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ABSTRACT Extreme presence of the source light in digital images decreases the performance of many 

image processing algorithms, such as video analytics, object tracking and image segmentation. This paper 

presents a color constancy adjustment technique, which lessens the impact of large unvarying color areas of 

the image on the performance of the existing statistical based color correction algorithms. The proposed 

algorithm splits the input image into several non-overlapping blocks. It uses the Average Absolute Difference 

(AAD) value of each block’s color component as a measure to determine if the block has adequate color 

information to contribute to the color adjustment of the whole image. It is shown through experiments that 

by excluding the unvarying color areas of the image, the performances of the existing statistical-based color 

constancy methods are significantly improved. The experimental results of four benchmark image datasets 

validate that the proposed framework using Gray World, Max-RGB and Shades of Gray statistics-based 

methods’ images have significantly higher subjective and competitive objective color constancy than those 

of the existing and the state-of-the-art methods’ images. 

INDEX TERMS Color Constancy, Color Balance, Gray World.

I. INTRODUCTION 

Human vision has the capability to observe and distinguish 

the color of objects irrespective of the color and intensity of 

the illuminant under which it is perceived. This capability of 

the human visual system is known as color constancy [1-2]. 

The color of objects within a digital image may not seem as 

they were observed by human vision [3-4]. In conventional 

imaging devices, the intensity and color of the light source is 

captured by sensors. Analogous to the human visual system’s 

capability to preserve true color of the scene, imaging 

devices are equipped with a color correction technique, 

known as the white balancing function [5-7]. Nevertheless, 

the existence of an extreme source illuminant could 

deteriorate the actual color of the objects in the scene 

captured by a digital camera. The built-in color balancing 

function of the cameras may not be able to fully mitigate the 

effect of the extreme illuminant. Even worse, it may bias the 

image towards the dominant color of the scene. Color 

constancy algorithms aim to adjust the color of digital 

images in a way that they appear as if they have been taken 

from a scene lit by a white illuminant. 

In a Lambertian surface, the formation of an image               

𝑓 = (𝑓𝑅 , 𝑓𝐺 , 𝑓𝐵)𝑇 depends on three significant factors 

including the sensitivity function of the capturing device 

(𝜆) = (𝜌
𝑅

(𝜆), 𝜌
𝐺

(𝜆), 𝜌
𝐵

(𝜆))𝑇, where x and 𝜆 denote 

the spatial coordinate and the wavelength respectively, 

reflectance property of the surface 𝑆(𝒙, 𝜆) and the source 

illuminant colour (𝜆): 

𝑓𝑐(𝒙) = 𝑚(𝑥)∫
𝑤

𝐼(𝜆)𝜌𝑐(𝜆)𝑆(𝒙, 𝜆)𝑑𝜆                    (1)  

where 𝑚(𝑥) refers to the Lambertian shading. In this case, 

the assumption is that there is a single illuminant and the 

perceived color of source light e depends on the sensitivity 

function of the camera 𝜌(𝜆) and illuminant color 𝐼(𝜆): 

𝑒 =  (

𝑒𝑅

𝑒𝐺

𝑒𝐵

) = ∫
𝑤

𝐼(𝜆)𝜌(𝜆)𝑑𝜆                      (2) 

In terms of the formation of an image, unknown feature of 

both 𝐼(𝜆) and 𝜌(𝜆) establish colour constancy as an under-

constrained problem, which requires additional assumptions 

to solve it. 
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II. RELATED WORK 

Over the last two decades, various color constancy 

adjustment techniques have been proposed by researchers to 

handle the issue of coloration/color cast within digital 

images. The existing color constancy techniques, broadly 

speaking, can be divided into statistics-based, gamut-based, 

physics-based, learning-based and biologically inspired 

methods. 

For statistics-based methods, the illuminant estimation is 

not necessary since the images are represented by features 

that are invariant to the source light. Statistical techniques 

are based on various assumptions; for example, taking the 

maximum or the average values of the image three color 

components to be achromatic [8-9]. Hence, these algorithms 

use the color information of the image to perform color 

constancy adjustments. In the following sections, some of 

the statistic-based methods are discussed. The Gray World 

method assumes that in a normal, well color balanced image, 

the average of all the colors is a neutral gray. Hence, the 

performance of this method depends on the color variation 

of the image and its color corrected image could be biased to 

the color of the large uniform regions [8]. The Max-RGB 

method is a special case of the Retinex theory, which 

assumes that there is at least one white surface within the 

image that reflects the chromaticity of the source illuminant. 

Hence, the chromaticity of the scene light source is estimated 

as the chromaticity of the maximal red, maximal green and 

maximal blue color components of the image [9]. 

Nevertheless, the Max-RGB technique may not always 

satisfy the requirement of the Retinex theory due to its data 

dependency. Hence, its color corrected images may be 

biased toward the dominant color of the scene image. The 

application of the Max-RGB or White Patch method is 

further improved by using the sub-sampling process 

proposed in [10]. In this method, instead of using all the 

pixels of the image, a random selection of the pixels is used 

for the color constancy adjustment. The Shades of Gray color 

correction method assumes that the Minkowski norm-p 

(associated to the generalized mean or power mean of the 

image data) of a scene is achromatic [11]. The author of this 

paper empirically showed that the algorithm produces its 

best performance when the norm-p equals 6. The next 

statistic-based method is the Gray Edge proposed in [12], 

which uses edge information of the objects to perform the 

color constancy. The Gray Edge hypothesis is based on the 

assumption that the average absolute derivatives of the 

image’s color components are achromatic. This technique 

incorporates well-known methods, such as Shades of Gray, 

Max-RGB or Gray World, and methods based on first- and 

second-order derivatives to color balance the image. 

Although applying a low pass filter on the image prior to 

performing the edge detection increases the strength of the 

Gray Edge algorithm to noise, it weakens the efficiency of 

the method. Another statistic-based method called the 

Weighted Gray Edge was reported in [13]. This technique 

uses the edge information of different objects in the scene to 

compute color correction adjustment factors for the whole 

image. 

