Citation:

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/4916/

Document Version:
Article (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been checked for copyright and the relevant embargo period has been applied by the Research Services team.

We operate on a standard take-down policy. If you are the author or publisher of an output and you would like it removed from the repository, please contact us and we will investigate on a case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party copyright. If you would like a thesis to be removed from the repository or believe there is an issue with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a case-by-case basis.
Pre-season body composition adaptations in elite Caucasian and Polynesian rugby union athletes

Submission type

Original research

Authors

Adam J Zemski
School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia

Shelley E Keating
School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Australia

Elizabeth M Broad
US Paralympics, US Olympic Committee, Chula Vista, CA, USA
Contact details of corresponding author

Adam J Zemski

School of Health and Sport Sciences
Faculty of Science, Health, Education and Engineering
University of the Sunshine Coast
Maroochydore DC, QLD, 4558, Australia
Email: ajz006@student.usc.edu.au

Preferred running head

Pre-season body composition changes in rugby union
The study was designed by AJZ, SEK, EMB, DJM and GJS; data were collected and analysed by AJZ, SEK, DJM and GJS; data interpretation and manuscript preparation were undertaken by AJZ, SEK, EMB, DJM, KH and GJS. All authors approved the final version of the paper.
Declarations of funding sources

SEK has received project specific funding from Exercise and Sports Science Australia and Diabetes Australia Research Program for unrelated work. SEK is supported by the National Health and Medical Research Council (NHMRC) of Australia via an Early Career Research Fellowship (122190).

Conflicts of interest

Nil
Pre-season body composition adaptations in elite Caucasian and Polynesian rugby union athletes

Abstract

During pre-season training, rugby union (RU) athletes endeavour to enhance physical performance characteristics that are aligned with on-field success. Specific physique traits are associated with performance, therefore body composition assessment is routinely undertaken in elite environments. This study aimed to quantify pre-season physique changes in elite RU athletes with unique morphology and divergent ethnicity. Twenty-two Caucasian and Polynesian professional RU athletes received dual-energy X-ray absorptiometry (DXA) assessments at the beginning and conclusion of an 11-week pre-season. Interactions between on-field playing position and ethnicity in body composition adaptations were explored, and the least significant change (LSC) model was used to evaluate variations at the individual level. There were no combined interaction effects with the variables position and ethnicity, and any body composition measure. After accounting for baseline body composition, Caucasians gained more lean mass during the pre-season than Polynesians (2425 ± 1303 g vs 1115 ± 1169 g; F=5.4, \(p=0.03 \)). Significant main effects of time were found for whole body and all regional measures with fat mass decreasing (F=31.1–52.0, \(p<0.01 \)), and lean mass increasing (F=12.0–40.4, \(p<0.01 \)). Seventeen athletes (9 Caucasian, 8 Polynesian) had a reduction in fat mass, and 8 athletes (6 Caucasian, 2 Polynesian) increased lean mass. This study describes significant and meaningful physique changes in elite RU athletes during a pre-season period. Given the individualised approach applied to athletes in regards to nutrition and conditioning
interventions, a similar approach to that used in this study is recommended to assess
physique changes in this population.

Key words: dual-energy X-ray absorptiometry, fat mass, lean mass, training, ethnicity.

Introduction

Professional rugby union (RU) athletes may compete in several different competitions
and tournaments throughout a calendar year. Following a period of rest (off-season),
athletes typically embark on a high volume pre-season training program of increasing
intensity that incorporates multifaceted aspects of physical conditioning (Argus et al.,
2009; Bradley et al., 2015). The physical goals of pre-season are to increase aerobic
and anaerobic fitness, speed, strength and power (Argus et al., 2010), in conjunction
with undertaking rugby specific technical and tactical training. Adjustments in body
composition, such as increases in lean mass (LM), are associated with favourable
changes in a number of performance traits (Bilsborough et al., 2016; Crewther et al.,
2013). Therefore, being able to accurately quantify pre-season physique changes is of
value to sport science practitioners and coaches to facilitate further personalisation of
training and/or dietary interventions.

