricity to hydrogen and loading the H reservoir, has the property
of minimizing conversion inefficiencies and therefore minimizing the PV area
required to feed the system.

The impact of battery size on PV size is further clarified by Fig. 3 (which
also shows the similar effect battery size has on required H capacity): in
both locations, for the same demand timeseries totaling 5 MWh per year, the
10 kWp value can be loosely seen as the boundary between a capacity range
(B.10 kWh) characterized by a relatively strong dependency between battery
capacity and PV size, and a range (B & 10 kWh) where such a dependency is
noticeably weaker as added battery capacity improves system’s efficiency only
marginally.

Figure 3: Panel A. PV array size as function of battery size in the two geolocations, for
different values of hydrogen round-trip conversion efficiency. Panel B. Required capacity of
the hydrogen reservoir as function of battery size in the two geolocations, for the same values
of hydrogen conversion efficiency considered in Panel A. Panels C-D are like Panels A-B for
the grid-connected (GC) case (Section 3.2). Legend in Panel A refers to all plots.

Figure 2B depicts the “roughness” parameter, defined as

r =

∫ T

0

∣

∣

∣

∣

dH(t)

dt

∣

∣

∣

∣

dt , (11)

where continuous notation instead of discrete summation is used for generality.
Roughness r helps to quantify the activity of H at small timescales typical

11



of battery usage: from sub-hourly to daily. Sensitivity of r to battery size,
hydrogen round-trip efficiency and geolocation can be inferred from Fig. 2B:
r combines the main three factors that determine the “amount of activity” of
long-term storage H. Figure 2B also shows how roughness r is inversely propor-
tional to η

H
; while this result can be counterintuitive, it is physically justified

because the system with more efficient long-term storage needs a smaller PV
array (Fig. 1A), as a smaller amount of energy needs to be uploaded for winter
months. This, in turn, implies that reliance on storage is on average higher on a
daily basis; the fraction of energy “improperly” uploaded to/downloaded from
the H reservoir at small timescales is consequently higher as well. Figure 4, by
means of zooming on small-scale features of H’s curves in Winter and Summer,
provides a pictorial justification for r trends. Small batteries cause the usage
of H for daily storage, as the pronounced local minima of the B=2 kWh curves
suggest.

3.2. Grid-connected systems

GC systems’ behavior is analyzed and compared to the SA cases in two
different configurations. We first postulate a grid providing a constant supply
throughout the whole period, equal to 50% of the 5 MW yearly integrated
load; this choice leaves to storage the burden of following demand. In the
second case the given load is satisfied in both geolocations with the aid of a grid
that, although still providing 50% of yearly-integrated load, is freed from the
constancy constraint: power provision can oscillate randomly in time between
25% and 75% of the average demand; that is, between 143 W and 428 W.

The latter instance may exemplify a grid delivering power from intermittent
sources like wind farms or solar farms: domestic storage is not only used to
regularize locally generated power, but to allow the grid to deliver variable power
according to instantaneous production. Similarly to what pointed out for the
SA system (Section 3.1), the modeling strategy maximizes energy efficiency and
therefore minimizes PV size for the given load (and for the given grid timeseries,
in the random case). It will be shown in Section 5 that random permutations
in hourly load produce undetectable changes in the ensuing system’s size.

Figure 1B compares SA and GC systems (constant supply). An interesting
conclusion is implicit in the fact that the random-supply case is virtually in-
distinguishable from the constant-supply one (the curve of which has therefore
been omitted from the plot): the system with the 10 kWh battery is able to
cope with the same effectiveness with a constant supply and with a random
one. The second conclusion is that both GC systems allow a major reduction
on long-term H storage in both geolocations, as neither constant not random
supply suffer from PV’s seasonal imbalance; however, the reduction of required
H capacity is proportionally higher in Oxford, where seasonal differences in PV
generation are higher. Finally, it may be worth observing the GC system in
Oxford requires a PV array of the same size of the San Diego, SA system; still,
the England GC system requires larger long-term storage than the California
SA one.
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Figure 4: 5-day zooms on the curves of Fig. 2A, highlighting small-structure differences in-
duced by battery size. A smaller B forces the system to “improperly” use long-term storage
H for daily and sub-daily transactions. In Summer (Panels A,C), the curves are increasing
on a sufficiently large timescale (> 1 day), as energy is being stored for the following Winter.
Local minima (troughs) for the case of smallest battery (2 kWh) denote usage of H at short
timescales. Larger batteries instead (dashed and dotted line) force H to follow a Summer
“staircase pattern”, with the hydrogen reservoir charging up in daylight and idling at night-
time. Pronounced local minima are also present in California in February in the small-battery
case, because generation at that time of the year is already sufficient to store a significant
amount energy from day to night. Legend in Panel A and H’s efficiency refer to all plots.
Figures B.8-B.11 in Appendix B display PV generation (bottom right Panels) for the initial
two days of both 5-day periods

