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Abstract — This book chapter is adapted from [1] and it is closely linked to work 

published in [2] and [3]. Reducing power consumption of network equipment has 

been both driven by a need to reduce the ecological footprint of the cloud as well as 

the immense power costs of data centers. As data centers, core networks and con-

sequently, the cloud, constantly increase in size, their power consumption should 

be mitigated. Ethernet, the most widely used access network still remains the big-

gest communication technology used in core networks and cloud infrastructures. 

The Energy-Efficient Ethernet or EEE standard introduced by IEEE in 2010, aims 

to reduce the power consumption of EEE ports by transitioning Ethernet ports into 

a low power mode when traffic is not present. As statistics show that the average 

utilization rate of ethernet links is 5 percent on desktops and 30 percent in data 

centers, the power saving potential of EEE could be immense. This research aims 

to assess the benefits of deploying EEE and create a power consumption model for 

network switches with and without EEE. Our measurements show that an EEE port 

runs at 12-15% of its total power when in low power mode. Therefore, the power 

savings can exceed 80% when there is no traffic. However, our measurements 

equally show that the power consumption of a single port represents less than 1% 

of the total power consumption of the switch. The base power consumed by the 

switch without any port is still significantly high and is not affected by EEE. Exper-

iment results also show that the base power consumption of switches does not sig-

nificantly increase with the size of the switches. Doubling the size of the switch 

between 24 and 48 ports increases power consumption by 35.39%. EEE has a 

greater effect on bigger switches, with a power (or energy) gain on the EEE-enabled 

48-port switch compared to 2 x EEE-enabled 24-port switch. On the other hand, it 

seems to be more energy efficient to use 2 separate 24-port switches (NO EEE) than 

2 separate 24-port switches (With EEE). 

 
Keywords: power efficiency, EEE, switch, port, power consumption, sleep, hibernate, 

network traffic, burst traffic, power consumption model 

1. INTRODUCTION 

Ethernet, a technology first deployed in 1980 is the most widely used ac-

cess network in the world [4]. Although in recent years, the deployment of 

Ethernet has decreased in homes due to wifi, it still constitutes the main 

technology used in core networks and cloud infrastructures, particularly in 

data centers. In 2010, in the US, data center power consumption is estimated 

at 2.3% of the total country’s power [5] while data centers worldwide are 

expected to grow approximately by 9% annually till 2015 [6]. Almost a 

quarter of the power consumption in these centers is attributed to network 

equipment [7] and with link speed expected to reach 200 Gbits/s [8], power 

consumption will undeniably, increase with time. According to our con-

ducted experiments, the power consumption of a port increases with the in-

crease of bandwidth. Our measurements reveal that a 1 Gbits/s port on a 

switch consumes 3 times more power than a 100 Mbits/s link and similarly, 
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a fiber optic port consumes 5 times more power than a 1 Gbits/s link. This 

evidence the need to optimize the power consumption of network equipment 

which could further be enhanced by an optimal utilization rate of Ethernet 

links. On desktops, the average utilization of Ethernet links is at maximum 

5% while that number is around 30% in data centers [9]. Consequently, for 

the past decade, researchers have been developing algorithms to achieve 

power consumption of Ethernet links that matches their utilization rates. The 

culmination of such research results in the standardization of EEE 802.03az 

in 2010 [10]. Energy-Efficient Ethernet (EEE) aims to reduce the power 

consumption of network equipment by running the ports in a low power 

mode with no imminent transmission. The ports could run in two different 

states: normal state where a link consumes the usual amount of power while 

transmitting information; and another low power mode aptly named Low 

Power Idle (LPI) when traffic is absent. The standard also details two tran-

sition phases namely Sleep and Wake-Up, that specifies the time it takes for 

the port to transition to each of the previously mentioned states. Note that 

the state of the ports on a network equipment is only affected by EEE.  The 

base power consumption of a switch will not be affected by EEE, but the 

power consumed by a connected port is. The EEE standard also does not 

specify when state transitions should occur but have only provided details 

of which mechanism to employ bring about power saving. It is the manu-

facturer’s onus to decide when to trigger a state change. Two mechanisms 

namely frame transmission (FTR) and burst transmission (BTR) are pre-

dominantly employed [11] in EEE. With FTR, the Ethernet interface is ac-

tivated on the arrival of a new packet and the packet is then immediately 

handled. Contrastingly with BTR, the newly arrived packet is added to a 

queue and the interface switches to an active state once the queue is full. 