The desire to increase body mass (BM), in particular LM, to gain a competitive
advantage in RU has become more pronounced since the introduction of
professionalism in 1995 (Olds, 2001; Quarrie & Hopkins 2007). Increases in LM can
influence the power-to-weight ratio of players, thus increasing the potential to
proliferate momentum, strength, power and speed (Bell et al., 2005). Excess fat mass
(FM) has negative implications for thermoregulation (Selkirk & McLellan, 2001), and concurrently increases energy expenditure during exercise, both of which may limit an athlete’s ability to perform at a high intensity for the duration of a match (Duthie, 2006). Additionally, an increase in FM has the potential to attenuate force production according to Newton’s second law of motion (a = F/m), whereby increases in FM (m) without a corresponding increase in muscle force (F) will reduce acceleration (a) (Duthie, 2006; Lees et al., 2017).

Pre-season increases in LM and decreases in FM have previously been reported in elite RU athletes using surface anthropometry (Argus et al., 2010; Bradley et al., 2015). However, there are limits to relying on anthropometric measures for estimating body composition in athletes, given the regression equations haven’t been validated for use in RU, or to track changes in body composition (Silva et al., 2009; Zemski et al., 2017). Over recent years, the use of dual-energy X-ray absorptiometry (DXA) for body composition assessment in elite RU has increased (Lees et al., 2017; Zemski et al., 2015). This technology provides an in-depth analysis of whole body and regional bone mineral content (BMC), FM and LM, and is recognised as a valid and precise body composition assessment tool (Harley et al., 2009; Van der Ploeg et al., 2003) when client presentation is standardised in accordance with best practice guidelines (Nana et al., 2015).

In recent years there has been a surge in the number of Polynesian athletes securing professional RU contracts. One study has investigated three-compartment body composition in Polynesian RU players and reported different distributions of regional FM and LM (Zemski et al., 2015). In non-athletes, large differences in physique have
been reported between Caucasian and Polynesian individuals, with Polynesians having more LM and greater LM:FM ratios (Rush et al., 2004; Swinburn et al., 1996; Swinburn et al 1999). To date, no study has explored differences in physique adaptations to training by ethnicity in RU. Therefore, the aim of this study was to investigate pre-season team and individual athlete DXA body composition adaptations in elite RU athletes, with sub-group analysis to compare changes between Polynesian and Caucasian individuals.

Methods

Participants

Twenty-two professional male RU athletes were recruited via their involvement in a single Australian Super Rugby franchise, which is the premier professional RU competition in the southern hemisphere. All athletes provided informed consent to participate in the study, and the research was approved by the Human Research Ethics Committee at the University of the Sunshine Coast (EC00297, S/16/959).

At the time of consent, all athletes provided researchers with the ethnicity of their grandparents via open ended questions. Given this research investigated potential differences based on phenotype expression, Ethnicity was ascribed when ≥ 3 grandparents were of the same ethnicity, as in previous studies in both athletic and sedentary populations (Rush et al.; 2009; Swinburn et al., 1996; Zemski et al., 2015; Zemski et al., 2017).
Study design

As part of routine training in preparation for the 2017 Super Rugby season, the athletes undertook a high-volume, high-intensity, 11-week pre-season training program. During the first three days of the pre-season period all athletes undertook body composition assessment via DXA, with the athletes re-assessed in the same order within the final three days of pre-season. The athletes undertook a similar training program the day before each assessment.

Body composition assessment

Body composition was assessed using a fan-beam DXA scanner (Hologic Discovery A, Hologic, Bedford, MA), with analysis performed using Apex 13.4.2:3 software (Hologic, Bedford, MA). A spine phantom was used to calibrate the scanner daily as per manufacturer guidelines for quality control purposes.

A standardised scanning protocol was implemented to maximise technical reliability and minimise error. This protocol has been described in detail elsewhere (Nana et al., 2015). Specifically, athletes were scanned first thing in the morning (between 5:00 am and 8:30 am) prior to food and fluid ingestion, or exercise. The athletes were requested to remain well hydrated the day before, and to consume their normal prescribed training diet the day before the assessment. They were scanned wearing sports shorts, and those taller than the 196 cm scanning boundary undertook two scans, the first of which captured the body from the menton (the inferior point of the mandible) down whilst the head was positioned in the Frankfort plane. The athletes
were then repositioned on the scanner, with the subsequent scan capturing from the menton up to the vertex of the head. The results of the two scans were combined during the analysis process to yield whole body composition (Evans et al., 2005).