The gamut mapping method was introduced by Forsyth 

[14], which assumes that only a small number of colors can 

be perceived under a source light, known as the canonical 

gamut. Therefore, color variations within the image (i.e., 

colors that different to the perceivable colors for a given 

illuminant) are caused by the deviation in the color of the 

source light. The gamut mapping algorithm takes an image 

captured under an unknown illuminant and the pre-

determined canonical gamut to adjust the color constancy of 

the input image. The gamut mapping-based method 

outperforms the statistics-based methods in many occasions. 

However, this technique suffers from high computational 

complexity. Finlayson proposes an extension to the 2D 

gamut mapping-based method in order to ease its 

implementation complexity. The author showed that the 

gamut mapping algorithm can also be calculated in the 

chromatic space [15]. Finlayson and Hordley in [16] 

proposed a 3D gamut mapping, which gives slightly higher 

performance to that of the 2D gamut mapping. An efficient 

implementation of the gamut mapping method using convex 

programming was reported in [17], which performs almost 

similar to that of the original technique. A simpler version of 

gamut mapping introduced by Mosley and Funt [18] uses a 

simple cube rather than the convex hull of the pixel values. 

Gijsenij et al. [19] analytically showed that the failure of the 

diagonal model of the gamut mapping framework can be 

prevented by adapting the diagonal-offset model [20]. The 

authors proposed a number of extensions to gamut mapping, 

which uses some combinations of various n-jet-based gamut 

mappings and showed that the best estimation of the 

illuminant is achieved when a feasible intersection of the 

gamut maps is taken. Gijsenij and Gevers [21] proposed a 

method to employ the color constancy method that gives the 

best performance for the input image. The algorithm 

calculates the Weibull parameters (e.g., grain size and 

contrast) to extract the image’s characteristics. The authors 

then learn the weighting and the correlation between various 

image attributes (i.e., textures, edges and SNR) and Weibull 

parameters by applying a MoG classifier, which results in a 

selection of the best performing colour constancy method. 

Their algorithm achieved 20% increase in performance 

compared to other best performing single-color constancy 

algorithms.  

The methods that exploit the dichromatic reflection model 

of image formation for color constancy are known as 

physics-based methods. In such algorithms, the physical 

interactions between the source illuminant and the object in 

the scene are considered. This method assumes that all the 

pixels of one surface are mapped onto a plane in the RGB 

color space. Therefore, various surfaces are mapped to 

different planes, and the color of the illuminant can be 

estimated  using  the  interactions  of  these planes.  Physics-
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based techniques encounter difficulties in retrieving specular 

reflections, and color clipping may also sometimes occur, 

which affect their performance [22-24]. Finalyson and 

Schaefer [25] proposed a method that projects the surface 

pixels by adopting the dichromatic reflection model.  This 

method then employs the Planckian locus of black-body 

radiators to model the possible illuminants. 

Another category of the color constancy techniques is the 

learning-based algorithms, which use different machine 

learning algorithms to estimate the scene’s illuminants [26-

30]. Baron [26] reframed the colour constancy task as a 

localization problem in log-chromaticity space. It was 

observed that one could induce a translation in the log-

chromaticity histogram by scaling the image’s color 

channels, allowing the implementation of convolutional 

neural network (CNN) based methods as a solution to the 

color balancing problem. Bianco et al. [27] proposed an 

illuminant estimation method based on a CNN consisting of 

one convolutional layer, one fully connected neural network 

layer and three output nodes. Their algorithm samples the 

image and neutralizes the contrast of the image using a 

histogram stretching technique. The method then extracts the 

activation values of the last hidden layer of each patch and 

combines them to estimate the illuminant. The authors have 

obtained convincing performance on a raw image dataset. 

However, no experimental results have been reported on 

widely used benchmark image datasets.  Another CNN based 

method was proposed in [28]. This method introduced 

Minkowski pooling into the context of color constancy to 

make the network suitable for deep learning. The resulting 

fully connected layer network produces reliable features for 

color balancing. Drew et al. [29] reported a color constancy 

approach using a log-relative chromaticity planar called 

“Zeta Image”, which does not need any training data or 

tunable parameters. Their technique demonstrates superior 

performance compared to other unsupervised techniques, 

and the accuracy of light source estimation is similar to the 

color constancy techniques based on complex procedures 

requiring tunable parameters and training data. An exemplar 

method was proposed by Joze and Drew [30], which finds 

the neighboring surface as an estimation of local source 

illuminant from the training data using the weak color 

constant RGB values and the texture features. Xu et al. 

proposed a Global-Based video enhancement algorithm in 

[31] which meritoriously increases the visual experience of 

various region of interests within the image or video frames. 

Their method generates a global tone mapping curve for the 

whole image by analyzing the features of its different regions 

of interests. Their results show appropriate and simultaneous 

improvement on various regions of the processed images. An 

intra-and-inter-constraint-based (A+ECB) video quality 

improvement technique was reported by Chen et al. [32]. 

This method identifies the Region of Interests (RoI) within 

the video frames using the AdaBoost-based object detection 

algorithm. It then calculates the mean and standard deviation 

of the resulting RoIs to analyze the features of various RoIs 

and generates a global piecewise tone mapping curve for the 

whole frame. They reported that their technique can 

appropriately and instantaneously improve the visual quality 

of different RoIs within the image. 

Several local estimations and fusion-based color 

constancy methods were reported in the literature. A 

significant number of such algorithms assume that a small 

part of the image is lit by a single illuminant, and based on 

this hypothesis, these techniques proposed that illuminant 

must be estimated locally. This is accomplished by the 

implementation of various segmentation and fusion 

strategies to handle the influence of multiple illuminants on 

color constancy adjustment [33-36]. A color constancy 

method for images of real-world multiple-illuminant scenes 

was reported in [33].  This technique applies a graph-based 

algorithm to the image and splits the image into several mini-

image regions. This method then calculates a local illuminant 

estimation for each resulting mini-image region. Their 

method demonstrated a comparable performance using 

single-illuminant images to existing state-of-the-art 

methods. The authors, however, failed to report experimental 

results on real-word images. Blier et al. [34] investigated the 

application and adaptation of different color constancy 

algorithms to estimate the scene light sources. Their 

algorithm segments the input image into superpixels of an 

approximately similar color. For every superpixel, the 

algorithm then applies 5 existing statistical methods for 

illuminant estimation. The results from the applied statistical 

methods are then fused together to create a single illuminant-

color value for each superpixel using a regression-based 

technique. They reported a median error of 4.1° on non-

uniform illumination, which was superior to that of the best-

performing estimator on the single-illuminant indoor dataset. 