4. Simple CapEx analysis

The total, one-off capital cost (CapEx) of the system is examined as a func-
tion of geolocation and of H’s CapEx, and in relation to the other parameters
that determine system’s size. The economical analysis is limited to CapEx be-
cause uncertainties on long-term storage’s standards and future technical devel-
opments make detailed financial estimates difficult: for example, a gas storage
tank may potentially last for an arbitrary long time while other components
(fuel cells, electrolyzer) do not (Schmittinger and Vahidi, 2008; Carmo et al.,
2013). This is analogous to the other systems’ parts, for which expenditures are
however clearer to quantify: PV systems usually require inverter replacement
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at approximately the modules’ midlife (Colantuono et al., 2014a), while battery
duration depends on frequency and depth of discharges (Divya and Østergaard,
2009).

Even if we limit the analysis to CapEx, H’s cost remains highly uncertain:
neither adequate hydrogen storage facilities have been deployed so far, particu-
larly for domestic use, nor unified technical standards exist. Economy of scale
has the potential for causing a massive cost reduction, in line with what hap-
pened for decades with PV modules (International Renewable Energy Agency,
2015) and batteries (Hensley et al., 2012). Cost reduction can also be achieved
by means of sharing facilities across multiple homes, which could carry the addi-
tional benefit of reducing the total required capacity. The electrolysis/fuel cells
cycle is chosen in this work, but other strategies are not ruled out as H storage
is here defined by round-trip efficiency, η

H
, and unitary cost only. Fuel cells

market price is currently around 2000 $/kW (Crow and Johnston, 2016), while
electrolyzers have been reported to be around 1000 $/kW by Penev (2013), who
also estimated the reservoir’s CapEx at 2.5 $/kW in the cheapest case (liquid
hydrogen, in which case CapEx and energy expenditure for a compressor should
be factored in) for large installations. 1 kW electrolyzer could suffice for coping
with a load totaling 5 MWh/year; this would, however, require an extra battery
to buffer the energy to be uploaded to H in instances of generation exceeding
load by more than 1 kW (δ > 1 kW), because B is full to capacity whenever
H starts to be loaded. A similar mechanism would hold for fuel cells and the
energy to be downloaded as soon as B has been depleted. The presence of such
an extra battery would introduce a trade-off between its size and efficiency and
fuel cells’/electrolyzer’s capacities/costs, similar to the balance analyzed in this
work between PV array’s size/cost and battery’s size/cost.

Given the large indetermination on so many factors, we let ample varia-
tion of H’s CapEx , with the basic goal of determining a target range for it
through the resulting CapEx of the whole system: H’s CapEx is therefore al-
lowed to vary between 0.1 $/kWh and 70 $/kWh. The picked cost of PV
array is 3000 $/kWp instead, while the chosen cost of batteries is 227 $/kWh
(Hensley et al., 2012).

Figures 5-6 summarize CapEx analysis. The first feature to be noticed is
that, for inexpensive H, the cost curves “cluster” mainly due to B size; for
expensive H, they depend more markedly on geolocation instead (Fig. 5A-B).
When long-term storage is on the expensive end, H’s required capacity becomes
the main CapEx discriminator, meaning that the influence of geolocation on
system’s cost increases: Oxford’s large seasonal differences in PV output require
a larger amount of seasonal storage with respect to San Diego (Fig. 5A-B).
The amount of long-term storage is not significantly influenced by battery size.
A small battery forces the system to use seasonal storage inefficiently, on a
daily/sub-daily basis (as shown by the plot of roughness r, Fig. 2B); however,
the capacity used for such fast transactions is negligible (∼10 kWh) and does
not significantly affect the capacity involved in seasonal storage, which is of the
order of 1 MWh.

