

Citation:

Whitehead, S and Till, K and Weaving, D and Hunwicks, R and Pacey, R and Jones, B (2018) Whole, half and peak running demands during club and international youth rugby league match-play. Science and Medicine in Football. ISSN 2473-4446 DOI: https://doi.org/10.1080/24733938.2018.1480058

Link to Leeds Beckett Repository record: https://eprints.leedsbeckett.ac.uk/id/eprint/5163/

Document Version: Article (Accepted Version)

This is an Accepted Manuscript of an article published by Taylor & Francis in Science and Medicine in Football on 80 June 2018, available online: http://www.tandfonline.com/10.1080/24733938.2018.1480058

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been checked for copyright and the relevant embargo period has been applied by the Research Services team.

We operate on a standard take-down policy. If you are the author or publisher of an output and you would like it removed from the repository, please contact us and we will investigate on a case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party copyright. If you would like a thesis to be removed from the repository or believe there is an issue with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a case-by-case basis.

1	Whole, half and peak running demands during club and international youth rugby
2	league match-play
3	
4	Running Head: Running demands of youth rugby league
5	
6	Sarah Whitehead ^{1,2} , Kevin Till ^{1,2,3} , Dan Weaving ^{1,2} , Richard Hunwicks ^{1,4,5} , Rob Pacey ^{6,7} , Ben
7	Jones ^{1,3,4}
8	
9	¹ Leeds Beckett University, Institute for Sport, Physical Activity and Leisure, Leeds, United
10	Kingdom
11	² Leeds Rhinos Rugby League club, Leeds, United Kingdom
12	³ Yorkshire Carnegie Rugby Union club, Leeds, United Kingdom
13	⁴ The Rugby Football League, Leeds, United Kingdom
14	⁵ Catalan Rugby League club, Perpignan, France
15	⁶ Catapult, Leeds, United Kingdom
16	⁷ Strength of Science, Leeds, United Kingdom
17	
18	Address for correspondence
19	Sarah Whitehead,
20	Institute for Sport, Physical Activity and Leisure, Centre for Human Performance,
21	Headingley Campus,
22	Leeds Beckett University,
23	West Yorkshire,
24	LS6 3QS
25	Email: <u>s.whitehead@leedsbeckett.ac.uk</u>

27

Whole, half and peak running demands during club and international youth rugby league match-play

28

29 Abstract

This study quantified, and compared, the whole- half- and peak-match running demands of 30 31 professional club and international under-16 rugby league match-play. Four professional Club (n = 30) and two International (n = 23) under-16 matches were analysed using 10-Hz 32 33 micro-technology units, with players analysed according to positional groups. Absolute (m) and relative (RD; m.min⁻¹) total, high speed (>5 m·s⁻¹; HSR) and sprint (>7 m·s⁻¹) distance 34 were analysed for whole- and half-match alongside maximum velocity (V_{MAX} ; m.s⁻¹). Peak 35 36 running demands were determined via moving averages of RD for 10, 30, and 60- to 600-37 seconds. International forwards had *most likely* higher whole match relative sprint and V_{MAX}, and 1st half RD than club level, and had very likely higher peak running demands at 60-, 180-38 39 and 600-second durations. For backs, whole game RD was most likely higher and total and 40 sprint distance was *likely* higher at club level matches. Peak RD was also very likely higher for club backs at 10- and 60-seconds. The running demand differences between club and 41 international level at the under-16 age group are position dependent, with greater running 42 43 demands at club level match play for backs, but at the international level of forwards.

Whole, half and peak running demands during club and international youth rugby league match-play

46

47 Introduction

Rugby league is an intermittent contact sport, involving frequent bouts of high intensity 48 49 activity (e.g., high speed running and tackling), interspersed with periods of low intensity activity (e.g., walking and repositioning) (Cummins and Orr 2015; Gabbett 2015; McLellan 50 51 and Lovell 2013). The sport is played both domestically and internationally, at amateur, 52 semi-professional, and professional standards across junior and senior levels (Johnston, Gabbett and Jenkins 2014), with the two major competitions being the Australasian National 53 54 Rugby League (NRL) and the European Super League (ESL). Knowledge of the locomotive 55 (e.g., walking, running, sprinting) demands of rugby league match play at these different 56 levels is required for practitioners to optimally prepare players for their current standard (i.e., 57 age and level) and for playing level progressions (i.e., older age groups, and higher 58 standards). To date, extensive research exists evaluating the running demands of rugby league match play using global positioning systems (GPS) across senior levels (Austin and 59 60 Kelly 2013; Delaney et al. 2015; Gabbett 2013; Hulin et al. 2015; McLellan et al. 2011; 61 Waldron et al. 2011), but is limited within youth elite levels (Waldron et al. 2014).

62

In the United Kingdom (UK), the first opportunity young players have to train and play
within an elite (i.e., professional) team is when they are recruited by a professional rugby
league club from the amateur game at the under 16 (U16) age category (Till et al. 2015).
Players identified as having the potential to play professionally progress to senior (U19)
academy squads; where the primary aim is to develop players for Super League (Till et al. 2017). The physical qualities of players at different age groups and playing level are well

69 established (Ireton et al. 2017; Till et al. 2011; Till et al. 2014), yet within the youth age 70 group (i.e., U16), the match demands have received little attention to date. Waldron et al. 71 (2014) previously investigated the differences in locomotive demands between playing 72 standards (i.e., players who progressed to the next age group vs. those who were released) 73 within a ESL club team, showing the higher standard players covered a greater total (5181 \pm 74 $1064 vs. 3943 \pm 1109 m$) and high-intensity (>75% individualized maximal aerobic velocity) 75 running distance (1809 \pm 369 vs. 1281 \pm 368 m) during a match, compared to lower standard 76 players.