Gisenji et al. proposed an algorithm to provide color 

constancy for multi-illuminant scenes’ images in [35]. Their 

algorithm samples the image into P patches using 

segmentation-based, grid-based, or keypoint-based sampling 

methods. Each patch is considered to have been illuminated 

by a single-source illuminant. A pixel-wise illuminant is 

estimated by grouping together the individually estimated 

patches and then projecting back onto the original image. 

Beigpour et al. [36] proposed a conditional random field-

based color constancy method, which considers both spatial 

distribution and light source color to estimate the local 

illuminant. Their algorithm frames the spatial distribution of 

illuminants as an energy minimization problem and employs 

a combination of physics-based and statistical-based 

techniques to estimate multi-illuminant as a single estimation 

task. The proposed technique demonstrated substantial 

objective performance on images of scenes lit by multiple 

light sources.  

Another type of multiple-illuminant techniques is built on 

identifying specific pixels and using them for illuminant 

estimation. Yang et al. [37] uses an illuminant-invariant 
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measure to efficiently detect the gray pixels of the image, 

which are used for a scene’s illumination estimation. The 

algorithm is based on the hypothesis that there are some 

detectable gray pixels within real-world images.  Another 

gray pixel-based color constancy algorithm was reported in 

[38], which is based on two assumptions. It assumes that the 

image contains at least a small set of achromatic pixels and 

that the set of possible light sources is well estimated by 

black body radiators. Bianco and Schettini [39] showed that 

the scene light source can be approximated by exploiting the 

pixels of skin regions of the face using a scale-space 

histogram filtering.  

Elfiky et al. [40] studied the relationships between depth, 

local image statistics and color balancing algorithms. They 

proposed a technique to determine the color correction 

algorithm with the best anticipated performance for the 

image. Their algorithm computes the 3D scene geometry of 

the image and then exploits the statistics of the image (per 

layer/depth). These statistics are used to choose the best 

color balancing technique. Mutimbu and Robles-Kelly [41] 

proposed a spatially changing light source color estimation 

method from the scenes illuminated by multiple illuminant. 

They used a factor graph that is well-defined across the scale 

space of the input image to estimate a pixelwise illuminant 

color from a statistically data-driven setting. 

Several biologically inspired color constancy models that 

tries to mimic the functional properties of the human visual 

system (HVS) using machine learning have been proposed 

[42-44]. Gao et al. [42] proposed an HVS based color 

correction framework by mimicking the interaction between 

the single-opponent (SO) cells in the retina and the double-

opponent (DO) cells in the primary visual cortex, as well as 

the possible neurons in the higher visual cortexes. They 

showed that their framework can generate relatively 

competitive results in comparison to the state-of-the-art 

techniques without needing fine-tuning of the algorithm for 

various dataset separately. Zhang et al. [43] reported a 

framework for computational color adjustment that was 

motivated by the HVS. The proposed framework emulates 

the color processing approach found in the retina. Hence, 

instead of explicitly estimating the scene’s illuminant, this 

model removes the effect of the scene’s illuminant. They 

reported competitive results compared to the state-of-the-art 

methods for the scenes under different lighting conditions. 

Akbarnia and Parraga [44] proposed a color constancy model 

using two overlapping asymmetric Gaussian kernels, where 

the contrast of the surrounding pixels is used to adjust the 

kernels’ sizes (approximating the change of visual neuron’s 

receptive field size). Finally, the outputs of the most 

activated visual neuron’s receptive fields are used to estimate 

the light source.  

It can be seen that numerous color constancy methods 

have been proposed to color balance images captured under 

non-white light sources. These algorithms perform 

reasonably well when the underlying conditions are satisfied. 

However, due to the data dependency, their effectiveness is 

deteriorated when there are some constant color regions in 

the images, which causes the image being biased towards the 

color of the dominant unvarying regions.  

This paper presents a color correction technique that 

improves the performance of the existing statistical color 

constancy methods by excluding the unvarying color areas 

of the image of being used to compute the color correction 

factors for the whole image. The proposed method splits the 

input image into some non-overlapping blocks. Each 

resulting block’s color component is judged to circumvent 

the uniform color blocks from being contributing to the 

computation of the color constancy adjustment factors for 

the image. The existing statistical-based color constancy 

techniques are then applied to the non-uniform color areas of 

the image. The experimental results are generated by using 

three well-known statistical-based methods called Gray 

World, Max-RGB and Shades of Gray on the images of the 

four benchmark image datasets. The experimental results 

demonstrate that the proposed technique subjectively 

outperforms the statistics-based methods and the state-of-

the-art techniques. The results also demonstrate comparable 

objective results to those of the state-of-the-art methods. The 

rest of the paper is organized as follows. Section III 

introduces the proposed technique. The experimental results 

and evaluation are presented in Section IV. Section V gives 

the conclusions and future work. 