Figure 5A-B show (solid curve vs dashed one) that the ratio between system
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Figure 5: Summary of cost analysis. X represents the size of the PV array; X=1 corresponds
to an 8 kWp array.

costs in the two geolocations does not change much as function of H cost,
either with grid or without; moreover, no detectable difference exists between
the case of a constant supply fed to the system and the case of a half of the
integrated supply randomly varying. For negligible H’s CapEx, higher Oxford’s
cost is due to larger PV array; as long-term storage gets more expensive and
gradually becomes the main factor in determining system’s cost, Oxford remains
more expensive due to the much more pronounced irradiance seasonal imbalance
which dictates an increase in H capacity.

Figure 5C (Oxford) and Fig. 5D (San Diego) reveal the influence of η
H

on
system’s cost. When battery is large, a significant variation in η

H
has a small

impact on the system cost. With a smaller battery, on the contrary, variations
in η

H
are noticeable due to the increased usage of long term storage at high

frequencies (daily and sub-daily) which, in turn, imposes a larger and more
costly PV array. System’s qualitative behavior in San Diego is very similar to
Oxford in this respect, except for a generally higher cost in the more poleward
location.

It may be also worth commenting on the cap that needs to be imposed on
H cost in order to keep system’s CapEx below a given threshold, say 104 $. For
SA systems, η

H
= 0.4 (Fig. 5A), H’s CapEx is around 4 $/kWh in Oxford in

combination with a 10 kWh battery, which increases by some tenths of $/kWh
in the same location if the battery is 2 kWh. The equivalent figures in San
Diego are almost identical and higher, ∼ 8 $/kWh, because of the lower need
of long-term storage capacity. Not surprisingly, the GC system receiving from
the grid (Fig. 5B) 1/2 of the 5 MWh yearly integrated generation stays within
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104 $ for a higher H cost in every situation: respectively, ∼7 $/kWh in Oxford
and more than 10 $/kWh in San Diego for both battery sizes. A larger battery,
10 kWh or more, becomes competitive at higher systems’ costs, around 2×104 $

for the SA, η
H
=0.4 case (Fig. 5A). It should be kept in mind that the 2 kWh

battery asks for a PV array ∼20% larger than what needed by the 10 kWh
battery; the 1.13×8 kWp array required in Oxford in the smallest battery’s case
(Fig.5A) corresponds to an area around 45 m2 with current modules’ conversion
rate, which become more than 65 m2 for η

H
= 0.3 (Fig.5D); this figure could

grow larger in case of disadvantaged PV layouts, often constrained by the built
environment (Colantuono et al., 2014a). The chance of reducing PV modules’
area may introduce savings or prevent additional penalties not quantified in the
present calculation. This trade-off between battery capacity and PV array’s
area appears to be a key feature in densely populated areas with tall buildings.

As already noticed, long-term storage dominates system’s CapEx when more
expensive than a few $: partly because a smaller (larger) battery requiring a
larger (smaller) PV array implies these system’s components partially balance
each other out. The other reason is the large required capacity for seasonal
storage, particularly in the poleward location. Reasonably priced long term
storage appears therefore as a key condition for making SA systems viable or for
allowing power grids to deliver constant or even “arbitrary” power throughout
the year. As a further test, Fig. 6 reports CapEx behavior when battery cost is
reduced by a factor 3, from 227 $/kWh down to 76 $/kWh; the larger battery
becomes slightly economically convenient between 1 and 11 $/kWh in the four
cases.

Figure 6: Like Fig. 5A-B, for B= 2kWh and B= 10kWh, and B’s cost reduced by a factor
3, down to 76 $. Both panels focus on the interval where CapEx curves for different battery
sizes cross each other.
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5. Varying demand timeseries. Extending PV generation to multiple

years. Implications for system sizing

Analyzed generation and demand timeseries are 1 year-long, mainly due to
data availability. In order to generalize results, we hereby show the implications
of varying λ demand timeseries and considering multiple years of PV output.

λ periodicity is 60 s; in order to test sensitivity to demand’s alterations, the
365×24 hours in the 1 year time interval have been randomly permuted 120 times
for various parameter combinations; in all cases, the change of PV size necessary
to cope with the modified load is much smaller than 1% and within the model
error, which is dictated by the 10 kWh tolerance (Eq. 9) in the approximate
solutions of the model equations. Similarly, the behavior of H(tn) (the graph
of which is exemplified in Figs. 1 and 2A) remains practically unchanged after
hours’ permutations. Recalling the definition of δ (Table 1), random changes
of generation γ have an effect which is similar to random variations of λ.
This suggests that random generation/demand permutations do not significantly
alter energy balance and system components’ sizes.