None of the athletes in this study were too broad for the scanning area. To ensure consistency, the same experienced and qualified technician performed all measurements and post-scan analysis, including the manual adjustment of all regions of interest. Fat-Free Mass Index (FFMI) was calculated using the equation fat-free mass (kg) divided by stature (m) squared (VanItallie et al., 1990).

Pre-season training program

Following a 4-week period of unsupervised annual leave which included an active rest program (strength x2/week, conditioning x2/week) after the previous competitive RU season, the athletes undertook an 11-week pre-season training period. This comprised a 4-week supervised training block prior to a 2-week unsupervised maintenance block, followed by another 5-week supervised training block. Throughout each training week technical (x2/week) and tactical (x4/week) rugby sessions along with sessions to improve underpinning physical qualities and body composition were performed (speed/agility x1/week, strength x4/week, conditioning x3-4/week, boxing x1/week). Training was typically executed Monday through Friday with an approximate weekly training load of 15 hours. Additional time was spent on individual recovery and regeneration modalities (flexibility, mobility, massage, hydrotherapy and physiotherapy). All athletes were under the management of an experienced sports dietitian, who was accredited with the national governing body, and received...
individualised dietary plans aimed at supporting training adaptations throughout the pre-season period.

Statistical analysis

Statistical analyses were completed using SPSS (Version 22.0, IBM Corp., Armonk, NY) and Microsoft Excel 2011 (Microsoft, Redmond, WA, USA). Before analysis, assumptions of normality in the data were made using visualisations of normality plots and the Shapiro-Wilk test. Changes in body composition over the pre-season period were analysed using mixed-model analysis of variance (ANOVA), with the pre-season period acting as the within-subject factor, and playing position and ethnicity as the between subject factors. Additionally, a two-way analysis of covariance (ANCOVA) was conducted using both position and ethnicity as independent variables, and the start of pre-season as covariate, to test for interactions between position and ethnicity controlled for baseline values. Significant effects were subsequently explored using Bonferroni post hoc tests to counteract multiple comparisons. Sphericity of the data was assessed using the Mauchly test, assumptions of homogeneity of variance using Levene’s test of equality of error variances, and Box’s test of equality of covariance matrices were conducted. Between subject-effects were evaluated using the partial eta squared (η_p^2) rankings of small (> 0.01), medium (> 0.09) and large (> 0.25). Data are presented as mean ± standard deviation (SD) with statistical significance for all analyses defined as $p \leq 0.05$.

The short term precision root-mean-square-standard deviation (RMS–SD), percent coefficient of variation (%CV), and corresponding least significant change (LSC) was
calculated using standardised protocols as recommended by the International Society for Clinical Densitometry (Hangartner et al., 2013). This was done in a population of resistance trained athletes using the same Hologic Discovery A scanner used in this study (Zemski et al., 2018). Precision errors from same day scans (technical error) for whole body BMC, LM and FM, were 21.1 g, 238.4 g, and 222.7 g respectively. Precision error from consecutive day scans (technical error and biological variation) was calculated as the root-mean-square standard deviation (RMS–SD), with LSC subsequently derived as RMS–SD x 2.77 (95% confidence interval [95% CI]), and is presented in Table 1. Meaningful changes in individual athletes were identified if they exceeded the LSC as described elsewhere (Lees et al., 2017).

Results

Descriptive characteristics

Eleven athletes were identified as Caucasian (6 forwards, 5 backs), and 11 as Polynesian (5 forwards, 6 backs). Body composition according to position and ethnicity are presented in Table 2. There were no differences in whole or regional body composition between Caucasians and Polynesians. All whole body and regional DXA measures for BMC, FM and LM were greater ($p < 0.01$) in forwards compared to backs at both time points.