77

While the most commonly reported locomotive variable is 'total distance' covered (Hausler 78 79 et al. 2015), the usefulness of this information may be limited, given the numerous ways 80 (e.g., walking, jogging, sprinting) in which total distance can be accumulated. Expressing 81 total distance relative to time provides 'relative distance' (the distance travelled per minute; $m \cdot min^{-1}$), which is considered a reflection of match 'intensity' (Cummins et al. 2013). 82 83 However, when considering how total distance is calculated (average velocity x duration), 84 then relative distance is calculated by dividing the total distance covered by total playing 85 time, it is likely important intense periods of activity are missed (e.g., line breaks). Therefore, the identification of 'peak' running demands is required (Hulin et al. 2015; Furlan et al. 86 87 2015). Current research on differences in locomotive match demands between playing 88 standard focuses on whole- and half-game values (Gabbett 2013; McLellan and Lovel 2013), thus comparing the peak demands is a novel approach, and may be more sensitive at 89 90 identifying differences in match demands between playing standards across sports. 91

92 The peak running demands can be calculated through a moving averages approach (Varley et93 al. 2012) for pre-determined duration specific periods. This approach takes a moving average,

of a specified duration, of the instantaneous speed $(m \cdot s^{-1})$ which is sampled at a given rate 94 95 (i.e., 10Hz GPS, 10 instantaneous velocity samples per second). For example, to identify the 96 peak relative distance for a 5-minute period, a moving average of 3000 data points (300-97 seconds with 10 samples per second) would be calculated from the start to the end of a match. The highest relative distance identified would be deemed the 'peak' 5-minute running 98 99 demands. This analysis will likely provide more useful information for the practitioners, as these periods are typically what players should be physically prepared for. Using this method 100 101 of analysis, the peak demands of NRL match play have been identified (Delaney et al. 2015; Delaney et al. 2016). Peak 1-minute periods range from ~163 to 179 m·min⁻¹, and peak 10-102 103 minute periods range from ~98 to 109 m \cdot min⁻¹, dependent upon position (Delaney et al. 104 2016), which are greater than previously reported whole-match demands (~ 82 to 105 m·min⁻ 105 ¹) (Austin and Kelly 2014; Gabbett 2013; Kempton et al. 2015; Twist et al. 2014). Current research has focused on peak demands from 1- to 10-minutes in duration (Delaney et al. 106 107 2015; Delaney et al. 2016); however, considering changes in the physiological (Buchheit and 108 Laursen, 2013) and technical-tactical demands as the duration increases, the quantification of both shorter- (i.e., 10- and 30-seconds), and longer- (i.e., 10-minutes) peak running demands 109 are required. 110

111

The quantification of running demands is required to provide practitioners with data, which can be useful in practice (Jones et al. 2017). Practitioners are then in a position to use these data to prescribe specific running drills and monitor the intensity of coach led rugby drills. Therefore, the aim of this study was to quantify and compare the whole- half- and peakrunning demands of club and international under-16 rugby league match-play.

117

119 Methods

120 Experimental approach

A prospective observational study design was used to establish the locomotive demands of club and international rugby league match play. GPS data were collected during match play of a professional club's Scholarship team competing in the Super League under16s competition, and a representative International Youth (U16s) team (i.e., players recruited from the Super League under16s competition) during the 2017 season. Whole-, half- and peak-running demands were quantified for positional groups at each playing level. The differences between playing levels for positional groups were compared.

128

129 Subjects

130 Forty-eight male rugby league players participated in the study. Thirty players participated in 131 professional club Scholarship matches (Club; mean \pm standard deviation [SD] age 15.5 \pm 0.7 132 years, stature 178.0 ± 5.9 cm, body mass 81.9 ± 12.8 kg) and twenty-three participated in 133 England International (International; mean \pm SD age 15.8 \pm 0.5 years, stature 178.0 \pm 5.9 cm, body mass 81.1 ± 5.0 kg) matches. Five players were included in both groups, which was 134 135 dealt with by the analysis technique used. The study was approved by the university ethics 136 committee. Prior to the commencement of the study, all participants were informed on the 137 purpose, benefits and requirements of the study, and written consent was obtained from 138 players and a parent or guardian.

139

The number of observations for each player ranged from 1 to 4 (2.3 ± 1.1) and 1 to 2 (1.5 ± 0.5) , during Club and International matches, respectively. Based on positional differences observed at the senior level, players were classified into the two commonly used positional groups: forwards (Club, n = 16; International, n = 13) and backs (Club, n = 14; International,

144 n = 10) (Austin and Kelly 2013; McLellan et al. 2011; McLellan and Lovell 2013). Each 145 match was 70-minutes in duration, with 35-minute halves. The mean \pm SD playing time was 146 54 ± 19 and 58 ± 18 minutes during Club and International matches, respectively. Players 147 were excluded from analysis if their match time was less than 10 minutes per half, due to the 148 analysis of moving averages being up to 10-minutes. The Club won three and drew one 149 match with a mean score difference of 31 ± 25 points, and the International side won two out 150 of two matches with a score difference of 21 ± 15 points.