Many years of PV generation need then to be considered in both geoloca-
tions, to generalize the model output and, particularly, PV array size andH’s re-
quired capacity. Given the short length of the analyzed PV output, the authors
turned their attention to global horizontal irradiance (GHI) timeseries spanning
much longer intervals. A GHI measurement station has been chosen within
100 km of the PV location in Oxford (UK Meteorological Office 2013, station ID
461, ∼52.23oN, ∼0.46oW) and San Diego (National Solar Radiation Database
2015, station ID 210008, ∼ 32.73oN, ∼ 117.14oW); timeseries are 18 year-long
(1995-2012 in Oxford; 1998-2015 in San Diego) with half-hourly/hourly (Ox-
ford/San Diego) sampling period.

The goal is to create yearly PV generation timeseries that are, from the
climate and geographical standpoint, analogous to the available ones, with 60 s
sampling period. Every GHI yearly record is first normalized to the available,
local yearly PV generation record. Subsequently, the local sub-hourly PV vari-
ability (obtained by subtracting the local hourly means) is linearly superimposed
to the normalized GHI timeseries. Finally, the 18 yearly GHI records in each
location are once more individually rescaled, this time to restore the relative,
year-to-year average disparities. This way, 18 years of PV “pseudo-generation”
timeseries are obtained in both locations from real GHI timeseries and used as
the model input to asses the year-to-year variations in the required PV size and
H’s capacity (Fig. 7B,E). With the data-procedure just outlined, the reference
year’s record of PV generation used so far (in both Oxford and San Diego),
integrated in time, constitutes by construction the average of the 18 years of
pseudo-generation.

Generalizing from one to many years also sheds light on the mutual rela-
tionship between PV size X and H capacity: as Fig. 7B,E shows, such two
variables are poorly correlated. An year associated to a PV array’s required
size larger than average is characterized by a relatively lower yearly irradiance
per m2, while a larger than average H capacity indicates reduced levels of aver-
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age Winter irradiance with respect to the remainder of the year, which dictates
more energy be stored in Summer. The combination of total yearly PV genera-
tion with its seasonal distribution yields the variety of cases in Fig. 7B,E. It is
useful to point out that a drop in Winter generation drives a higher increase of
PV size with respect to a drop of Summer yield of the same magnitude, because
of the efficiency penalty affecting the energy stored from Summer to Winter.
Variation of required PV size is ∼ ±7% from average in Oxford (∼ ±5% in
San Diego); deviations from the mean long-term storage capacity, on the con-
trary, are within ∼ ±5% from average in Oxford and ∼ ±9% in San Diego.
Proportionally stronger variations of H’s capacity in the latter location can be
attributed to the much higher levels of Winter irradiance: even if year-to-year
persistence of irradiance distribution is higher in California (as suggested by the
larger variance associated to the first principal component, Fig. 7C,F), weather
systems there modulate an irradiance amount that is much higher in first in-
stance. The extension to many years suggests the order of magnitude of the
sizing adjustments required to run the systems over many years, which does
not reach 10% for any of the 18 years in record and for any of the systems’
components.
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Figure 7: Panels A,D display GHI (kW/m2) over the entire interval. Panels B,E show PV
size and H capacity during 18 model runs per geolocation using PV “pseudo-generation”
as input, obtained from the 18-year GHI records as described in the main text. Required
storage’s and PV’s size variability from year to year is portrayed. In Panels C,F the first
principal component (PC1) of the 18 yearly timeseries is plotted for a few Winter and Summer
days. PC1 accounts for the day-night cycle (crests and troughs with 24 hr period) and for
the seasonal cycle (greater magnitude of Summer/dashed curves’ peaks with respect to solid
curves’ peaks). PC1 is associated to 78% of variance in Oxford and to 90% of variance in San
Diego; each higher order PCs explains less than 2% of variance in Oxford (less than 1% in San
Diego). The significantly higher PC1’s variance in Southern California can be attributed to
more stable weather with respect to the British Isles. Legend in Panel A refers also to Panel
D; the same holds for Panels B and E and for C and F.