Team changes in whole and regional body composition
Pre-season body composition changes are presented in Table 2. There were no combined interaction effects between the variables position and ethnicity, with any body composition measure. After accounting for baseline body composition, Caucasians gained more LM during the pre-season than Polynesians (2425 ± 1303 g vs 1115 ± 1169 g; F = 5.4, p = 0.03). Significant main effects of time were found for whole body and all regional measures with FM decreasing (whole body F = 52.0, p < 0.01; arms F = 31.1, p < 0.01; trunk F = 44.8, p < 0.01; legs F = 39.5, p < 0.01), LM increasing (whole body F = 40.4, p < 0.01; arms F = 33.7, p < 0.01; trunk F = 14.8, p < 0.01; legs F = 12.0, p < 0.01), and trunk BMC increasing (F = 5.1, p = 0.04). Between-subject effects were found based on position for all variables (F = 3.8–13.2; p = 0.01–0.03; \(\eta_p^2 = 0.39–0.69 \) [large effect]).

Individual player body composition changes

Meaningful individual player changes were identified if they exceeded LSC (Table 3) and are illustrated in Figures 1, 2 and 3. Over the 11-week pre-season period, 17 athletes (9 Caucasian, 8 Polynesian) reduced FM, and 8 athletes (6 Caucasian, 2 Polynesian) increased LM. Meaningful increases in whole body BMC were observed in 4 athletes (3 Caucasian, 1 Polynesian), and 1 Caucasian athlete had a loss of BMC. Seven athletes both increased LM and reduced FM (5 Caucasians, 2 Polynesians). Only minor differences in whole body and regional individual body composition changes in FM and LM were observed in athletes based on position.

Discussion
This is the first study using an individualised approach in the analysis of pre-season body composition changes in RU athletes, which extends previous work looking at individual in-season changes (Lees et al., 2017). In doing so, we identified that over three-quarters of the athletes (17) decreased FM, while over one-third (8) increased LM. Further to this, 7 of the 8 athletes who increased LM also experienced meaningful reductions in FM. The changes in physique observed during the pre-season occurred independent of position or ethnicity; however, more Caucasian athletes increased LM in comparison to Polynesians.

Significant changes in body composition during pre-season training have been reported in as little as 4-weeks in a similar population of professional RU athletes (Argus et al., 2010). However, given that body composition changes were inferred via a surface anthropometry derived regression equation, the validity of such a marked increase in LM (2.0 ± 0.6 kg) in such a short time period is questionable (Silva et al., 2009). Indeed, only 8 athletes in the present investigation observed similar gains in LM, despite an 11-week pre-season period. FM losses in this study were slightly larger than in the aforementioned study (1.4 ± 0.4 kg), although this would be expected given the duration of the pre-season was considerably longer. Pre-season increases in LM and decreases in FM of a similar magnitude to those observed in this study have also been reported in professional Australian rules footballers (AFL) using DXA (Bilsborough et al, 2017), corroborating that the pre-season period in professional sport is a time of noteworthy body composition change.

An individualised approach to evaluating adaptations provides a unique insight not possible from a more traditional assessment, where group mean changes are reported.
For example, although statistically significant gains in LM were observed in the current investigation, only one-third of athletes had meaningful increases in LM based on LSC analysis (>2083 g). This may be a result of the challenges associated with increasing LM once high levels of muscularity are reached (Abe et al., 2018). Indeed, the rate of LM accumulation has been reported to decline in American football (NFL) athletes when BM exceeds ~114 kg (forwards in this study 112.5 ± 7.6 kg) (Bosch et al., 2014), and an upper limit in FFMI of 25 kg/m² has been suggested in non-steroid using males (Kouri et al., 1995). However, the validity of this FFMI cut-off has been questioned in athletic populations (Trexler et al., 2017). Specifically, professional RU forwards routinely exceed this threshold (Zemski et al., 2015), including all 11 of the forwards in the present study (26.1 ± 1.2 kg/m²; range 25.5 – 29.0 kg/m²).