III. COLOR CONSTANCY USING SUB-BLOCKS OF THE 
IMAGE 

A block diagram of the proposed Color Constancy 
Adjustment using the Sub-blocks of the Image (CCASI) 
method is shown in Fig. 1(a). The input color image is split 
into some non-overlapping pixel blocks by the proposed 
method, labeled B11 to Bnm, as illustrated in Fig. 1(b). The 
rest of the proposed technique is as follows [45, 46]. 

i. The Average Absolute Difference (AAD) value of R, G 
and B color components is calculated for each resulting 
block using equation (3): 

ADD𝐶 =
∑ ∑ (|C(i,j)−C̅|)N

j=1
M
i=1

N×M
     (3) 

where 𝐶 ∈ {𝑅, 𝐺, 𝐵}, AADC is the Average Absolute 
Difference value of the C component, C(i, j) is the value of 

the C component of the block at position (i, j), C̅ is the average 
value of the C component of the block’s pixels and N and M 
are the size of the block. 

ii. The resulting AADR, AADG and AADB values are 
compared with the empirical threshold values for the R, G 
and B components, which are labeled as TR, TG and TB, 
respectively. If the AADC of the block color component is 
greater than its predefined threshold value, this block’s 
component does not represent a uniform color area. 
Hence, it is selected to contribute to the color constancy 
adjustment of the whole image. 
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(a) 

AAD: Average Absolute Difference 

DM: Decision Matrix 

TR, TG, & TB: Threshold values for R, G & B components 

KR, KG KB: R, G & B components scaling factors 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

FIGURE 1. (a) Block diagram of the Color Constancy Adjustment using 
Sub-blocks of the Image (CCASI) method and (b) non-overlapping blocks 
of the image. 

iii. Set a bit in the Decision Matrix (DM) to represent this 
block’s component (A binary Decision Matrix for each 
image color component is created and initialized with 
zeros to keep a record of the selected blocks.).  

iv. The scaling factors for the color constancy adjustment are 

calculated by applying the special instantiations of the 

more general Minkowski-framework of Finlayson and 

Trezzi [11] on the selected block of the image, as shown 

in equation (4): 

 
FIGURE 2. (a) original outdoor image, (b) original indoor image, (c) 
selected areas of the outdoor image and (d) selected areas of the indoor 
image. 

 

𝐾𝐶 = (
∫(𝑓𝐶(𝑥))𝑝𝑑𝑥

∫ 𝑑𝑥
)

1/𝑝
   (4) 

 
where 𝐾𝐶  is the color correction adjustment factor for 
component  𝐶  of  the  image,  𝐶 ∈ {𝑅, 𝐺, 𝐵},  𝑓𝐶(𝑥)   is  the 
selected pixel value of the component 𝐶 and p is the 
Minkowski norm. It was shown in [11] that by setting the 
value of 𝑝 to 1, ∞ and 6 in equation 2, it becomes the Gray 
World, the Max-RGB and the Shades of Gray color constancy 
methods, respectively. 

 The resulting scaling factors KR, KG and KB, using the three 

different techniques, are applied to the input image to adjust 

its color using the Von Kries diagonal model [47], as shown 

in equation (5):  

𝐼𝑜𝑢𝑡 = (

𝐾𝑅 0 0
0 𝐾𝐺 0
0 0 𝐾𝐵

) (

𝐼𝑅

𝐼𝐺

𝐼𝐵

)        (5) 

where 𝐼𝑜𝑢𝑡  is the color balanced image, 𝐾𝑅, 𝐾𝐺 , 𝐾𝐵 are the 

calculated adjustment factors for the color components 

𝑅, 𝐺, 𝐵, respectively and 𝐼𝑅, 𝐼𝐺 , 𝐼𝐵 are the R, G and B color 

components of the input image, respectively. 

To give the reader a visual sense of the selected blocks, 

the input images and their selected blocks for one outdoor and 

one indoor image are shown in Fig. 2, where black areas 

represent discarded blocks. From Fig. 2, it can be seen that 

the uniform areas of the input images are identified and 

excluded from contributing to the color constancy 

adjustment. 

IV. EXPERIMENTAL RESULTS 

The performance of the proposed Color Constancy 

Adjustment  using  the   Sub-blocks  of  the  Image   (CCASI) 
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method is assessed and compared with the statistics-based 

techniques and the state-of-the-art methods using four image 

datasets. These benchmark datasets include both multiple- 

and single-illuminant images. Both subjective and objective 

analysis was used to assess the performance of the proposed 

technique and compared with state-of-the-art methods. 

Sub-section 4.1 introduces the benchmark datasets. The 

evaluation criteria are explained in Sub-section 4.2. Sub-

section 4.3 justifies the selection of the empirical parameters. 

Finally, the experimental results and their discussions are 

presented in sub-section 4.4. 

4.1.  DATASETS  

SFU Laboratory dataset [48]: The SFU Laboratory dataset is 

divided into two group of images, both of which contain 

colorful objects captured under laboratory settings. The first 

group, Group A, includes 32 scenes with multiple objects. 

Group B includes 20 scenes of a single object. 

The Gray Ball dataset [49]: The Gray Ball dataset is 

comprised of 11,340 images, with each image having a 

resolution of 240×360. The images vary significantly in terms 

of lighting conditions and contain both single- and mixed-

illuminants. Each image contains a gray ball. Because this 

dataset was captured using a video camera, many of the 

images are nearly identical in nature. For this work, two 

hundred images were selected by merit of having significant 

variation to generate subjective results. 

Gehler’s Color Checker dataset [50]: This dataset consists of 

568 images taken both indoors and outdoors. The images 

contain various objects, people, and places, but all include a 

Macbeth color checker somewhere in the scene. From this 

dataset, one hundred images of various scenes under both 

single- and multiple-illuminant conditions were selected to 

generate subjective results. 

The MIMO dataset [36]: The MIMO dataset consists of 

twenty real-world and fifty-eight laboratory images. All 

images in this dataset are taken under multi-illuminant 

conditions. 

4.2. EVALUATION METHODS 

The image color constancy quality measurement criteria are 

categorized into two groups: objective and subjective. For 

objective analysis, the performance of a color balancing 

method is assessed by computing the distance between the 

ground truth and color balanced image. Both the Euclidean 

and angular distance are measured, of which the latter is the 

most frequently used method in the literature. The angular 

error measures the angular distance between the color 

corrected image and its ground truth image using equation 

(6): 

𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑒𝑟𝑟𝑜𝑟 =  cos−1(𝐼𝐺 . 𝐼𝐶𝐶  )   (6) 

where 𝐼𝐺  and 𝐼𝐶𝐶  indicate the normalized ground truth and the 

normalized color balanced image vectors, respectively. 