6. Discussion and Conclusions

PV arrays, combined with storage reservoirs of varying sizes, efficiencies and
unitary capital costs (CapEx), are required to satisfy the same, 1-year domestic
demand in two different geolocations: Oxford, England, and San Diego, Cali-
fornia, which mutually widely differ in latitude (∼ 20o) and climate. The model
minimizes energy use: power can be uploaded to/drawn from the least efficient
reservoir (mimicking a hydrogen tank H, coupled to an electrolyzer/fuel cell
cycle) only when the most efficient one (B, with an efficiency value η

B
=0.85,

compatible with lithium-ion batteries’ present performance) is full/empty; this
rule maximizes the usage of the most efficient storage alternative. The levels of
both reservoirs as function of time are output by the model; PV array size and
H capacity in both locations are being sized dynamically as function of local
generation per m2, battery size and H’s efficiency η

H
.

The English location needs, as expected, a much larger (∼170% or more,
depending on parameters) PV array. It also requires an analogously larger
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H capacity, due to the larger seasonal differences in irradiance: more energy
needs to be stored during Summer months for Winter usage. Therefore, the
ratio between PV sizes in Oxford and San Diego is proportionally larger than
the ratio between values of yearly-integrated generation per m2. The energy
penalty (which translates into a proportionally larger PV array) imposed by
a small short-term storage, with the ensuing reliance on H for short timescale
storage, is proportionally higher in the equatorward location, where a significant
amount of energy can be carried from day to night also during Winter.

The assumption of a standalone (SA) system is dropped and a grid intro-
duced, which supplies 50% of the integrated yearly load. In the first case, supply
is constant, meaning neither demand is followed nor grid intake can be reduced:
the user is required to store the grid’s provision during times of lower demand.
The second case allows more freedom to the grid which, with respect to the
yearly-integrated demand, supplies 25% of constant power and 25% of randomly
fluctuating power. These grid-connected (GC) cases are virtually identical one
to each other in terms of PV and storage sizing and of the reservoirs’ state of
charge. The required PV size shrinks to ∼55%-60% of the SA alone size in both
geolocations.

Increasing battery size beyond ∼10 kWh does not decrease significantly ei-
ther required PV size or H capacity; this holds for both SA and GC cases.
10 kWh is of the same order of magnitude of the average daily energy usage,
∼14 kWh, corresponding to 5 MWh yearly integrated value. On the contrary,
a very small battery (2 kWh) requires a noticeably larger PV array, as ineffi-
cient long-term storage is “improperly” used on a daily/hourly basis. In this
respect, a simple metrics has been defined to compare the behavior of the time-
series representing H’s charge state: the absolute value of the derivative of H’s
charge state, integrated over the time interval (1 year), r=

∫

| dH/dt| dt, is an
indicator of the amount of activity of long-term storage. High values of this
quantity denote high frequency of charging-discharging cycles; low values indi-
cate the “appropriate” use of long-term storage: bringing power from Summer
to Winter. r decreases with increasing battery capacity, decreasing η

H
values

and decreasing latitude.
The required H capacity for B= 10 kWh and η

H
= 0.4 is ∼1230 kWh in

Oxford (PV array size being 93% of the local reference 8 kWp system) and
∼750 kWh in San Diego (PV size 51%) for the SA system and, respectively,
∼830 kWh (PV 51%) and ∼600 kWh (28%) for GC systems.

The global minimum for PV array size is attained if the entire storage ca-
pacity is of battery type, a configuration maximizing round-trip efficiency and
therefore minimizing the yearly integrated energy required to satisfy demand. It
is actually the higher cost of efficient storage that suggests a multiple scale solu-
tion; a huge battery, of the order of 1 MWh, is presently not a realistic proposal
for SA systems. To identify financially-plausible components’ combinations, a
simple cost function has been formulated. Reference costs of 3000 $/kWp and
227 $/kWh are assumed for PV modules and batteries, respectively, letting
H cost vary between 0.1 and 70 $/kWh. For relatively expensive H capacity
(larger than 10-15 $/kWh), geolocation is the main factor to determine sys-
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tem’s cost; on the other hand, H costing few $ per kWh or less makes battery
size as the main discriminator for total system’s cost; PV’s and H’s sizes are
inversely related and the associated expenditures partially balance out. The
trade-off between PV size and battery capacity appears as a key feature of sys-
tems with long-term storage that are either standalone or partially fulfilled by
a grid providing power unrelated to demand. With the specified cost for PV
and batteries, a CapEx of 104 $ is attainable for H as expensive as 4 $/kWh in
Oxford and as expensive as 8 $/kWh in San Diego (respectively 7 $/kWh and
10 $/kWh for GC systems). A large battery, with present costs of battery and
PV arrays, starts to be justified in terms of CapEx for an H’s cost slightly above
10 $ in all cases. Considering “cost” in a wider sense, for example factoring in
the larger area taken up by the PV array required by a system endowed with a
small battery, may increase the benefit of deploying a larger short-term storage
capacity.

