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Abstract— Ear recognition is a field in biometrics wherein 

images of the ears are used to identify individuals. Many 

techniques have been developed for ear recognition; however, 

most of the existing techniques have been tested on high-

resolution images taken in a laboratory environment. This 

research examines the performance of Principal Component 

Analysis (PCA) based ear recognition in conjunction with super-

resolution algorithms from low-resolution ear images. Ear 

images are first split into database and query images; the latter 

are first filtered and down-sampled, generating a set ear images 

of different low resolutions. The resulting low-resolution images 

are then enlarged to their original sizes using an assortment of 

neural network-based and statistical-based super-resolution 

methods. PCA is then applied to the images, generating their 

eigenvalues, which are used as features for matching. 

Experimental results on the images of a benchmark dataset show 

that the statistical-based super-resolution techniques, namely 

those that are wavelet-based, outperform other algorithms with 

respect to ear recognition accuracy. 

Keywords— ear recognition; super-resolution; principal 

component analysis; eigenvalues 

I. INTRODUCTION 

Ear recognition is a field in biometrics wherein images of 
the ears are used to identify individuals. Ears are unique to 
individuals; even identical twins often have differentiable ears 
[1]. Application of ear recognition for security can be limited 
due to poor resolution of the images taken by surveillance 
cameras from a distance. Much research has been reported on 
ear recognition over the last two decades considering either 
mono or stereo images of ears [2-4]. While the effects of super-
resolution on face recognition have been extensively studied 
[5–7], less has been reported about super-resolution on ear 
images. 

This paper presents an investigation on the performance of 
ear recognition from low-resolution images using eigenvalues 
along with image super-resolution techniques. This is 
accomplished by utilizing several single image super-
resolution techniques. The Principle Component Analysis 
(PCA) is then applied on the resulting enlarged image to 
calculate eigenvalues of the image. The eigenvalues are used to 
find the best match for the image within the dataset. Results 
show that ear recognition using the statistical based super-
resolution techniques outperform the neural network based 

methods. The rest of the paper is organized as follows: Section 
II introduces the state of the art ear recognition techniques, 
super-resolution methods and the proposed low-resolution ear 
recognition technique, including the benchmark ear image 
dataset. Section III presents the proposed evaluation method. 
Section IV describes the experimental results. Finally, Section 
V concludes the paper. 