BTR allows packets coalescence within a certain timeout in order to avoid 

waking the interface excessively. 

The research discussed in this paper aims to assess the benefits of deploy-

ing EEE in the core network by profiling the power consumption of an off-

the-shelf Cisco 2960-X with and without power efficient protocol under dif-

ferent link speeds and traffic throughput. 

a. Background 

EEE affords implementation for different link speeds [12][29]. For ex-

ample, 100 Mbits/s and 10 Gbits/s links can be powered off even if the op-

posite side of the link does not support EEE. It is sufficient for one side of a 

link to detect a lack of traffic and invoke a sleep instruction without check-

ing what occurs on the other end of the link. However, with 1 Gbits/s links, 

both ends of the link must agree before invoking the sleep instruction. Fur-

thermore, state transitions cannot be interrupted in 10 Gbits/s links. Hence, 



5 

5 

 

100 Mbits/s and 10 Gbits/s links can potentially yield higher power saving 

at the expense of a potential delay in delivery if one end transitions to sleep 

mode while the other end sends traffic. 

In EEE, a link can have 4 different states [10] namely Active, Low Power 

Idle, Sleep and Wake: Active (A) - a link in this state has normal operation 

and power consumption. This is the switch’s default operational mode in the 

event EEE is turned off; Sleep (S) - is a transition state invoked when a link 

in state A does not detect any incoming traffic. This state lasts a finite dura-

tion denoted by Ts and its power consumption during this transition equals 

that of A state; Low Power Idle (LPI) - a link operates in low power mode 

which is approximately 10% of its normal power. Power savings from EEE 

are achieved when the link operates in LPI; Wake (W) - is a transition state 

that takes a link from LPI to A. This transition is never interrupted. This 

state lasts a finite dura-

tion denoted Tw and its 

power consumption 

during this transition 

equals that of the A 

state. EEE related re-

search has predomi-

nantly focused on 

maximizing the LPI 

duration in order to 

maximize power sav-

ings. As previously mentioned, mechanisms used to trigger change of states 

in EEE are implemented by the manufacturers. The two mechanisms, frame 

transmission (FTR) and burst transmission (BTR) are typically employed 

[11] in EEE. However, the difference between them is depicted in Figure 1. 

In normal legacy Ethernet, the idle phases consume an equal amount of 

power compared to the active phases. However, EEE aims to minimize the 

power consumption of idle times with FTR and BTR. With FTR, the Ether-

net interface is activated the moment a new packet arrives and the packet is 

then immediately handled. On the contrary, for BTR, the newly arrived 

packet is added to a queue and the interface switches to an active state once 

the queue is full. BTR affords packets coalescence within a certain timeout 

in order to avoid excessively waking the interface. The nature of the BTR 

mechanism offers a great platform for further research. Two variables play 

a role in BTR [14] and they are: buffer size - this dictates how many packets 

to hold in the switch before coalescing them and releasing them as a burst; 

timeout - maximum time to keep the interface in LPI mode after the first 

packet is added to the buffer. If the buffers fill out before timeout, all packets 

in the buffer are released. Similarly, if the buffer is not full and the timeout 
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expires, the packets are also released. Tweaking these two values yields 

many research opportunities with researchers attempting to maximize LPI 

time. Increasing the buffer size without setting a timeout can lead to signif-

icant packet delay since the equipment can wait infinitely for the buffer to 

fill up. On the other hand, setting a timeout that is too short can lead to a 

decrease in potential power savings. 

b. Motivation 

Ethernet still constitutes the main technology deployed in core networks 

and cloud infrastructures (for example, in data centers). In 2010, in the US, 

data center power consumption is estimated to be approximately 2.3% of the 

total country’s power [5] with data center construction worldwide estimated 

to grow by 9 percent each year for the next 5 upcoming years [6]. Almost a 

quarter of the power of these data centers is consumed by the network equip-

ment [7] and with link speeds expected to reach 200 Gbits/s soon [8], the 

power consumption will undeniably increase with time. EEE aims to bring 

about massive power savings to core networks and data centers, thus, it is 

imperative to investigate the effects of this technology. Orange Telecom, the 

largest telecommunications service provider in France, and a collaborator in 

this paper is interested in assessing the economic and environmental benefits 

of EEE deployment on their core networks. Based on this research finding, 

network administrators could choose to either upgrade their core networks 

with the new technology or continue their business as usual. 

c. Problem Definition 

Standardization of EEE occurred since 2010, however, to date there is 

limited investigation on its benefits. Consequently, this research aims to as-

sess the benefits of deploying EEE in the core network by modelling the 

power consumption of an off-the-shelf Cisco 2960-X with and without 

power efficient protocol under different link speeds and traffic throughput. 