151

152 Methodology

The match demands were evaluated using micro-technology units (Optimeye S5, Catapult 153 154 Innovations, Melbourne, Victoria) with a GPS receiver sampling at 10-Hz (firmware version 155 5.27). The use of 10Hz GPS units to quantify distance and speed measurements has been 156 determined as valid and reliable (Scott et al. 2016). Players were familiarised with wearing 157 the units prior to study commencement. The GPS units were worn in tight fitted garments and 158 positioned in the centre of their back between their scapulae. Players wore the same units for 159 repeated observations and the devices were switched on 30 minutes prior to match play to 160 ensure adequate satellite connection and data quality (Malone et al. 2017). The number of satellites and HDOP during match play was 15.1 ± 2.2 (range: 11 - 19) and 0.8 ± 0.2 (range: 161 0.5 - 1.2) respectively for the Club and 14.7 \pm 1.8 (range: 12 - 17) and 0.8 \pm 0.2 (range: 0.6 -162 163 1.2) for the International fixtures.

164

165 Data analysis

166 The start and end time for each half was recorded and used to truncate the GPS file.

167 Following each match, data were extracted and analysed using propriety software Openfield

168 (v1.14, Catapult Innovatons, Melbourne, Victoria). Speed was calculated via the Dopler shift

169 method. The minimum effort duration was set at one second (Varley et al. 2012). Locomotor 170 variables analysed for whole-, and half-match, demands were: relative distance covered 171 ($m \cdot min^{-1}$), total distance covered (m), which was further differentiated into the distance 172 covered at high speed running (HSR, m) (> 5 m \cdot s^{-1}) and sprinting (m) (> 7 m \cdot s^{-1}), relative 173 distance covered at HSR (rHSR, m \cdot min^{-1}) and sprinting (m \cdot min^{-1}), and maximum velocity 174 (V_{MAX} , m \cdot s^{-1}).

175

176 To establish peak running demands a file of each sampled instantaneous speed value (i.e., 10-177 Hz GPS, 10 speed samples per second) were exported. This was then analysed using customized software (R, v R-3.1.3) to compute the moving averages for the distance covered 178 179 per unit of time (relative distance; $m \cdot min^{-1}$) for duration specific periods (Varley et al. 2012). 180 Peak demand durations of 10- and 30-seconds, and 60- to 600-seconds were calculated. For example, for the 10-second duration, a moving average was calculated every 100 data points 181 (10 samples per second, for 10-seconds), e.g., 0 - 100, 1 - 101, 2 - 102, for the duration of 182 183 the file. The peak running demands were determined as the highest value for each duration during the total game time for an individual player, then averaged for positional groups. 184

185

186 Statistical Analyses

187 Prior to analyses, data were log-transformed to reduce bias and non-uniform error (Hopkins

188 et al. 2009). Total and relative sprint distance were analysed as raw data due to the inclusion

189 of zeros, thus cannot be log-transformed. Descriptive data are presented as mean \pm SD.

190 Linear mixed-effects models were carried out in SAS Studio Software (4.2, SAS Institute

191 Inc., Cary, NC, USA) to assess differences in the whole and half game locomotor variables,

and duration specific peak periods, between Club and International matches. Individual

193 athletes were specified as random effects to account for error associated with repeated

194	measurements, allowing different within-subject SD (Delaney et al. 2016). To account for the
195	variability between matches (Kempton et al. 2013), match identification was also included as
196	a random effect. Level of play, positional group and the interaction of level and positional
197	group, were included as fixed effects to describe their relationships with the dependent
198	variable. Pairwise comparisons between levels of play and positions were assessed using the
199	Least Squares mean test. Differences of Least Squares means were back-transformed to
200	percentage differences, with 90% confidence intervals (CI). Standardized effect sizes (ES)
201	were quantified (reported as ES with 90% CI), and the magnitude-based inference network
202	was used to determine the practical importance of the derived percentage difference (Hopkins
203	2007). The smallest worthwhile difference (SWD) was calculated as 0.2 x the between-
204	subject SD and assessed qualitatively as follows: $<0.5\%$, most unlikely; $0.5 - 5\%$, very
205	unlikely; 5 – 25%, unlikely; 25-75%, possibly; 75-95% likely, 95- 99.5%, very likely and
206	>99.5%, most likely (Hopkins 2007). If the 90% CI over-lapped positive and negative values
207	of the SWD the magnitude was deemed unclear.
208	
209	Results
210	Whole- and Half- match demands
211	The differences in whole- and half- Club and International match running demands for all
212	variables are displayed in Table 1 for backs and Table 2 for forwards.
213	
214	*** Table 1 near here***
215	*** Table 2 near here***
216	
217	Peak match demands