II. BACKGROUND AND METHODS 

A. Ear Recognition 

Ear recognition techniques can be classified into several 
categories, including holistic and hybrid methods. Principal 
Component Analysis (PCA) and other related methods are 
examples of holistic techniques. These techniques basically 
extract some features from the ear image and use it as a basis 
for recognition [3-4]. Turk and Pentland [8] demonstrated the 
use of PCA on images of faces to perform facial recognition 
using the “eigenfaces” method. Victor, Bowyer, and Sarkar [4] 
later adopted the eigenfaces method on images of ears. They 
applied PCA based method reported in [8] to both face and ear 
images for comparative purposes. They reported that 
application of this PCA based method on facial recognition 
gives higher accuracy matching than that of the ear 
recognition, however, ears still demonstrated merit. 
Querencias-Uceta, Ríos-Sánchez, and Sánchez-Ávila [9] 
examined different distance measures for PCA based ear 
recognition methods to increase their accuracy. They assessed 
both Euclidean distance and Eigendistance to find the best 
match, concluding that Euclidean distance results in a higher 
accuracy. In addition, their investigation showed that flipping 
the image reduces the achieved accuracy and that increasing 
the number of training images increases the achieved accuracy. 
More recently, however, PCA and other linear transformation 
techniques have been used in conjunction with other feature 
extraction and classification methods to create hybrid 
classifiers [3,10-15]. A hybrid ear recognition method based on 
PCA and neural network was reported by Alaraj, Hou, and 
Fukami in [10]. This method applies PCA to a selected training 
set and extracts their principal components as in [4] to create a 
training matrix. It then creates a target matrix, which is a 
binary matrix, to indicate correct matches and it also 
normalizes both the training and target matrices. The training 
and target matrices are fed to a traditional multilayer feed-
forward neural network to train the network. They have 
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reported that the achieved recognition accuracy of their method 
is a function of the used number of training images per 
individual. Moreover, they showed that the use of a greater 
number of eigenvectors increases the achieved accuracy of the 
matching. Last but not least, their investigation determined that 
their algorithm generates superior results in terms of accuracy 
when using larger images. Zhang, Mu, Qu, Liu, and Zhang 
[11] compared the use of PCA with Independent Component 
Analysis (ICA), a similar method to PCA, to extract features 
from the ear images. The images are first filtered using either a 
Laplacian-Gaussian filter or a Weiner filter to create multiple 
experimental datasets. PCA is first used for feature reduction, 
then the ICA transform is applied to the resulting eigenvectors, 
generating a linear representation of the eigenvectors of ears. 
The resultant features are then classified via a three-layer 
Radial Basis Function (RBF) Network. They concluded that 
ICA based method outperforms the PCA based method in 
terms of the accuracy. Furthermore, they show that the 
application of Wiener filter results in a greater accuracy than 
use of the Laplacian-Gaussian filter and the use of either filter 
improves the performance of the identification method. 
Galdámez, Arrieta, and Ramón [12] used both Linear 
Discriminant Analysis (LDA) and Speeded-Up Robust 
Features (SURF) for ear recognition. LDA is similar transform 
to PCA except it utilizes Fisher’s linear discriminant than 
eigenvectors to create an earspace. This is accomplished in two 
steps; it first applies the standard PCA on the input images as 
in [4], creating their eigenvectors and consequently eigenears. 
It then calculates between-classes and within-classes matrices 
from the eigenears and uses them to create a dataset of 
projections. SURF is a scale and rotation invariant interest 
point detector and descriptor method used to extract key-points 
of an input image. The results of both LDA and SURF feature 
extraction are then fed to two three-layer feed-forward neural 
networks. Results demonstrated that SURF method 
outperforms the LDA algorithm and that both techniques give 
superior results to that of the PCA. Omara, Wu, Zhang, Du, 
and Zuo [13] reported a hybrid ear recognition technique using 
neural network, PCA and Support Vector Machine (SVM). 
They have applied VGG-M Net [16], a commonly used 
convolutional neural network for image recognition, on all 
input images, extracting image features. The number of 
features is then reduced through PCA. Both SVM and pairwise 
SVM were separately applied to the selected features to find 
the best match. Their results show that the application of 
pairwise SVM for finding the best match results in higher 
accuracy than that of the traditional SVM. Benzaoui and 
Boukrouche [14] introduced a feature extraction technique for 
ear recognition. They created a grayscale image separately for 
each ear image color component and they then applied three 
feature extraction methods called: Local Binary Patterns 
(LBP), Local Phase Quantization (LPQ) and Binarized 
Statistical Images Features (BSIF), to the resulting gray 
images, creating a histogram representation for each grayscale 
image. These three histograms, representing the ear features, 
are concatenated and then fed to the SVM classifier. Their 
experimental results show that BSIF technique generated the 
highest accuracy in finding the best match compared to LPQ 
and LBP methods. 

B. Single Image Super-Resolution Techniques 

Single Image Super-Resolution (SISR) is the process of 
increasing the resolution of a single image. Although this has 
been studied for several decades [17,18], SISR remains a 
challenging problem. Many SISR techniques have been 
successfully developed over the past two decades, including 
interpolation, neural networks [19-23] and statistical methods 
[24-29]. The methods used for this work are introduced here. 