Randomly permuting hours of the demand timeseries does not affect system’s
sizing and behavior. Considering many years of generation causes changes in PV
array’s andH’s capacity that are, in all conditions, less than 10% of the reference
year’s values. PV size variations are higher in Oxford (∼ ±7% vs ∼ ±5% in
San Diego), while deviations from the mean long-term storage capacity are lower
there (∼ ±5% vs ∼ ±9% in San Diego): higher Winter irradiance makes the
equatorward location more sensitive to weather patterns than the poleward one.

6.1. Further work
Extending the analysis to diverse kinds of demand, typical of homes or busi-

nesses, will allow to understand multiple-scale storage requirements of a neigh-
borhood or a city as a function of geolocation, with the ultimate goal of proving
the feasibility of an alternative pattern for electricity distribution that does away
with the load-following scheme and even with the baseload one. This will enable
grids to provide power by reason of the intermittent renewables available in the
region (wind farms, solar farms, etc.). Sharing batteries is likely to reduce total
short-timescale capacity by averaging out individual demand patterns; simi-
larly, sharing long-term storage between several users could provide economy
of scale, but also evening out different seasonal patterns between different kind
of businesses and between them and residential customers. Moreover, hydrogen
used for long term storage lends itself to integration with the gas distribution
network: it can be either blended with natural gas (Melaina et al., 2013), or
even substitute it completely. The latter solution is being implemented in some
urban areas (e.g. Leeds, UK, Sadler et al., 2016). The combination of renew-
ables’ geographical variability and multiscale storage to the energy consumption
patterns of data centers is the subject of an ongoing study.
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Dereli, Z., Yücedağ, C., and Pearce, J. M. (2013). Simple and low-cost method
of planning for tree growth and lifetime effects on solar photovoltaic systems
performance. Solar Energy, 95:300–307.

Divya, K. and Østergaard, J. (2009). Battery energy storage technology for
power systemsan overview. Electric Power Systems Research, 79(4):511–520.

Emeis, S. (2012). Wind energy meteorology: atmospheric physics for wind power
generation. Springer Science & Business Media.

22



Energy Efficiency Indicators (2016). World Energy Council. https://www.wec-
indicators.enerdata.eu/household-electricity-use.html.
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Appendix A. Load and generation timeseries

The domestic electricity consumption timeseries has been downloaded from
Lichman (2013). The dataset consist of about 4 years of power demand sampled
every 60 s, between 2006 and 2010; year 2007 has been picked to minimize gaps.
The household is located in France, is relatively substantial (includes a tumble
dryer and an air conditioner) but does use gas for cooking and space heating; the
latter detail is relevant as electric heating would have introduced a prominent
dependency on local climate that would have made questionable the usage of
such a load in an environment like San Diego, characterized by an arid climate
and a significantly lower latitude.

Power generation data in Oxford has been downloaded from the web-site
of a PV enthusiast who kindly makes the 2014 timeseries of his domestic sys-
tem publicly available (Oxford PV array, 2016). The azimuth angle is loosely
quantified as few degrees west of South, and its elevation matches the roof at
apparently about 35oC. The sampling period is 60 s, as for the demand time-
series; data from the same system is also available on PVOutput.org (2017c),
but with longer (300 s) sampling period. In case of gaps of 1 day or more, in
this timeseries and the others, the main strategy adopted is to replace miss-
ing strings with values that are symmetrical in time with respect to the closest
solstice/equinox to minimize seasonality-induced error. In case of gaps of few
hours, missing strings are replaced with values from the previous/next day;
gaps few minutes long have been instead filled by interpolating between nearby
values. The Oxford timeseries actually runs from late December 2013 to late
December 2014; the initial days of the sequence have been moved to the bot-
tom to obtain an yearly timeseries. The size of the Oxford array is 4 kWp; its
generation is multiplied by 2 to obtain the “Oxford” load γ used here, in order
to better approximate the magnitude of the demand; the ensuing 8 kWp PV
array is roughly equivalent to an area of 40 m2, depending on technology. The
precise array size that satisfies the model’s equations is attained case by case
and expressed by the scaling factor X.