218	Figure 1 presents the peak relative distance for forwards and backs, for 10- and 30-second
219	periods, with the percentage differences between levels and the inference of the differences.
220	During a Club match, backs have very likely higher relative distance than during an
221	International match for the 10-second duration (International: $350.3 \pm 8.3 \pm vs$. Club: 392.7
222	$\pm 16.5 \text{ m} \cdot \text{min}^{-1}$; ES: -0.74 [-1.2 to -0.2]). The difference for forwards at 10-seconds was
223	<i>unclear</i> (International: 315.7 ± 17.4 <i>vs</i> . Club: 326.1 ± 15.2 m·min ⁻¹ , ES: 0.2 [-0.3 to 6.2]).
224	For 30-seconds, during the International match, forwards likely covered greater relative
225	distance than during a Club match (International: 205.0 ± 10.6 vs. Club: 194.1 ± 11.9 m·min ⁻
226	¹ ; ES: 0.6 [0.1 to 1.1]). The difference between levels for backs at this duration was <i>unclear</i>
227	(International: $210.3 \pm 6.3 \text{ vs.}$ Club: $220.8 \pm 11.7 \text{ m} \cdot \text{min}^{-1}$; ES: 0.5 [-0.2 to 1.1]).
228	
229	*** Figure 1 near here***
230	
231	Figures 2 and 3 present the peak relative distance for backs and forwards, for duration
232	specific periods of 60- to 600-seconds, with percentage differences and inferences. For backs,
233	the differences between levels were unclear at all durations, except 60-seconds where
234	International was very likely lower (International: 157.5 ± 5.6 vs. Club: 168.0 ± 5.8 m·min ⁻¹ ,
235	
	ES: -0.7 [-1.0 to -0.3]). The average peak 600-second period during International and Club
236	ES: -0.7 [-1.0 to -0.3]). The average peak 600-second period during International and Club matches for backs were 101.3 ± 9.5 and 102.5 ± 7.2 m·min ⁻¹ respectively. Forwards had <i>very</i>
236 237	
	matches for backs were 101.3 ± 9.5 and 102.5 ± 7.2 m·min ⁻¹ respectively. Forwards had <i>very</i>
237	matches for backs were 101.3 ± 9.5 and $102.5 \pm 7.2 \text{ m} \cdot \text{min}^{-1}$ respectively. Forwards had <i>very likely</i> higher peak relative distance at 60-seconds during International compared to Club
237 238	matches for backs were 101.3 ± 9.5 and $102.5 \pm 7.2 \text{ m} \cdot \text{min}^{-1}$ respectively. Forwards had <i>very likely</i> higher peak relative distance at 60-seconds during International compared to Club matches ($163.2 \pm 10.1 \text{ vs}$. $158.5 \pm 10.5 \text{ m} \cdot \text{min}^{-1}$, ES: 0.8 [0.4 to 1.2]). The average peak 600-
237 238 239	matches for backs were 101.3 ± 9.5 and $102.5 \pm 7.2 \text{ m} \cdot \text{min}^{-1}$ respectively. Forwards had <i>very likely</i> higher peak relative distance at 60-seconds during International compared to Club matches ($163.2 \pm 10.1 \text{ vs}$. $158.5 \pm 10.5 \text{ m} \cdot \text{min}^{-1}$, ES: $0.8 [0.4 \text{ to } 1.2]$). The average peak 600-second duration was also <i>very likely</i> higher during the International matches compared to

*** Figure 3 near here***

244

245 Discussion

246 This study aimed to quantify and compare the the whole- half- and peak-match running demands of Club and International under-16 rugby league match-play. It is the first study to 247 248 evaluate the peak running demands within youth elite rugby league, and to compare the 249 demands between playing standards. Findings revealed similar peak running demands to 250 those previously reported in professional senior NRL match play (Delaney et al. 2015; 251 Delaney et al. 2016). Contrasting findings between positional groups were found for the 252 comparison between playing standard, with running demands for backs being greater during 253 professional club level matches, but greater for forwards during international level matches.

254

255 The differences between the International and Club standard at the youth level show 256 meaningful differences between the two levels, dependent upon position. For backs, there 257 was a difference in whole-game relative distance, and total and relative sprint distance 258 covered between levels, with the largest percentage difference being in the second half for all 259 three parameters, perhaps due to changes in technical-tactical focus in the second half of 260 match-play (Table 1). In contrast, for forwards the whole game relative sprint distance was 261 greater during the International compared to Club matches (Table 2). Such findings suggest 262 that the whole- and half-match running demands are harder at the international level for 263 forwards but club level for backs, highlighting the position-specific nature of rugby league. However, the differences could also be attributed to differences in the technical-tactical 264 265 demands and playing style of international vs. club level matches, which may have a large impact on due to the small sample size. 266

267

268 The contrasting findings for the whole- and half-match demands between positional groups 269 are also present in the peak running demands. For backs, most of the differences between 270 International and Club matches were unclear, except 10- and 60-second durations where 271 relative distance is 10.1 and 3.9% lower respectively, during International compared to a 272 Club matches (Figures 1 and 2). During International matches, forwards have greater peak 273 relative distances at several duration specific periods (30-, 60-, 120-, 180-, 300- and 600-274 seconds) compared to club matches, with the greatest differences at the 60- and 600-second 275 periods (Figures 1 and 3). The differences in the running demands between levels observed 276 could be attributed to the closer games (i.e., lower score difference) during International 277 compared to Club matches. For the backs, the closer score-line could lead to more defensive 278 involvements, and consequently more collisions and less running (Roe et al. 2017), as well as 279 fewer chances for line breaks. The higher running demands observed for forwards during 280 international matches are consistent with other studies in which the higher standard of 281 competition encounters higher running demands (Johnston et al. 2015; McLellan and Lovell 282 2013). In the higher standard of competition with the tighter score lines, the teams could be 283 competing more for field position and spend more time defending. The role forwards play in 284 making attacking meters and preventing meters gained by the opposition in defense, means 285 they are likely to be involved in the game more and perhaps have higher running demands, especially during defensive play (Gabbett et al. 2014; Sykes et al. 2009). 286

287

In addition to progressing players through the playing pathway (e.g., amateur to international)
at the youth level, the progression of players to senior competition is of equal importance.
Therefore, a comparison of the peak running demands of match-play between youth and
senior levels is of interest. Both the forwards and backs during Club and International
matches in the current study covered less total distance than their respective positional group