A convolutional neural network technique for image super-
resolution was originally proposed by Dong, Loy, He, and 
Tang in [19]. The proposed method, called super-resolution 
convolutional neural network (SRCNN), is comprised of three 
convolution operations, where each operation uses a 2D filter 
of length nine, five and five, respectively. The output of each 
layer is also rectified. This technique uses the traditional 
backpropagation to train the network on patches of the input 
images. They reported superior results in comparison to the 
state of the art techniques at the time of its publication. Liu et 
al. [20] introduced the sparse coding based network (SCN) 
image enlargement algorithm. Their technique uses a Learned 
Iterative Shrinkage and Thresholding Algorithm (LISTA) in its 
network. In this technique, the input image is first up-sampled 
using the bicubic interpolation and then it will be split into a 
number of patches. Each resulting patch is then fed to the 
network, where its first layer is a convolutional layer. The 
output from this layer is then passed to a LISTA sub-network 
consisting of a finite number of recurrent stages to obtain a 
sparse code for the patch. The resulting sparse code is then 
multiplied with a high-resolution dictionary in a linear layer to 
generate the high-resolution representation of the input patch. 
The enlarged patches are finally reassembled generating the 
enlarged replica of the input image. They reported superior 
subjective and objective performance to SRCNN. Kim, Lee 
and Kyoung [21] proposed a neural network based super-
resolution method, called: Very Deep Super Resolution 
(VDSR). This technique’s network has twenty layers, where all 
layers, except the first and the last layer, have 64 filters of size 
3×3×64. Their technique splits the input image into a number 
of patches. The patches are then individually fed to the 
network, where the layer is just the input layer and the last 
layer is just a single filter of size 3×3×64. The VDSR 
technique attempts to predict the residual image, which is the 
difference between the low-resolution and high-resolution 
replica of the input image. They reported superior subjective 
and objective results compared to that of the SRCNN’s 
technique. In addition, their proposed VDSR method is faster 
than the SRCNN algorithm, despite its larger network depth. 
Tai, Yang, and Liu [22] introduced a deep neural network 
based super-resolution technique named: Deep Recursive 
Residual Network (DRRN), which comprises of residual and 
recursive units. Residual units were first introduced by He, 
Zhang, Ren, and Sun in [30]. They consist of two 
convolutional layers followed by a rectifier in series. They seek 
to learn the difference between their input and output, so that 
the overall output of the unit is the sum of the output of the 
convolutional layers and the original input. The recursive units 
are created using a series of residual units. The input to the 
recursive unit is first passed through a convolutional layer. The 
result is then passed to a residual unit. However, the results of 
that residual unit are passed to another residual unit to form a 



cascade, with the results from the first convolutional layer 
being used by every residual unit in the recursive unit. The 
version of DRRN used for this paper is comprised of one 
recursive unit which contains nine residual units. Results show 
superior performance both qualitatively and quantitatively 
compared to VDSR. Sajjadi, Schölkopf, and Hirsch [23] 
proposed a neural network based algorithm for super-
resolution. Their technique, Enhancenet, also seeks to learn the 
residual between low and high-resolution patches. Unlike 
previously discussed networks, Enhancenet does not use 
bicubic interpolation to up-sample the image prior to feeding it 
to the network. Instead, it uses the original, small low-
resolution image. The network first passes the input patch 
through a convolutional layer followed by 10 residual blocks as 
in [30]. After the residual blocks, the patch is up-sampled 2x 
via nearest neighbor and fed to another convolutional layer. 
Another nearest neighbor/convolutional layer combination 
follows, with another convolutional layer and convolution 
operation after. This yields the residual component which is 
added to a bicubic up-sampling of the original patch to create 
the output. The authors also examined the effect of different 
loss functions when training the network. In addition to 
comparing mean square error (ENet-E) and perceptual loss 
(ENet-P), they examine each of those in combination with 
adversarial training (ENet-EA, ENet-PA) and texture loss 
(ENet-EAT, ENet-PAT). It was reported that ENet-E produces 
the highest Peak Signal-to-Noise Ratio (PSNR) of all training 
methods tested and that this outperformed state of the art 
methods at the time of publication, including SRCNN and 
VDSR. However, ENet-PAT demonstrated the highest 
qualitative performance per a survey of 49 individuals. This 
training method was also verified quantitatively by comparing 
up-sampled images from various training methods using image 
recognition. Images from the ImageNet dataset [31] were 
down-sampled by 4x and then up-sampled using Enhancenet 
with multiple training methods. These were then fed to 
ResNet-50 [24] for classification purposes. It was reported that 
ENet-PAT produced a lower Top-1 and Top-5 error when 
classifying the ImageNet dataset than other training methods. 