Characterising athletes and measuring adaptations at the group level may not tell the whole story, as was the case with LM adaptions in this study. Therefore, being able to evaluate changes in body composition at the individual level provides practitioners the opportunity to appreciate more deeply individual adaptations, which may provide benefits in program personalisation and performance optimisation.

Polynesians have consistently been shown to display higher LM and lower FM compared to Caucasians (Rush et al., 2004; Rush et al, 2009; Swinburn et al., 1996; Swinburn et al., 1999); however, longitudinal adaptions have not previous been investigated. More Caucasian athletes increased LM than Polynesians (6 athletes vs 2 athletes) particularly in the trunk region (3 athletes vs 0 athletes), and a statistically significant group main effect based on ethnicity was found. Future investigations incorporating ethnicity differentiated within and between season measures may provide further insight into the role ethnicity plays in training adaptations not only
during the season, but also post-season in the absence of the training stimulus, where
previously significant compromises in body composition have been noted in other
elite contact team-sport populations (Bilsborough et al., 2017).

Few differences were observed between forwards and backs in regards to meaningful
individual adaptations achieved, with the only substantial difference being that more
forwards had significant increases in trunk LM compared to backs (3 athletes vs 0
athletes). As forwards are required to engage in more static match activities such as
scrums, mauls, and rucks, greater core and upper body strength is advantageous
(Roberts et al., 2008). As such, forwards undertake more field-based training activities
that replicate these specific match performance movements, which may have
amplified the observed adaptations.

The use of the individualised LSC method of analysis in this study has provided great
insight into the individual adaptations of elite RU athletes over a pre-season period, as
did the same approach when looking at in-season changes previously reported (Lees
et al., 2017). Although research traditionally reports statistical significance in regard
to group changes, the individualised approach is more closely aligned to the practical
interpretation of results undertaken by sports scientists. As such, appreciating the
precision error of the DXA equipment being used, and ensuring best practice
protocols are followed (Nana et al., 2015), can facilitate the identification of true
changes and thus influence interpretation of results. This would then enable
practitioners to further personalise dietary and/or training interventions in the pursuit
of improved performance outcomes.
There are a number of considerations to make when interpreting the findings of this study. Firstly, it was impractical for individual training loads and dietary intake to be quantified. While it would be invaluable to understand the association between energy intake, energy expenditure, and body composition changes, significant challenges exist in being able to quantify high intensity exercise energy expenditure (Drenowatz & Eisenmann, 2011), particularly in contact sports where the tools available are not suitable during physical collisions (Bradley et al., 2015). Additionally, due to the high number of routine measurements being taken on the athletes for monitoring purposes, training load could not be quantified. Further, given there is no gold standard assessment of energy intake, any method employed would be subject to considerable error, particularly over a long period in an athletic population (Magkos & Yannakoula, 2003). Such information may have provided further insight into the underlying reasons for the observed individual physique changes, and warrants consideration when appropriate and reliable technologies are available. Also, researchers were not made aware of individual athlete body composition goals over the pre-season, which may have added to the interpretation of results. Secondly, off-season changes and events likely to influence body composition were not taken into consideration when interpreting the results. An appreciation of such changes would allow for a more meaningful interpretation of the pre-season adaptations in the context of each individual athlete. Finally, associations between body composition and physical performance changes were not explored in this study. Future research investigating the association between physique adaptations and specific performance measures and fitness traits over a pre-season would be of great interest, in particular how these changes impact game performance in-season.
In conclusion, we identified significant whole body and regional body composition changes in elite RU athletes during a pre-season period, at both the team and individual level. Practitioners are encouraged to take an individualised approach to the interpretation of adaptations when tracking physique variables longitudinally, for which knowledge of LSC data is required. Future work exploring ethnicity differentiated body composition changes across the entire season, including the post-season period, would provide practitioners with valuable information allowing for a more personalised approach to athlete training and dietary interventions.

Acknowledgements, authorships, declarations of funding sources, and conflicts of interest

Acknowledgements – The study was designed by AJZ, SEK, EMB, DJM and GJS; data were collected and analysed by AJZ, SEK, DJM and GJS; data interpretation and manuscript preparation were undertaken by AJZ, SEK, EMB, DJM, KH and GJS. All authors approved the final version of the paper.