293 reported in the NRL (Austin and Kelly 2013; Gabbett 2013; Kempton et al. 2015; Twist et al. 294 2014) and ESL (Twist et al. 2014; Waldron et al. 2011); likely due to the longer game time in 295 senior NRL and ESL vs. youth level (80-minute vs. 70-minute). When comparing relative 296 distance, the average match intensities found in this study are within the ranges reported from NRL (~82 to 102 m·min⁻¹) (Austin and Kelly 2014; Gabbett 2013) and ESL match play (~94 297 298 to 104 m·min⁻¹) (Twist et al. 2014; Waldron et al. 2011). The peak running demands are comparable to those reported for NRL matches (Delaney et al. 2015; Delaney et al. 2016). 299 300 For both playing levels, and positional groups, the duration-specific peak running demands 301 are within ranges reported for respective positions in the NRL studies. For example, NRL 'forwards' peak relative distances for 10- minutes were ~90 to 108 m \cdot min⁻¹ (Delaney et al. 302 303 2015; Delaney et al. 2016), compared to 103.7 ± 8.8 and 99.3 ± 7.6 m·min⁻¹ during 304 International and Club U16 matches in the current study. Similarly, for 'backs' the peak 10minutes of 101.3 \pm 9.5 and 102.5 \pm 7.2 m·min⁻¹ during International and Club matches are 305 within the range of ~93 to 109 m \cdot min⁻¹ reported in the NRL (Delaney et al. 2015; Delaney et 306 307 al. 2016). Thus, suggesting that the peak running demands are similar to that of NRL match 308 play.

309

It is however important to acknowledge that this study only quantified the running demands, which does not represent all the physical demands of match play. For example, it is unlikely that U16 players could cope with the physical demands (i.e., contact) of senior NRL or ESL match play, despite the similarity in running demands. Furthermore, the junior players are likely to have a lower body mass than senior players (Ireton et al. 2017) thus it is unlikely that junior players would be able to maintain that running intensity whilst competing against bigger and stronger players (Darrall-Jones et al. 2016; Scott et al. 2017).

317

318 The findings demonstrate the running demands are greater during Club and International 319 matches for backs and forwards respectively. However, considering the contact nature of 320 rugby league, these findings are not representative of the overall match-demands. Further 321 research is needed including the collisions encountered during the peak running demands. 322 Additionally, to provide context to the different findings, and determine technical, tactical 323 and skill differences video analysis and game statistics (e.g., completed sets, missed tackles) 324 are necessary. A limitation presented by the current study is the small sample size for 325 matches, particularly at the International level. This was limited by the structure of the season 326 and that there were only two games for the International youth squad throughout the season. 327 The small sample size likely leads to the large confidence intervals observed, thus leading to 328 many unclear findings. However, considering minimal matches are played at that level of 329 competition, this study does provide a reference of the demands during different levels of 330 match play, which until now was unknown.

331

In conclusion, based on the limited sample available, the difference in whole-, half- and peakmatch running demands between Club and International match-play is position dependent;
for backs they are greater during Club matches, whereas for forwards they are greater during
International matches. These findings should be considered when preparing players for
progression through the playing pathway. This study also provides duration specific peak
running intensities, which can be used to aid in preparing players for intensified periods of
match play.

339

340 Practical applications

341 The differences between levels of play highlighted provide coaches and practitioners with342 indicators of how the running demands change when progressing players to higher levels. For

343	example, forwards competing at the lower levels require an exposure to a higher intensity of
344	locomotor activity during training to prepare for the increased demands at International level.
345	When coaches are selecting or preparing players for International match-play, in addition to
346	the physical fitness of players, other factors (technical, tactical, decision making) should be
347	considered, given the observed higher running demands at the lower level. The short-duration
348	(i.e., 10- and 30-seconds) peak running demands provide duration specific running intensities
349	for running conditioning drills with repeated exposure, and the longer durations (i.e., 10
350	minutes) can be used to monitor the intensity of coach led rugby drills to replicate match-
351	intensity whilst focusing on technical-tactical ability.
352	
353	
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	

368	References
369	Austin DJ, Kelly SJ. 2013. Positional differences in professional rugby league match play
370	through the use of global positioning systems. J Strength Cond Res. 27(1):14-19.
371	
372	Batterham AM, Hopkins WG. 2006. Making meaningful inferences about magnitudes. Int J
373	Sports Physiol Perform, 1(1):50-57.
374	
375	Buchheit M, Laursen PB. 2013. High-intensity interval training, solutions to the
376	programming puzzle. Sports Med. 43(5):313-38.
377	
378	Cummins C, Orr R. 2015. Analysis of physical collisions in elite national rugby league match
379	play. Int J Sports Physiol Perform, 10(6):732-739.
380	
381	Cummins C, Orr R, O'Connor H, West C. 2013. Global positioning systems (GPS) and
382	microtechnology sensors in team sports: a systematic review. Sports Med. 43(10):1025-1042.
383	
384	Darrall-Jones J, Roe G, Carney S, Clayton R, Phibbs P, Read D, Till K, Jones B. 2016. The
385	effect of body mass on the 30-15 intermittent fitness test in rugby union players. Int J Sports
386	Physiol Perform, 11(3):400-403.
387	
388	Delaney JA, Scott TJ, Thornton HR, Bennett KJ, Gay D, Duthie GM, Dascombe BJ. 2015.
389	Establishing duration-specific running intensities from match-play analysis in rugby
390	league. Int J Sports Physiol Perform, 10(6):725-731.
391	