Many wavelet-based statistical super-resolution methods 
have been reported in the literature [24-28]. Dumic et al. [24] 
reported a wavelet based super-resolution method. They 
enlarged the input image by first up-sample the input image 
and then applying the reconstructive wavelet filter on the rows 
and the columns of the resulting up-sample image. Dumic, 
Grgic, and Grgic reported superior subjective and objective 
visual quality to that of B-spline’s method. Temizel and 
Vlachos [25] introduced a wavelet based super-resolution 
method. They developed a method to estimate the LH and HL 
wavelet subbands’ coefficients of the low-resolution input 
image, while they assumed that the HH subband coefficients 
are zero and the low-resolution input image to be the baseband. 
This method assumes that the low-resolution input image is the 
low-low (LL0) subband of the high-resolution image to be 
generated. It then calculates a HL0 like subband called: HL′0 by 
applying the high-pass wavelet filter on the rows of the input 
image. It then applies a 2D non decimation wavelet transform 
on the input image converting it into its four subbands called:  
LL1, HL1, LH1, and HH1. It then applies a 1D high pass 
wavelet filter on the rows of the resulting LL1 subband, 

generating a 2D subband called: HL′1. The authors showed that 
there is a strong correlation between coefficients of the HL1 
and their respective four neighboring row coefficients in HL′1. 
Hence, they introduced a linear least-squares regression 
approach to estimate HL1 from HL′1, calculating a set of 
weights. The resulting weight are then used to generate an 
estimation for HL0 from HL′0. The same procedure was applied 
on the LH′0 to generate an estimation for LH0. An inverse 
wavelet transform is finally applied to LL0, HL0, LH0 and HH0, 
which assumed to be set to zero. The authors reported 
significant higher objective quality in terms of PSNR in 
compared to those of the wavelet and Hidden Markov Model 
based techniques. Temizel and Vlachos [26] also developed a 
wavelet based super-resolution technique utilizing cycle 
spinning method. This technique assumes that the low-
resolution input image to be the wavelet baseband of the target 
high-resolution image to be generated and its other subbands to 
be zero. It generates an initial high-resolution image called:  
by applying a 2D inverse wavelet transform on these subbands. 
Cycle spinning is then applied on the resulting initial high-
resolution image,  , generating the target super resolution 
image, as follows: a) it generates a number of 2D shifted 
replicas of ; b) it then applies a 2D wavelet decomposition 
on the resulting replicas; c) it generates a high-resolution of 
each replica by discarding its high frequency wavelet subbands 
and then performing 2D inverse wavelet transform on the 
resulting subbands; d) finally the high-resolution image is 
generated by averaging the realigned resulting high-resolution 
images. The authors reported superior objective quality in 
comparison with those of wavelet zero padding technique and 
other statistical based techniques. This technique was further 
expanded by the same authors in [27]. The new technique 
called: directional cycle spinning. This technique is first 
performed a 2D wavelet transform on the low-resolution input 
image to obtain its LH and HL subbands. It then partitions the 
input image into non-overlapping blocks. The horizontal and 
vertical activity measures for each block are then calculated by 
summing their respective wavelet coefficients in LH and HL 
subbands. Directional cycle spinning is then applied to the 
whole image in just horizontal and vertical directions, 
generating initial high-resolution image. The resulting high-
resolution image is then adjusted by the activity measuring 
factors within each block. The authors showed that the 
directional cycle spinning outperforms the cycle spinning 
algorithm. Sheikh-Akbari and Bagheri Zadeh [28] introduced a 
wavelet based super resolution technique. This technique 
performs a 2D wavelet transform on the low-resolution input 
image dividing it into its wavelet subbands. It then applies 
reconstruction wavelet wavelet filters on the resulting high 
frequency subbands, accordingly, generating three high-
resolution high frequency subbands. It then applies an inverse 
wavelet transform on the resulting high-resolution high 
frequency subbands and the low-resolution input image, which 
is assumed to be its wavelet baseband. The authors reported a 
superior performance with respect to both PSNR and the 
structural similarity (SSIM) criteria in comparison to those of 
cycle spinning, directional cycle spinning, and other statistical 
techniques. Another statistical based super resolution technique 
called: Regularization by Denoising (RED), was introduced by 
Romano, Elad, and Milanfar in [29]. This technique first 



generates an initial high-resolution image from the low-
resolution input image using bicubic interpolation. It then 
performs a gradient descent algorithm on the resulting image to 
minimize its noise using a Gaussian filter. The authors 
demonstrated a superior PSNR compared to those of the 
deblurring techniques. 