Declarations of funding sources – SEK has received project specific funding from Exercise and Sports Science Australia and Diabetes Australia Research Program for unrelated work. SEK is supported by the National Health and Medical Research Council (NHMRC) of Australia via an Early Career Research Fellowship (122190).

Conflicts of interest – Nil

References

Trexler, E. T., Smith-Ryan, A. E., Blue, M. N. M., Schumacher, R. M., Mayhew, J. L., Mann, J. B., … & Mock, M. G. (2017). Fat-free mass index in NCAA Division I and

Table 1: Short-term prevision and corresponding SC in resistance trained athletes using the same Hologic Discovery A (Zemski et al., 2018)

<table>
<thead>
<tr>
<th></th>
<th>Same Day Technical Error</th>
<th>Consecutive Days Technical Error & Biological Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precision</td>
<td>LSC–95% CI</td>
</tr>
<tr>
<td></td>
<td>RMS–SD</td>
<td>%CV</td>
</tr>
<tr>
<td>Whole body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMC (g)</td>
<td>21.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Fat Mass (g)</td>
<td>238.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Lean Mass (g)</td>
<td>222.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Arms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMC (g)</td>
<td>5.6</td>
<td>1.1</td>
</tr>
<tr>
<td>Fat Mass (g)</td>
<td>43.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Lean Mass (g)</td>
<td>101.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Trunk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMC (g)</td>
<td>9.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Fat Mass (g)</td>
<td>123.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Lean Mass (g)</td>
<td>319.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Legs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMC (g)</td>
<td>20.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Fat Mass (g)</td>
<td>146.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Lean Mass (g)</td>
<td>335.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

RMS–SD = root-mean-square standard deviation; CV = coefficient of variance; LSC = least significant change; BMC = bone mineral content
Table 2: Differences in surface anthropometry measures and indices, and dual-energy X-ray absorptiometry measured total and regional body composition characteristics of elite rugby union athletes over the course of a pre-season based on position and ethnicity.

<table>
<thead>
<tr>
<th></th>
<th>Position</th>
<th>Ethnicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forwards (n=22)</td>
<td>Backs (n=11)</td>
</tr>
<tr>
<td></td>
<td>Start Pre-Season</td>
<td>Start Pre-Season</td>
</tr>
<tr>
<td>Age (years)</td>
<td>22.9 ± 3.5</td>
<td>22.8 ± 3.0</td>
</tr>
<tr>
<td>Stature (cm)</td>
<td>191.3 ± 7.5</td>
<td>182.2 ± 6.9</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>112.5 ± 7.6</td>
<td>112.1 ± 7.6</td>
</tr>
<tr>
<td>FFMI (kg/m²)</td>
<td>26.1 ± 1.2</td>
<td>26.6 ± 1.1</td>
</tr>
<tr>
<td>WB BMC (g)</td>
<td>4352 ± 439</td>
<td>4777 ± 437</td>
</tr>
<tr>
<td>WB FM (g)</td>
<td>19629 ± 3879</td>
<td>17166 ± 3837</td>
</tr>
<tr>
<td>WB LM (g)</td>
<td>91087 ± 5489</td>
<td>92912 ± 5711</td>
</tr>
<tr>
<td>Arms BMC (g)</td>
<td>662 ± 76</td>
<td>661 ± 78</td>
</tr>
<tr>
<td>Arms FM (g)</td>
<td>2287 ± 426</td>
<td>2038 ± 415</td>
</tr>
<tr>
<td>Arms LM (g)</td>
<td>11698 ± 1098</td>
<td>12162 ± 928</td>
</tr>
<tr>
<td>Trunk BMC (g)</td>
<td>1361 ± 179</td>
<td>1381 ± 193</td>
</tr>
<tr>
<td>Trunk FM (g)</td>
<td>8594 ± 2392</td>
<td>7179 ± 2224</td>
</tr>
<tr>
<td>Trunk LM (g)</td>
<td>43339 ± 3136</td>
<td>44282 ± 3509</td>
</tr>
<tr>
<td>Legs BMC (g)</td>
<td>1623 ± 183</td>
<td>1624 ± 175</td>
</tr>
<tr>
<td>Legs FM (g)</td>
<td>7570 ± 1745</td>
<td>6765 ± 1755</td>
</tr>
<tr>
<td>Legs LM (g)</td>
<td>31977 ± 1872</td>
<td>32372 ± 1916</td>
</tr>
</tbody>
</table>