The angular error enables one to compare the performances 

of two different algorithms since it represents the accuracy of 

the under-investigation method’s performance. To assess and 

compare the performance of the color constancy algorithms 

over a large set of images using a single statistic such as the 

angular error, the mean or the median of the angular error 

over a set of images is calculated. The algorithm with the 

lowest mean or median angular error is considered the best-

performing algorithm. There are some debates on the use of a 

single summary statistic for comparing various techniques. 

As a result, this single statistic may not always sufficiently 

summarize the underlying distribution or carry adequate 

information to draw the conclusion that the one with the 

lowest mean has the highest performance [51]. In [39, 42, 52, 

53]; the authors used the Wilcoxson Sign Test [54] to 

determine the statistical significance of the resulting angular 

errors on a large number of images. The experimental results 

show that the application of the mean or median angular error 

is not always inconsistent with the achieved objective 

qualities. Furthermore, Finlayson and Zakizadeh [55] have 

identified a problem with this metric. The authors have 

observed that the same scene, when viewed under two 

different colored lights for the same algorithm, leads to 

different recovery errors. 

Considering the inconsistency of objective quality 

assessment methods, such as the angular error, and the fact 

that the human eyes are the final evaluator in assessing the 

color constancy of the images, in this paper, both subjective 

and objective assessment methods are used to compare the 

visual quality of the color-corrected images. 

4.3. PARAMETER SELECTION 

The performance of the color variability assessment of the 

proposed Color Constancy Adjustment using the Sub-blocks 

of the Image (CCASI) technique as a function of its 

thresholds values, TR, TG and TB, was assessed using images 

from the four previously mentioned image datasets [45]. The 

empirical threshold values for each block’s color component 

are determined as follows: 

i. Apply the block selection algorithm on the blocks of the 

image component. 

ii. Visually review the selected blocks. 

iii. If the blocks comprising unvarying color regions are 

identified and discarded, go to step v. 

iv. Add 0.05 to the current threshold value of the color and 

go to step ii.  

v. Allocate the current threshold value to the empirical 

threshold value. 

The average of the resulting threshold values for a 

collection of images from the four image datasets were 

selected as the general empirical values for the proposed 

technique, which are TR = 2, TG = 1.5 and TB = 1. The 

empirical thresholds’ values presented above can also be 

determined by using an objective method to define initial 
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empirical thresholds’ values and then using a subjective 

evaluation to increase their accuracies. This could 

significantly reduce the time and efforts needed to determine 

precise empirical values for thresholds. 

To elaborate on the threshold selection in terms of the 

Average Absolute Difference (AAD) values of the color 

components, one sample image from the Gray Ball dataset 

with 600 sub-blocks of size 12 ×12 is presented in Fig. 3. In 

this figure, three blocks containing different color 

variabilities are selected (highlighted with a red color border). 

For each block, the AADs are calculated and tabulated in 

Table 1. From Table 1, one can observe that the AADs of 

block 1, which represent an unvarying color region, are below 

the empirically determined threshold values. 

4.4. EXPERIMENTAL RESULTS 
In this section, both the subjective and objective results for 

the proposed color constancy method using the Gray World, 

Max-RGB and Shades of Gray statistical-based methods on 

the  images  of the  four  previously  mentioned  benchmark 

datasets are presented and compared with those of the 

statistical and the state-of-the-art techniques. 

 

4.4.1 SUBJECTIVE RESULTS 

To elaborate on the achieved subjective visual qualities using 

the proposed color constancy method and to enable the 

reader to compare the visual qualities of the proposed 

technique’s images with the images of other statistical and 

state-of-the-art techniques’ images, six sample images from 

SFU, MIMO, Color Checker and the Gray Ball datasets, 

which cover a variety of sceneries and include natural- and 

laboratory-setting objects (illuminated by either a single or 

multiple illuminants), are shown in Figs. 4-9. 

Fig. 4 shows a sample image from the SFU laboratory 

image dataset that exhibits blue color cast and the ground 

truth of the image as well as its color balanced images using 

the 2nd Order Gray Edge, Weighted Gray Edge, Double 

Opponency, Proposed Color Constancy Adjustment using 

Sub-blocks of the Image with Gray World (CCASI-GW), 

Max-RGB (CCASI-Max-RGB) and Shades of Gray 

(CCASI-SG) methods’ images. From Fig. 4, it can be seen 

that the 2nd Order Gray Edge image (Fig. 4c) is overcorrected 

since it exhibits higher intensity compared to the ground 

truth. The Weighted Gray Edge image (Fig. 4d) appears to 

be slightly darker than the ground truth image. The Double 

Opponency’s image (Fig. 4e) shows improved color 

correction in comparison to the 2nd Order Gray Edge and 

Weighted Gray Edge images. Nevertheless, it exhibits higher 

brightness compared to the ground truth image. The proposed 

CCASI-GW method’s image (Fig. 4f) has a slightly lower 

intensity of a white background compared to that of the 

ground truth image. However, the colors of the blocks within 

the image are very similar to those of the ground truth image. 

The Proposed CCASI-Max-RGB method’s image (Fig. 4g)  

 
FIGURE 3. Sub-blocks of a sample image from the Gray Ball image 
dataset. 

 

TABLE I 

AVERAGE ABSOLUTE DIFFERENCE (AAD) VALUES OF THE 

THREE SELECTED BLOCKS. 

         Sub-block 

AAD 

 

Block 1 

 

Block 2 

 

Block 3 

RAAD 1.54 23.9 20.8 

GADD 1.40 16.6 17.1 

BADD 0.86 12.1 17.8 

 

has an almost identical visual quality to that of the ground 

truth. However, its median angular error is greater than that 

of the proposed CCASI-GW technique’s image. The 

proposed CCASI-SG method’s image (Fig. 4h) has a small 

bluish color cast, but it has kept the intrinsic intensity of the 

original image. Overall, the proposed CCASI-Max-RGB 

technique’s image exhibits the maximum color correction 

among all the presented methods’ images. 