III. PROPOSED EVALUATION METHOD 

Principal Component Analysis (PCA) is a technique which 
is widely used to calculate an orthogonal basis for a dataset 
along which the variance is high. The orthonormal vectors 
forming this basis are known as eigenvectors and their scaling 
factors are eigenvalues. Let X be a 2D gray image of size m × 
n. The mean adjusted image X’ is created as follows: 

 X’ = X – XM (1) 

where XM is the mean of all pixel values of the image. A 
covariance matrix C is then calculated by: 

 C =X’X’T (2) 

where C is of size m x m. The eigenvectors and eigenvalues 
of the matrix C are then calculated using the following 
decomposition: 

 C =ΕΛΕ Τ (3) 

where the eigenvectors are the columns of E and the 
eigenvalues are the diagonal matrix values 
Λ=diag(λ1, λ2, ..., λn).  

Gaidhane, Hote, and Singh [32] have used eigenvalues of 
facial images as features to classify emotions using a 
Levenberg–Marquardt based classifier algorithm. Further 
research reported in [4,15] have shown that Euclidean distance 
between the feature vectors of two ears is a sufficient measure 
to differentiate and match the ears. Consequently, in this 
research, Euclidean distance of the eigenvalues of two subject 
ear images is used as a criterion to assess their similarity. From 
the literature, it can be seen that much research has been 
conducted on the application of the PCA for ear recognition 
and also on still image super-resolution techniques. 

Ear recognition has many real world applications, such as 
in forensics and video analytics. There is interest in using ear 
recognition techniques to identify individuals in public, 
however, images used for this purpose are often low resolution. 
To the authors’ knowledge, less research has been reported to 
assess the performance of the PCA for ear recognition in 
conjunction with super-resolution techniques. Consequently, 
there is a need to determine which super-resolution algorithms 
can be used effectively for this purpose. In this work, it is 
demonstrated that ear images having low resolution can be 
successfully used for ear recognition and examine which 
algorithms produce the most accurate results. Furthermore, 
results show that it is sufficient to use Euclidean distance of 
eigenvalues to match ear images. 

Fig. 1. Ear images from four individuals in the IITD II dataset. 

TABLE I.  BLACKMAN 2D FIR FILTER COEFFICIENTS 

0.0381 0.1051 0.0381 

0.1051 0.4273 0.1051 

0.0381 0.1051 0.0381 

 

 

Fig. 2. Input high-resolution image and the resulting low-resolution images 
of factor 2, 4 and 8. 

This investigation uses the Indian Institute of Technology 
Delhi Version 2 (IITD II) dataset [33]. This dataset consists of 
the images of the right ear of 221 participants. Each participant 
was photographed multiple times, with each image being of 
size 180 × 50 pixels and in 8-bit grayscale. Examples of ear 
images from the dataset can be seen in Fig. 1. 

Two images for each subject were selected, with the set of 
first images forming a database. The second images serve as 
query images. The query images are passed through a 
Blackman 2D FIR low-pass filter to suppress the aliasing 
artifacts, as shown by Bagheri Zadeh and Sheikh-Akbari in 
[34]. The coefficients for the 3×3 filter are presented in Table 
1. The Blackman 2D FIR low-pass filter has been shown to 
deliver perceptually higher visual quality images when used 
prior to down-sampling when compared to other smoothing 
methods. 

After filtering, the query images are then down-sampled by 
a factor of 2. This process is repeated on the resulting image to 
further down-sample the images by factor of 4 and 8, resulting 
in image sizes of 90×25, 45×13, and 23×7, respectively. 
Examples of the resulting images are shown in Fig. 2. 