FFMI = fat-free mass index; WB = whole body; BMC = bone mineral content; FM = fat mass; LM = lean mass

Data presented as Mean ± Standard Deviation, significance set at 0.05

a Significant interaction between time and ethnicity
b Significant main effect for time
c Significant difference between forwards and backs
Table 3: Individual athletes who made meaningful dual-energy X-ray absorptiometry measured whole body and regional body composition changes (> LSC 95% CI – technical error and biological variation) during the pre-season.

<table>
<thead>
<tr>
<th></th>
<th>All (n=22)</th>
<th>Position (n=22)</th>
<th>Ethnicity (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Forwards (n=11)</td>
<td>Backs (n=11)</td>
</tr>
<tr>
<td>Bone Mineral Content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arms</td>
<td>1 (5%)</td>
<td>1 (9%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Trunk</td>
<td>9 (41%)</td>
<td>6 (55%)</td>
<td>3 (27%)</td>
</tr>
<tr>
<td>Legs</td>
<td>5 (23%)</td>
<td>2 (18%)</td>
<td>3 (27%)</td>
</tr>
<tr>
<td>WB</td>
<td>4 (18%)</td>
<td>2 (18%)</td>
<td>3 (27%)</td>
</tr>
<tr>
<td>Fat Mass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arms</td>
<td>10 (45%)</td>
<td>6 (55%)</td>
<td>4 (36%)</td>
</tr>
<tr>
<td>Trunk</td>
<td>17 (77%)</td>
<td>9 (82%)</td>
<td>8 (73%)</td>
</tr>
<tr>
<td>Legs</td>
<td>14 (64%)</td>
<td>8 (73%)</td>
<td>6 (55%)</td>
</tr>
<tr>
<td>WB</td>
<td>17 (77%)</td>
<td>9 (82%)</td>
<td>8 (73%)</td>
</tr>
<tr>
<td>Lean Mass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arms</td>
<td>11 (50%)</td>
<td>6 (55%)</td>
<td>5 (45%)</td>
</tr>
<tr>
<td>Trunk</td>
<td>3 (14%)</td>
<td>3 (27%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Legs</td>
<td>2 (9%)</td>
<td>0 (0%)</td>
<td>2 (18%)</td>
</tr>
<tr>
<td>WB</td>
<td>8 (36%)</td>
<td>4 (36%)</td>
<td>4 (36%)</td>
</tr>
</tbody>
</table>

Data shown as – number of athletes (% of athletes)

WB = whole body

\(^a \) 2 athletes lost BMC in their trunk (Caucasian forward, Polynesian back)

\(^b \) 2 athletes lost BMC in their legs (Caucasian forward, Polynesian back)

\(^c \) 1 athlete lost BMC in their whole body (Caucasian forward)
Figure 1: Individual whole body and regional changes in bone mineral content by the least significant change (LSC) previously determined (Zemski et al., 2018) over a pre-season in elite rugby union athletes. Dashed lines indicate LSC-95% CI same day precision (technical error). Dotted lines indicate LSC-95% CI consecutive day precision (technical error and biological variation).

Figure 2: Individual whole body and regional changes in fat mass by the least significant change (LSC) previously determined (Zemski et al., 2018) over a pre-season in elite rugby union athletes. Dashed lines indicate LSC-95% CI same day precision (technical error). Dotted lines indicate LSC-95% CI consecutive day precision (technical error and biological variation).

Figure 3: Individual whole body and regional changes in lean mass by the least significant change (LSC) previously determined (Zemski et al., 2018) over a pre-season in elite rugby union athletes. Dashed lines indicate LSC-95% CI same day precision (technical error). Dotted lines indicate LSC-95% CI consecutive day precision (technical error and biological variation).