Fig. 5 shows a sample image from the MIMO (Lab) 

dataset and the ground truth of the image as well as its color 

balanced images using the 2nd Order Gray Edge, Weighted 

Gray Edge, Double Opponency, Proposed Color Constancy 

Adjustment using Sub-blocks of the Image with Gray World 

(CCASI-GW), Max-RGB (CCASI-Max-RGB) and Shades of 

Gray (CCASI-SG) methods’ images. From Fig. 5, it can be 

seen that the 2nd Order Gray Edge method’s image (Fig. 5c) 

still has some yellowish color cast, particularly on the mug. 

The Weighted Gray Edge’s image (Fig. 5d) exhibits a higher 

contrast with respect to the ground truth image and has some 

yellow color cast. The Double Opponency method’s image 

(Fig. 5e) exhibits higher color constancy than the 2nd Order 

Gray Edge and Weighted Gray Edge images. However, the 

image still has some color casts. The proposed CCASI-GW, 

CCASI-Max-RGB, and CCASI-SG methods’ images (Fig. 

5f-h) illustrate the uppermost color correction amongst all the 

other techniques’ images. However, the CCASI-GW image 

(Fig. 5f) is the closest in appearance to the ground truth 

image. 
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FIGURE 4. Original, ground truth and color balanced images of an image 
from the SFU (laboratory) dataset: a) Original image, b) Ground truth, c) 
2nd Order Gray Edge, d) Weighted Gray Edge, e) Double Opponency, f) 
Proposed CCASI-GW, g) CCASI-Max-RGB and h) CCASI-SG methods’ 
images. 

 

Fig. 6 illustrates a sample image from Gehler’s Color Checker 

dataset, which represents a scene with colorful objects and a 

color checker chart, as well as the ground truth of the image 

and its color balanced images using the 2nd Order Gray Edge, 

Weighted Gray Edge, Double Opponency, Proposed Color 

Constancy Adjustment using Sub-blocks of the Image with 

Gray World (CCASI-GW), Max-RGB (CCASI-Max-RGB) 

and Shades of Gray (CCASI-SG) methods’ images. The 

original image contains a heavy green color cast. From Fig. 

6, it is clear that the 2nd Order Gray Edge method’s image 

(Fig. 6c) exhibits a slightly reddish tone. The Weighted Gray 

Edge method’s image (Fig. 6d) appears to have reduced green 

color cast.  The Double Opponency method’s image (Fig. 6e) 

exhibits much higher color constancy than those of the Gray 

Edge-2 and Weighted Gray Edge methods’ images. However, 

its color  cast  is  still  evident. The  proposed   CCASI-GW, 

CCASI-Max-RGB,  and  CCASI-SG   methods’   images,  as 

shown in Figs. 6f-h, demonstrate the highest color constancy. 

The CCASI-GW’s image is visually the closest image to the 

ground truth despite its median angular error being higher 

than that of CCASI-Max-RGB’s image. 

Fig. 7 illustrates a sample image from the Gray Ball dataset 

with a yellow color cast and its color balance images using 

Figure 5. Original, ground truth and color balanced images of an image 

from the MIMO (Lab) dataset: a) Original image, b) Ground truth, c) 2nd 

Order Gray Edge, d) Weighted Gray Edge, e) Double Opponency, f) 

Proposed CCASI-GW, g) CCASI-Max-RGB and h) CCASI-SG methods’ 

images. 

 

Exemplar, Color Cat, the proposed Color Constancy 

Adjustment using Sub-blocks of the Image with Gray World 

(CCASI-GW), Max-RGB (CCASI-Max-RGB) and Shades of 

Gray (CCASI-SG) methods’ images.  From Fig. 7, it can be 

seen that Exemplar and Color Cat methods’ images exhibit 

some levels of yellow color casts (shown in Figs. 7b and 7c). 

The proposed CCASI-GW method’s image (Fig. 7d) appears 

to be a shot under canonical light as the presence of the source 

illuminant is significantly reduced. However, the median 

angular error to the ground truth obtained using the gray 

sphere of the ball area is the uppermost among all the 

techniques. The proposed CCASI-Max-RGB and CCASI-SG 

techniques’ images (shown in Figs. 7e and 7f) contain an 

infinitesimal amount of color cast, despite low median 

angular errors. In summary, the proposed CCASI-GW 

method’s image has the uppermost   subjective   color   

correction   among all   the other techniques’ images. 

Fig. 8a illustrates a sample image from Gehler’s Color 

Checker dataset. This image was captured under a bright 

yellow illuminant and includes an area of cloudy sky and a 

large green grass surface with a color checker chart on the 

grass. It can be observed from the image that the white, 

narrow paths next to the buildings are well-lit. Fig. 8b show
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FIGURE 7. Original and color balanced images of an image from the Gray 
Ball dataset: Original image, b) Ground truth, b) Exemplar, c) Color Cat, 
f) Proposed CCASI-GW, g) CCASI-Max-RGB and h) CCASI-SG methods’ 
images. 
 
 
 

FIGURE 6. Original, ground truth and color balanced images of an image 
from the Gehler’s Color Checker dataset: a) Original image, b) Ground 
truth, c) 2nd Order Gray Edge, d) Weighted Gray Edge, e) Double 
Opponency, f) Proposed CCASI-GW, g) CCASI-Max-RGB and h) CCASI-
SG methods’ images. 

the perfectly color balanced ground truth image. The Max-

RGB technique’s image is shown in Fig. 8c. From this image, 

one can observe that the green ground area of the image 

exhibits a clear color improvement, but a very subtle light-

yellow color on the white path areas of the image is evident. 

The Shades of Gray technique’s image is presented in Fig. 8d. 

From this image, it is observed that the green grass area of the 

image has higher color constancy in comparison to the input 

image, while it still has a minor yellow color cast on the white 

paths of the image. The 1st Order Gray Edge technique’s 

image is shown in Fig. 8e. This image exhibits lower color 

constancy performance in comparison to the images of Figs. 

8c-d due to the increased illuminant on the image scene. Fig. 