392	Delaney JA, Duthie GM, Thornton HR, Scott TJ, Gay D, Dascombe BJ. 2016. Acceleration-
393	based running intensities of professional rugby league match play. Int J Sports Physiol
394	Perform. 11(6):802-809.
395	
396	Furlan N, Waldron M, Shorter K, Gabbett TJ, Mitchell J, Fitzgerald E, Osborne MA, Gray
397	AJ. 2015. Running-intensity fluctuations in elite rugby sevens performance. Int J Sports
398	Physiol Perform. 10(6):802-807.
399	
400	Gabbett TJ. 2013. Influence of playing standard on the physical demands of professional
401	rugby league. J Sports Sci. 31(10):1125-1138.
402	
403	Gabbett TJ. 2015. Relationship between accelerometer load, collisions, and repeated high-
404	intensity effort activity in rugby league players. J Strength Cond Res, 29(12):3424-3431.
405	
406	Gabbett TJ. 2016. The training-injury prevention paradox: should athletes be training smarter
407	and harder? Br J Sports Med, bjsports-2015.
408	
409	Gabbett TJ, Gahan CW. 2016. Repeated high-intensity-effort activity in relation to tries
410	scored and conceded during rugby league match play. Int J Sports Physiol Perform.
411	11(4):530-534.
412	
413	Gabbett TJ, Jenkins DG, Abernethy B. 2012. Physical demands of professional rugby league
414	training and competition using microtechnology. J Sci Med Sport, 15(1):80-86.
415	

416	Gabbett TJ, Polley C, Dwyer DB, Kearney S, Corvo A. 2014. Influence of field position and
417	phase of play on the physical demands of match-play in professional rugby league forwards. J
418	Sci Med Sport ,17(5):556-561.
419	
420	Hopkins WG. 2007. A spreadsheet for deriving a confidence interval, mechanistic inference
421	and clinical inference from a P value. Sport Science. 11:16-21.
422	
423	Hopkins W, Marshall S, Batterham A, Hanin J. 2009. Progressive statistics for studies in
424	sports medicine and exercise science. Med Sci Sports Exerc. 41(1):3.
425	
426	Hulin BT, Gabbett TJ, Kearney S, Corvo A. 2015. Physical demands of match play in
427	successful and less-successful elite rugby league teams. Int J Sports Physiol
428	Perform. 10(6):703-710.
429	
430	Hausler J, Halaki M, Orr R. 2016. Application of global positioning system and microsensor
431	technology in competitive rugby league match-play: A systematic review and meta-
432	analysis. Sports Med. 46(4):559-588.
433	
434	Ireton MR, Till K, Weaving D, Jones B. 2017. Differences in the movement skills and
435	physical qualities of elite senior & academy rugby league players. J Strength Cond Res.
436	
437	Johnston RD, Gabbett TJ, Jenkins DG. 2014. Applied sport science of rugby league. Sports
438	Med. 44(8):1087-1100.
439	

440	Johnston RD, Gabbett TJ, Jenkins DG. 2015. Influence of playing standard and physical
441	fitness on activity profiles and post-match fatigue during intensified junior rugby league
442	competition. Sports Med- Open. 1:18.
443	
444	Jones B, Till K, Emmonds S, Hendricks S, Mackreth P, Darrall-Jones J, Roe G, McGeechan
445	I, Mayhew R, Hunwicks R, Potts N, Clarkson M, Rock A. 2017. Accessing off-field brains in
446	sport; an applied research model to develop practice. Br J Sports M, Epub ahead of print.
447	Doi:10.1136/bjsports-2016-097082.
448	
449	Kempton T, Sirotic AC, Coutts AJ. 2014. Between match variation in professional rugby
450	league competition. J Sci Med Sport. 17(4):404-407.
451	
452	Kempton T, Sirotic AC, Rampinini E, Coutts AJ. 2015. Metabolic power demands of rugby
453	league match play. Int J Sports Physiol Perform. 10(1): 23-28.
454	
455	Malone JJ, Lovell R, Varley MC, Coutts AJ. 2017. Unpacking the black box: applications
456	and considerations for using GPS devices in sport. Int J Sports Physiol Perform. 12:S2-18.
457	
458	McLellan CP, Lovell DI. 2013. Performance analysis of professional, semi-professional, and
459	junior elite rugby league match-play using global positioning systems. J Strength Cond Res.
460	27(12):3266-3274.
461	
462	McLellan CP, Lovell DI, Gass GC. 2011. Performance analysis of elite rugby league match
463	play using global positioning systems. J Strength Cond Res. 25(6):1703-1710.
464	

465	Roe G, Darrall-Jones J, Till K, Phibbs P, Read D, Weakley J, Rock A, Jones B. 2017. The
466	effect of physical contact on changes in fatigue markers following rugby union field-based
467	training. Eur J Sport Sci. 17(6):647-655.
468	
469	Scott TJ, Black CR, Quinn J, Coutts AJ. 2013. Validity and reliability of the session-RPE
470	method for quantifying training in Australian football: a comparison of the CR10 and CR100
471	scales. J Strength Cond Res. 27(1):270-276.
472	
473	Scott TJ, Duthie GM, Delaney JA, Sanctuary CE, Ballard DA, Hickmans JA, Dascombe BJ.
474	2017. The validity and contributing physiological factors to 30-15 intermittent fitness test
475	performance in rugby league. J Strength Cond Res. 31(9):2409-2416.
476	
477	Sykes D, Twist C, Hall S, Nicholas C, Lamb K. 2009. Semi-automated time-motion analysis
478	of senior elite rugby league. Int J Perform Anal Sport. 9(1):47-59.
479	
480	Till K, Tester E, Jones B, Emmonds S, Fahey J, Cooke C. 2014. Anthropometric and physical
481	characteristics of English academy rugby league players. J Strength Cond Res. 28(2):319-
482	327.
483	
484	Till K, Cobley S, Morley D, Cupples B, O'Connor D. 2015. Talent Identification and
485	Development in Rugby. Chapter 10. In Till, K. & Jones, B. (Eds.) The Science of Sport:
486	Rugby. Crowood Press.
487	

...