The down-sampled images are then enlarged to their 
original size using both neural network and statistical based  



 

Fig. 3. Original high resolution image and its enlarged high resolution 
images: (a) high-resolution input ear image, (b) nearest neighbor, (c) bilinear 
interpolation, (d) bicubic interpolation, (e) SRCNN, (f) SCN, (g) VDSR, (h) 
DRRN, (i) Enhancenet, (j) Dumic et al., (k) Temizel and Vlachos, (l) Cycle 
Spinning, (m) Directional Cycle Spinning, (n) Sheikh-Akbari and Bagheri 
Zadeh, (o) RED and (p) 2D sinc super-resolution techniques. 

 

Fig. 4. The image pipeline for query images. 

single image super-resolution algorithms. A sample of all 
super-resolution techniques’ images used in this work are 
shown in Fig. 3. 

Principal Component Analysis (PCA) is then performed on 
each image from both the database and the query image set to 
obtain its eigenvalues. The eigenvalues for each query image 
are then compared against the eigenvalues from all database 
images to find the best match using Euclidean distance. The 
overall process is illustrated in Fig. 4. 

IV. EXPERIMENTAL RESULTS 

The number of correct matches was calculated for each 
algorithm. If a query image was correctly matched with a 
database image, the test image was marked as a Top-1 image. 
If a query image was correctly matched with any one of the 
closest five database images, the query image was marked as a 
Top-5 image. 

The matching results are tabulated in Table 2 for all three 
super-resolution cases (2, 4 and 8) as well as the averages of 
the statistical based methods and neural network based 
methods. The percentage of correctly matched Top-1 and Top-
5 images is listed for each algorithm. The most accurate  

TABLE II.  TOP-1 AND TOP-5 MATCHES FOR ENHANCED EAR IMAGES 
USING VARIOUS SUPER-RESOLUTION TECHNIQUES 

Table Head 

2x Super-

Resolution 

4x Super-

Resolution 

8x Super-

Resolution 

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 

Nearest 28.05 50.23 20.81 43.44 6.79 27.60 

Bilinear 26.70 48.87 19.46 40.72 2.71 09.50 

Bicubic 28.05 50.23 19.46 46.15 4.52 20.81 

SRCNN [19] 26.70 50.68 20.36 40.27 10.86 33.48 

SCN [20] 28.05 50.23 22.62 45.70 7.69 29.86 

VDSR [21] 27.60 50.23 20.36 39.82 11.76 33.48 

DRRN [22] 29.41 51.13 22.17 42.53 11.31 32.58 

Enhancenet 
[23] 

[] [] 19.91 42.99 [] [] 

Dumic [24] 28.96 50.23 28.05 50.23 17.65 42.08 

Temizel [25] 29.41 50.23 28.05 49.77 18.10 41.18 

Cycle-Spin [26] 28.96 50.23 27.15 49.77 11.76 33.94 

Dir. CS [27] 28.96 50.23 27.60 49.77 12.22 35.75 

Sheikh-Akbari 
[28] 

28.96 50.23 28.05 50.23 17.65 42.08 

RED 28.51 50.23 19.46 46.15 4.52 20.81 

sinc2 28.96 49.77 24.43 48.42 5.43 29.41 

Statistical Avg 28.96 50.17 26.24 49.26 12.39 34.90 

Neural Network 
Avg 

27.94 50.57 21.09 42.26 10.41 32.35 

 
classification for each is represented in bold. Enhancenet [23] 
was only used in the 4x case, as the model provided by the 
authors was only trained to perform 4x super-resolution. 
Nearest neighbor, bilinear interpolation and bicubic 
interpolation are excluded from the statistical method 
averages. 

V. CONCLUSION 

The efficacy of several single image super-resolution 
algorithms for the ear recognition problem has been presented 
in this paper. For images that are only somewhat low 
resolution, exemplified by the 2x down-sample case tested, 
most super-resolution algorithms work equally well. At lower 
resolutions, however, the statistical methods evaluated as part 
of this investigation produce the high resolution ear images 
which have eigenvalues closest to their original counterparts. 
Of particular interest was the success of wavelet-based 
techniques. Oddly, the wavelet-based techniques that were the 
most successful for matching did not produce superior visual 
quality images when compared to the neural network methods; 
this result could serve as a further line of investigation. In 
addition, the use of wavelet-based image enlargement 
techniques should be utilized with ear recognition methods 
aside from eigenvalue matching in future work. 
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