We will first measure the power consumption of the switch without EEE 

under different link speeds with 1 Gbits/s being the highest available band-

width. Subsequently, we will enable EEE and test it under different traffic 

throughput in order to assess the improvement it attains over legacy Ether-

net. We will also compare EEE to other power saving mechanisms to better 

assess its benefits.  

d. Delimitations 

As 10Gbits/s links are still uncommon in commercial grade network 

equipment, no measurement could be made for this particular bandwidth. 

Our work revolves around profiling and modelling real equipment’s power 

consumption but not for 10Gbits/s (and beyond) links.  
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This book chapter is structured as follows: Section II – Related Work; 

Section III – Underlying Theories; Section IV – Implementation; Section V 

– Results and Discussion; Section VI – Conclusion and Future Work. 

2. Related work 

Since 2010 (i.e. after the standardization of EEE), researchers have ex-

plored ways to maximize the energy savings. This section will review exist-

ing research on EEE energy savings profiling. Reviriego, et al. [15] conduct 

a research similar to our research. They create a power consumption model 

for small EEE enabled switches. Their results reveal that EEE switches con-

sume similar amount of energy as legacy switches when no port is con-

nected. They attribute this fact to hardware manufacturers not adapting their 

device components to EEE. Additionally, energy consumption of future 

switches would be very close to link utilization which is similar to work 

done by Paillassa, et al. [16] and Rodríguez-Pérez [17]. However, both re-

search work utilizes simulations in ns-3 software instead of real EEE 

switches. Saranavan, et al. [18] assesses the benefit of EEE in High-Perfor-

mance Computing scenarios. Their findings reveal that EEE reduces energy 

consumption of links by 70%. However, the on/off transitions of EEE 

greatly hamper the overall energy savings of the system. Consequently, the 

overall reported energy increase is merely 15% when using the default 

mechanisms of EEE. Saranavan and colleagues [ibid] subsequently suggest 

a “Power-Down Threshold” feature that keeps the link on until a certain 

threshold is reached. With this technique, they report savings of around 

7.5% on the overall energy consumption of the system as well as a reduction 

in the on/off transition overhead from 25% to 2%. In 2010, Lee, et al. [13] 

propose a change to the MAC of optical network units in order to incorpo-

rate the interface called Slotted Delivery Mode. The Slotted Delivery 

method means that when traffic is low, the interface only wakes up periodi-

cally to handle the incoming and outgoing packets before going to sleep 

again. According to their simulations, they manage to have a power saving 

of 96%. Several researches explore the deployment of LPI mode. Kubo, et 

al. [19] propose a hybrid mechanism that combines LPI and adaptive link 

rate which is aimed solely at 10 Gbits/s links. This is to sleep the switch 

when traffic is absent and lower the link rate when link utilization is low. 

This hybrid mechanism manages a savings up to 84% when traffic is absent 

and 63% when traffic is low. These findings concur with that of Reviriego, 

et al. [20] and Jin, et al. [21]. 

Mostowfi, et al. [22] in 2015, suggest having two low-power modes in 

EEE in order to avoid latencies from on/off transitions. When traffic is low, 

EEE triggers the first stage of sleep. This stage can be woken up much faster 
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than the default LPI. When traffic is absent after a certain threshold, a deeper 

sleep mode is activated. The energy consumption of this mode matches that 

of LPI. Therefore, this model does not save as much energy as the default 

model but instead improves the latencies and delays inherited from EEE im-

plementation. Herreria-Alonso [23] extends this research by testing the two 

low-power modes on simulations based on real traffic scenarios. They evi-

dence that the first stage of sleep is futile in most of their scenarios and that 

Deep Sleep state is preferred on the links instead of the two stage solution. 