8f illustrates the 2nd Order Gray Edge technique’s image. This 

image is nearly identical to that of the 1st Order Gray image 

presented in Fig. 8e. Fig. 8g illustrates the Weighted Gray 

Edge technique’s image. Areas within this image, 

specifically, the buildings and the nearby path, demonstrate 

greater yellow color casting compared to that of its input 

image. The proposed CCASI-GW technique’s image 

presented  in  Fig. 8h  shows  a   significant   removal  of  the 

color cast. However, the image is slightly overcorrected 

compared to the ground truth image. Fig. 8i  is  the suggested  

CCASI-Max-RGB method’s image. This image exhibits a 

significant reduction in the oversaturation and seems to be 

captured under white light. Fig. 8j is the proposed CCASI-SG 

method’s image. This image demonstrates a distinct natural 

color on the image objects.  In particular, the small white 

square of the color chart and the white path seem to be very 

similar to that of the ground truth image at a 400% zoom view 

on a 42-inch LED monitor. Moreover, the lowest angular 

error obtained by the proposed method shows superior 

performance against other compared techniques [46]. 

From Fig. 9, it is clear that the original image has a strong 

yellow color cast. The 2nd Order Gray Edge technique’s 

image (Fig. 9c) has an extreme bluish color cast. The 

Weighted Gray Edge technique’s image (Fig. 9d) has a 

slightly lower color cast. The Sub- sample method’s image 

(Fig. 9e) presents an improved color correction. However, 

there is an infinitesimal influence of the source illuminant on 

the upper right corner of the white shelf. The proposed 

CCASI-GW, CCASI-Max-RGB, and CCASI-SG method’s 

images (shown in Figs. 9f-9h) show the highest color 

constancy.  Among the   proposed  techniques’  images,  the 

CCASI-SG (shown in Figs. 9f-9h) show the highest color 

constancy. Among the proposed techniques’ images, the 

CCASI-SG technique’s image illustrates the uppermost color 

correction. The objects in this image have very similar color 

to their respective objects in the ground truth image.
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FIGURE 8. Original and color balanced images from various techniques: 
a) Original image from Gehler’s Color Checker dataset, b) Ground truth, 
c) Max-RGB, d) Shades of Gray, e)1st Order Gray Edge, f) 2nd Order Gray 
Edge, g) Weighted gray edge, h) Proposed CCASI-GW, i) Proposed 
CCASI-Max-RGB, and j) Proposed CCASI-SG methods’ images. 

To generate the Mean Opinion Score (MOS), the proposed 

algorithm and the state-of-the-art methods have been applied 

to the randomly selected 200 images and 100 images from the 

Gray Ball dataset and the Gehler’s dataset, respectively, and 

all the images of the MIMO dataset and the SFU dataset. Ten 

independent observers were shown the aforementioned 

images to generate subjective results. Each image was scored 

from 1 to 5, with 1 being the lowest color constancy and 5  

being the uppermost color correction. The resulting scores for 

each color constancy technique were averaged and are 

reported in Table 2. From Table 2, one can observe that the 

proposed technique’s images exhibit the uppermost MOS in 

comparison to the other methods’ images and the proposed 

CCASI-GW technique’s MOS is higher than those of the two 

other proposed methods’ MOSs. 

 

FIGURE 9. Original, ground truth and color balanced images of an image 
from the Gehler’s Color Checker dataset: a) Original image, b) Ground 
truth, c) 2nd Order Gray Edge, d) Weighted Gray Edge, e) Sub-sample, f) 
proposed CCASI-GW, g) CCASI-Max-RGB and h) CCASI-SG methods’ 
images. 

 
4.4.2 OBJECTIVE ASSESSMENT 

To assess the objective performance of the proposed Color  

Constancy  Adjustment  using  the  Sub-blocks of the Image 

with Gray World (CCASI-GW), Max-RGB (CCASI-Max-

RGB) and Shades of Gray (CCASI-SG) techniques with the 

Gray World, Max-RGB and Shades of Gray, 1st and 2nd  Order  

Gray  Edge,  Pixel-based  Gamut  Mapping  [14], Edge-based 

Gamut Mapping [19], Exemplar method [30], Gray Pixel [37] 

and Adaptive Surround Modulation (ASM) [44] color 

constancy methods, they were applied to the images of the 

Gray Ball dataset. The average mean and median angular 

errors of the resulting images were calculated and can be 

found in Table 3. Table 3 demonstrates that the proposed 

techniques generally outperform all the statistics-based 

methods. The proposed CCASI-GW, CCASI-Max-RGB and 

CCASI-SG images have average mean angular errors of 4.5°, 

5.7° and 4.5°, respectively, which are well below the mean 

angular  error  of  all  the  statistical  methods.  Moreover,  the 

average median angular errors of the proposed CCASI-Max- 
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TABLE II 

 MEAN OPINION SCORE (MOS) OF THE PROPOSED AND THE STATE-OF-THE ART TECHNIQUES 

Methods 

Dataset WGE 
Gisenji 
et al. 

MIRF 
Gray 
Pixel 

Exemplars 
Proposed 

CCASI-GW 

Proposed 

CCASI-Max-
RGB 

 

Proposed 
CCASI-SG 

MIMO 3.71 3.80 4.18 3.97 4.03 4.20 4.11 3.98 

Gray Ball 4.0 3.25 3.88 3.84 3.67 4.07 4.02 3.89 

Gehler’s 

Color 
Checker 

3.80 3.76 3.91 4.03 3.79 4.16 4.11 3.96 

SFU 3.91 4.02 3.97 4.07 4.07 4.15 4.19 4.02 

 

RGB and CCASI-SG are 4.2° and 4.6°, respectively, which 

are lower than those of all the   statistical   methods.  However, 

the   average   median angular error of the first proposed 

CCASI-GW method is 4.8°, which is less than that of all the 

statistical methods except the 1st-Order Gray Edge method. 

The average median angular error of this method is 4.7°, 

which is very close to that of the first proposed CCASI-GW 

method, which is 4.8°. These objective results imply that the 

proposed methods’ images have the highest objective 

qualities among the statistical-based methods’ images. From 

Table 3, it can be seen that the three proposed methods deliver 

lower mean and median angular errors compared to those of 

the gamut-based methods. However, with respect to the 

learning-based methods, the proposed techniques produce 

very competitive objective results.  