- 488 Till K, Cobley S, O'Hara J, Brightmore A, Cooke C, Chapman C. 2011. Using
- 489 anthropometric and performance characteristics to predict selection in junior UK Rugby
- 490 League players. J Sci Med Sport. 14(3):264-269.
- 491
- Till K, Scantlebury S, Jones B. 2017. Anthropometric and Physical Qualities of Elite MaleYouth Rugby League Players. Sports Med. 1-16.
- 494
- 495 Varley MC, Elias GP, Aughey RJ. 2012. Current match-analysis techniques' underestimation
- 496 of intense periods of high-velocity running. Int J Sports Physiol Perform. 7(2):183-185.

- 498 Varley MC, Jaspers A, Helsen WF, Malone JJ. 2017. Methodological Considerations When
- 499 Quantifying High-Intensity Efforts in Team Sport Using Global Positioning System

500 Technology. Int J Sports Physiol Perform. 1-25.

- 501
- Waldron M, Twist C, Highton J, Worsfold P, Daniels M. 2011. Movement and physiological
 match demands of elite rugby league using portable global positioning systems. J Sports
 Sci. 29(11):1223-1230.

505

Waldron M, Worsfold PR, Twist C, Lamb K. 2014. A three-season comparison of match
performances among selected and unselected elite youth rugby league players. J Sports
Sci, 32(12):1110-1119.

- 510
- 511
- 512

513	Figure 1. Peak relative distance $(m \cdot min^{-1})$ of temporal durations of 10- and 30- seconds
514	during International and Professional Club match play for A) backs and B) forwards.
515	Differences presented as percentages, standardized effect with 90% confidence limits and
516	magnitude based inferences.
517 518	Figure 2. Peak relative distance $(m \cdot min^{-1})$ of temporal durations from 60 to 600 seconds for
519	backs during International and Professional Club match play. Differences presented as
520	percentages, standardized effect with 90% confidence limits and magnitude based inferences.
521	
522	Figure 3. Peak relative distance $(m \cdot min^{-1})$ of temporal durations from 60 to 600 seconds for
523	forwards during International and Professional Club match play. Differences presented as
524	percentages, standardized effect with 90% confidence limits and magnitude based inferences.
525	
526	

		Club	International	% Differences	Standardized effect	Inference
Relative distance (m·min ⁻¹)	1st half	89.9 ± 8.7	89.2 ± 9.0	-1.6 (-6.6 to 3.6)	-0.3 (-1.1 to 0.49)	Unclear
	2nd half	90.3 ± 8.9	77.8 ± 10.3	-14.4 (-19.4 to -9.1)	-2.2 (-3.1 to -1.3)	Most likely \downarrow
	Full game	89.9 ± 7.3	83.4 ± 9.3	-7.5 (-11.9 to -2.8)	-1.5 (-2.3 to 0.72)	Most likely \downarrow
Total distance covered (m)	1st half	3235.4 ± 366.7	3264.9 ± 263.5	1.3 (-18.9 to 26.8)	0.0 (-0.0 to 0.1)	Most likely \leftrightarrow
	2nd half	3144.4 ± 454.3	3058.8 ± 451.0	-0.3 (-21.0 to 25.9)	-0.0 (-0.6 to 0.6)	Unclear
	Full game	5706.7 ± 1566.9	6321.7 ± 635.2	16.5 (-7.9 to 47.3)	0.4 (-0.1 to 1.0)	Likely \uparrow
High speed running distance (m)	1st half	203.6 ± 80.5	207.4 ± 54.9	10.5 (-23.1 to 58.7)	0.2 (-0.3 to 0.6)	Unclear
	2nd half	206.3 ± 65.6	190.9 ± 64.5	-1.1 (-32.8 to 45.4)	-0.0 (-0.6 to 0.5)	Unclear
	Full game	367.3 ± 155.2	398.3 ± 83.7	23.4 (-13.0 to 74.8)	0.4 (-0.2 to 1.0)	Possibly \uparrow
Relative high speed running distance (m·min ⁻¹)	1st half	5.7 ± 2.2	5.7 ± 1.5	7.4 (-21.9 to 47.6)	0.1 (-0.4 to 0.6)	Unclear
	2nd half	5.9 ± 1.6	4.9 ± 1.6	-16.0 (-36.7 to 11.3)	0.4 (-0.1 to 1.0)	Possibly \uparrow
	Full game	5.7 ± 1.6	5.3 ± 1.1	-1.8 (-23.0 to 25.3)	-0.0 (-0.5 to 0.4)	Unclear
Maximum velocity (m·s ⁻¹)	1st half	7.7 ± 0.8	8.2 ± 0.8	6.8 (-0.4 to 14.4)	0.7 (0.1 to 1.3)	Likely \uparrow
	2nd half	8.1 ± 0.8	7.6 ± 0.7	-6.0 (-12.3 to 0.8)	-0.7 (-1.4 to -0.0)	$Likely \downarrow$
	Full game	8.1 ± 0.8	8.2 ± 0.8	0.3 (-5.6 to 6.6)	0.6 (0.1 to 1.1)	Likely \uparrow
Sprint distance (m)	1st half	47.7 ± 49.2	43.7 ± 31.9	-5.2 (-28.1 to 17.7)	-0.2 (-0.7 to 0.4)	Unclear
	2nd half	66.5 ± 46.8	18.9 ± 24.7	-46.0 (-69.5 to -22.6)	-1.3 (-1.9 to -0.8)	Most likely \downarrow
	Full game	102.3 ± 86.8	62.5 ± 51.0	-38.7 (-77.6 to 0.1)	-0.6 (-1.0 to -0.1)	$Likely\downarrow$
Relative sprint distance (m·min ⁻¹)	1st half	1.3 ± 1.4	1.2 ± 0.9	-0.2 (-1.0 to 0.5)	-0.2 (-0.9 to 0.4)	Unclear
	2nd half	1.9 ± 1.34	0.5 ± 0.6	-1.4 (-2.1 to -0.7)	-1.4 (-2.0 to -0.8)	Most likely \downarrow
	Full game	1.5 ± 1.2	0.8 ± 0.7	-0.6 (-1.2 to -0.1)	0.0 (-0.6 to 0.7)	Unclear