San Diego’s power generation data has been obtained from PVOutput.org
(2017b); it’s tilt is 22.5oC and its azimuth angle is loosely specified as “south-
west”. The system is larger than the Oxford one (7.8 kWp); however, its
size is not of primary interest here as its output is normalized to the Oxford,
8 kWp array’s yearly integrated generation: the ratio

x =
Oxford system yearly generation per kWp

San Diego system yearly generation per kWp

= 0.61 , (A.1)

tells that an array of 0.61 × 8KWp = 4.88KWp is the needed installation to
achieve in San Diego the same output achieved by the 8KWp Oxford’s array
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for the used 1-yr timeseries. The fraction X in the main text includes this
scaling factor (e.g. Fig. 1) when referred to the size of the San Diego system.

Appendix A.1. Resolution

The San Diego timeseries’ sampling period is 300 s, as usual on PVOutput.org
(2017a); data have been interpolated to match the 60 s-resolution of both
demand (Lichman, 2013) and Oxford PV array (2016). Increasing sampling
rate by interpolation could create the illusion of a battery charge state B(tn)
smoother than the actual one. To bring an argument against this chance, we
apply the definition of roughness (Eq. 11) to both the available Oxford PV time-
series (Oxford PV array 2016, with a 60 s sampling period, and PVOutput.org
2017c, with a 300 s period):

ri =

∫ T

0

∣

∣

∣

∣

dγO,i(t)

dt

∣

∣

∣

∣

dt , (A.2)

where γO represents generation in Oxford and indices denote the sampling pe-
riod in seconds. We obtain

1 − r300/r60 < 1% , (A.3)

indicating that timeseries with either 60 s or 300 s resolution produce the same
model outcome in Oxford. This should be even more the case in San Diego,
given the smoother behavior of irradiance in time.

Appendix B. Samples of model runs and generation

Charts in this Section display the seven variables on the left-hand sides of
Eqs. (1-7) and PV generation in the SA case. Winter and Summer days are
examined, with different battery sizes, to provide clues on system’s behavior
as parameters, geolocation and climatic conditions change. Figure B.8 shows
model’s variables in Oxford on two successive Winter days. On both days,
generation is sufficient to upload some energy to the 4 kWh battery (as proved
by the uB panel). Due to its relatively small size, B saturates before noon (B
panel) causing excess power being uploaded to H instead (uH panel). On the
second day, sunlight is weaker and the power uploaded to B is consequently
smaller; the battery does not saturate and uH is identically zero.

At the end of the 48 hour period, H’s level is lower than at the beginning;
power downloaded from H exceeds uploaded one, as to be expected given the
season. The situation is opposite if two Summer days are considered (Fig. B.9),
with H’s level increased at the end of the 48 hour interval; dH is identically
zero while uH is positive during the day, in spite of the larger battery (20 kWh)
considered in this case.

In San Diego (Figs. B.10-B.11) the higher irradiance is offset by the conse-
quently smaller size of the PV array required to meet demand; Summer-Winter
imbalance is greatly reduced, like the weather modulation to the irradiance
curves (“PV” subplots in Figs. B.10-B.11).
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Figure B.8: System’s operations are investigated in Oxford during two Winter days (reported
on chart’s title together with H’s efficiency, battery capacity, and PV size as fraction of the
reference 8 kWp array). The variables defined by Eqs. (1-7) are plotted, from left to right and
top to bottom; the last (bottom-right) panel depicts PV generation. The 48 hours interval
starts at 00:01 on the first day and ends at 24:00 on the second day. The <kW> label indicates
power in kW averaged over every 60 s sampling interval. Power’s sign is positive when uploaded
to reservoirs and negative when downloaded from them. dH , which is downloaded from H to
be formally uploaded to B, is endowed with positive sign. As discussed in the main text, dH

does not undergo the energy penalty associated to battery upload in Eq. (6): even if dH >0
is indeed triggered by B<Bm, dH helps meeting demand without transiting through battery.

Figure B.9: Same as Fig. B.8, except that the 48 hour sampled interval belongs to July;
battery capacity is 20 kWh.
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Figure B.10: Equivalent to Fig. B.8 for the San Diego system.

Figure B.11: Equivalent to Fig. B.9 for the San Diego system.
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