To demonstrate the objective performance of the proposed 

Color Constancy Adjustment using the Sub-blocks of the 

Image with Gray World (CCASI-GW), Max- RGB (CCASI-

Max-RGB) and Shades of Gray (CCASI-SG) techniques  

with  that  of  the  Gray  World,  Max-RGB and Shades of 

Gray, 1st- and 2nd-Order Gray Edge, Pixel-based Gamut 

Mapping, Edge-based Gamut Mapping and Natural   Image 

Statistics [21] color constancy approaches were applied to the 

images of the Gelhar’s Color Checker dataset. The average 

mean and median angular errors of the resulting images were 

calculated and can be found in Table 4. From Table 4, one 

can see that the lowest mean and median angular errors are 

obtained by the proposed CCASI-Max-RGB technique’s 

images among the images of both the statistical- and gamut-

based methods. This implies that the CCASI-Max-RGB 

method’s images have the uppermost objective color 

correction amongst the images of both the statistical- and 

gamut-based methods. Moreover, the average mean and 

median angular errors of the other two proposed CCASI-GW 

and  CCASI-SG  techniques  are  comparable  to  the  high- 

performing statistical- and gamut-based methods. 

To objectively compare the performance of the proposed 

Color Constancy Adjustment using the Sub-blocks of the 

Image with Gray World (CCASI-GW), Max-RGB (CCASI-

Max-RGB)  and  Shades  of Gray  (CCASI-SG) techniques 

with  Gisenji et al.  [35]  and   MIRF  [36]   color   constancy  

 

TABLE III 

 AVERAGE MEAN AND MEDIAN ANGULAR ERRORS OF THE 
PROPOSED AND OTHER COLOR CONSTANCY METHODS’ 

IMAGES ON THE GRAY BALL DATASET 

Method Mean Median 

Statistics-based methods 

Gray World 7.9° 7.0° 

Max-RGB 6.8° 5.3° 

Shades of Gray 6.1° 5.3° 

1st Order Gray Edge 5.9° 4.7° 

2nd Order Gray Edge 6.1° 4.9° 

CCASI-GW 4.5° 4.8° 

CCASI-Max-RGB 5.7° 4.2° 

CCASI-SG 4.5° 4.6° 

Gamut-based methods 

Pixel-based Gamut 7.1° 5.8° 

Edge-based Gamut 6.8° 5.8° 

Learning-based methods 

Exemplar-based 4.4° 3.4° 

Gray Pixel (std) 4.6° 6.2° 

ASM 4.7° 3.8° 

 
TABLE IV  

AVERAGE MEAN AND MEDIAN ANGULAR ERRORS OF THE 
PROPOSED AND OTHER COLOR CONSTANCY METHODS’ 

IMAGES ON THE GEHLER’S COLOR CHECKER DATASET 

Method Mean Median 

Statistics-based methods 

Gray World 9.8° 7.4° 

Max-RGB 8.1° 6.0° 

Shades of Gray 7.0° 5.3° 

1st Order Gray Edge 5.2° 5.5° 

2nd Order Gray Edge 7.0° 5.0° 

Weighted Gray Edge 6.6° 4.7° 

CCASI-GW 5.6° 5.8° 

CCASI-Max-RGB 4.9° 4.5° 

CCASI-SG 6.8° 6.5° 

Gamut-based methods 

Pixel-based Gamut 6.9° 4.9° 

Edge-based Gamut 7.7° 5.0° 

Natural Image Statistics 6.1° 4.5° 
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TABLE V  

COMPARATIVE PERFORMANCES ON THE MIMO (REAL) IMAGE 

DATASET  

Gisenji et al. MIRF 
Proposed 

method 

Mean Median Mean Median Mean Median 

Gray 

World 
4.4° 4.3° 3.7° 3.4° 4.12° 3.96° 

Max-

RGB 
4.2° 3.8° 4.1° 3.3° 3.8° 3.5° 

Shades 

of 

Gray 

- - - - 5.0° 4.9° 

  

 
TABLE VI 

 COMPARATIVE PERFORMANCES ON THE MIMO (LABORATORY) 
IMAGE DATASET  

Gisenji et al. MIRF 
Proposed 

method 

Mean Median Mean Median Mean Median 

Gray 

World 
6.4° 5.9° 3.1° 2.8° 4.36° 3.93° 

Max-

RGB 
5.1° 4.2° 3.0° 2.8° 4.96° 4.12° 

Shades of 

Gray 
- - - - 4.60° 4.20° 

 

approaches, they were applied to the images of the MIMO 

dataset. The average mean and median angular errors of the 

resulting real and the laboratory images were calculated and 

are tabulated in Table 5 and Table 6, respectively. The 

experimental results for the Gisenji et al. and MIRF methods 

using Gray World and Max-RGB were taken from [36]. It 

must be mentioned that the Gisenji et al. and MIRF  

techniques do not use the Shades of Gray method. From 

Tables 5 and 6, it is evident that the proposed CCASI- GW 

and CCASI-Max-RGB methods’ images have lower average 

mean and median angular errors compared to Gisenji et al.’s 

images, where their images’ angular errors are very close to 

those of the MIRF method’s images. 

 
V. CONCLUSIONS AND FUTURE WORK 

This paper presented a color constancy method that 

improved the performance of the existing techniques by 

excluding the uniform color areas of the image from 

contributing to the color constancy of the image. Hence, this 

technique splits the input image into some non-overlapping 

blocks. The average absolute difference value of each block 

is computed and used to determine if the block has sufficient 

color information to contribute to the color constancy 

adjustment of the image. The experimental results were 

generated by applying the three statistical-based color 

constancy methods of the Gray World, Max-RGB and 

Shades of Gray techniques on the images from four 

benchmark image datasets. The quality of the resulting 

images is both subjectively and objectively assessed and 

compared to those of other statistical and state of the art 

techniques. The results show the merit of the proposed 

technique.  

Integration of more low-level images features, e.g. image 

saliency, for color constancy has potential to improve the 

subjective visual quality of the images. This has been less 

reported in the literature, which is a future direction for this 

research. 
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