Table 1. Mean (± standard deviation) differences in running based parameters for U16 rugby league backs during club and international matches.

Differences presented as percentages, standardized effect with 90% confidence limits and magnitude based inferences.

		Club	International	% Differences	Standardized effect	Inference
Relative distance (m·min ⁻¹)	1st half	85.6 ± 10.4	96.2 ± 8.0	6.6 (1.5 to 11.9)	1.2 (0.4 to 1.9)	Very likely ↑
	2nd half	89.5 ± 9.8	86.7 ± 8.9	-3.4 (-8.5 to 2.0)	0.5 (-0.2 to 1.1)	Likely \uparrow
	Full game	88.7 ± 8.8	91.1 ± 7.9	0.8 (-3.5 to 5.2)	0.2 (-0.6 to 0.9)	Unclear
Total distance covered (m)	1st half	2403.6 ± 858.1	2535.1 ± 967.5	4.5 (-15.4 to 29.0)	0.1 (-0.1 to 0.4)	$Possibly \leftrightarrow$
	2nd half	2288.4 ± 866.6	2121.0 ± 850.8	-12.4 (-28.9 to 8.0)	0.4 (-0.1 to 1.0)	Likely \uparrow
	Full game	4063.4 ± 1380.8	4167.9 ± 1651.7	-0.8 (-19.2 to 21.8)	-0.0 (-0.52 to 0.47)	Unclear
High speed running distance (m)	1st half	122.7 ± 72.4	138.1 ± 68.6	18.1 (-16.5 to 67.0)	0.3 (-1.1 to 1.2)	Unclear
	2nd half	128.5 ± 60.0	103.9 ± 68.3	-37.3 (-55.6 to -11.4)	-0.3 (-0.49 to -0.12)	Likely \downarrow
	Full game	217.9 ± 102.7	217.8 ± 122.3	-11.3 (-34.9 to 20.9)	-0.2 (-0.7 to 0.3)	Unclear
Relative high speed running distance (m·min ⁻¹)	1st half	4.6 ± 2.3	5.3 ± 1.9	26.8 (-6.8 to 72.4)	0.4 (-0.0 to 0.86)	Likely \uparrow
	2nd half	5.2 ± 1.9	4.0 ± 1.8	-27.0(-43.5 to -5.8)	0.7 (0.2 to 1.2)	Very likely \downarrow
	Full game	5.0 ± 1.7	4.6 ± 1.4	-10.2 (-27.8 to 11.6)	0.3 (-0.2 to 0.9)	Unclear
Maximum velocity (m·s ⁻¹)	1st half	7.1 ± 0.8	7.6 ± 0.7	7.6 (0.7 to 14.9)	0.8 (0.2 to 1.4)	Likely \uparrow
	2nd half	7.1 ± 0.7	7.4 ± 0.8	1.1 (-5.0 to 7.6)	0.1 (-0.5 to 0.8)	Unclear
	Full game	7.4 ± 0.7	7.9 ± 0.5	7.1 (1.6 to 13.0)	0.9 (0.3 to 1.5)	Very likely \uparrow
Sprint distance (m)	1st half	7.6 ± 13.1	25.6 ± 23.8	16.0 (-6.0 to 38.0)	0.5 (-0.0 to 1.0)	Likely \uparrow
	2nd half	13.3 ± 27.8	21.4 ± 23.2	6.0 (-15.1 to 27.0)	0.2 (-0.3 to 0.7)	Unclear
	Full game	18.8 ± 31.4	44.4 ± 34.1	23.3 (-11.0 to 57.5)	0.4 (-0.1 to 0.8)	Possibly \uparrow
Relative sprint distance (m·min ⁻¹)	1st half	0.4 ± 1.0	0.8 ± 0.7	0.4 (-0.31 to 1.12)	0.5 (-0.2 to 1.2)	Unclear
	2nd half	0.6 ± 1.0	0.8 ± 0.8	0.2 (-0.42 to 0.88)	0.2 (-0.3 to 0.8)	Unclear
	Full game	0.4 ± 0.6	1.0 ± 0.6	0.6 (0.09 to 1.07)	0.8 (0.5 to 1.1)	Most likely \uparrow

Table 2. Mean (± standard deviation) differences in running based parameters for U16 rugby league forwards during club and international matches.

Differences presented as percentages, standardized effect with 90% confidence limits and magnitude based inferences.