Other energy savings techniques are previously mentioned Frame Trans-

mission (FTR) and Burst Transmission. Meng, et al. [24] in 2013, propose 

a new EEE policy to exploit the strength of both frame and burst transmis-

sion. The policy dictates the use of frame transmission when traffic is low, 

in order to avoid delay issues from burst transmission. According to Revi-

riego, et al. [14], using burst transmission on a 10 Gbits/s EEE link can yield 

up to 80% energy reduction in certain situations. Due to queueing delay 

from packets coalescence, these situations typically are not time sensitive 

(e.g. file download or file indexing on servers). However, it is worthy to 

note that the energy reduction is approximately 5% for video streaming and 

download where the packet delay can have significant impact on user quality 

of experience. In high traffic scenarios, Meng and colleagues’ EEE policy 

[24] propose the use of a buffer and timeout based system. In cases where 

traffic is medial, the policy recommends using a buffer only system without 

timeout in order to receive optimum results. It is worth noting that this work 

has been accepted for publication in IEEE in March 2017. Mostowfi, et al. 

[25] reveal that setting the buffer size to 1000 packets and setting the timeout 

for 100 ms result in an 80% decrease in energy consumption. Their work 

also takes into account delay resulting from packet coalescence and esti-

mates an average packet delay of 50 ms under normal traffic load. Their 

findings show that sending traffic in bursts does not add delay to packet 

delivery but offer lower energy savings than their advertised 80%. It is worth 

noting that the scenario used for their experiments is a file download sce-

nario. Similar work is conducted by Aksić et al [26], in which they propose 

different buffer and time out values for different bandwidths. In 2012, Her-

reria-Alonso, et al. [29] develop an EEE model to explore the optimum val-

ues for buffer and timeout given an energy consumption threshold denoted 

by ‘n’. This threshold represents the maximum allowed energy consumption 

percentage over the ideal minimum. The optimum configuration of variables 

with ‘n’ = 5%, results in a timeout of 120 s and a queue of 25.73 frames. 

According to their simulations, burst transmission with these parameter val-

ues performs better than frame transmission in all traffic scenarios with no 

mention of the queueing delay created as a result. Other related work in-
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cludes Chakadkit and colleagues’ work [27] which involves changes in rout-

ers’ control plane in routers. They present EAGER and CARE, two OSPF 

metrics customized for augmenting the energy saving of IEEE 802.3az line 

cards. Both mechanisms take into consideration traffic and congestion and 

adaptive link rates. They claim an energy saving that is double to that of 

EEE with default mechanism. 

In summary, most of the related research reviewed, aims to improve ben-

efits of EEE using burst transmission. Research focuses on developing mod-

els using network simulations and testing the models against real world traf-

fic from internet sources. Generally, research reviewed claims savings 

between 50% to 90% over traditional Ethernet. However, these models are 

have not used real equipment in order to validate the results. Several re-

searches explore changes to existing EEE protocol in order to maximize sav-

ings. Some integrate EEE and adaptive link rate into a single mechanism. 

Changing link speed is the optimum solution for low traffic times since it 

only slows the flow of traffic without stopping. Meanwhile, EEE can be used 

in downtimes where there is no imminent traffic. 

Finally, our work extends the work conducted by Hossain, et al. [28] 

where they profile the power consumption of ethernet switches using exper-

iments. They utilize switches similar to the ones we use for our experiments. 

The work concludes with a power consumption model of the switch with a 

multitude of variables. Our work aims to add EEE to that power consump-

tion model in order to reflect the current status of industrial switches. Addi-

tionally, Reviriego, et al. [15] have developed a linear model for energy con-

sumption in switches. Similarly, we shall use a linear regression to model 

for our measured data. 

3. Underlying theories 

A survey of relevant research reveals that a majority of them model energy 

consumption of EEE followed by validating them using network simula-

tions. However, network simulators are not as reliable and accurate as real 

measurement obtained from physical network equipment. Therefore, for this 

research, we have obtained commercial grade network switches and evalu-

ate their power consumption against all a set of parameters. These parame-

ters include different bandwidths, 1Gbps, 100Mbps and 10Mbps, as well as 

different power savings algorithms such as EEE and sleep / hibernation.  

a. Unidirectional vs Bidirectional EEE  

According to the EEE standard [10], each EEE bandwidth has different im-

plementation. For example, 10 Gbps link are unidirectional while 1 Gbps 

links are bidirectional in nature. A unidirectional link only needs to sense a 

lack of traffic on its own end before deciding to trigger an LPI mode. On the 
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other hand, bidirectional links need to agree on both ends of the link on the 

lack of traffic before deciding to sleep. Imagine a scenario where two EEE 

capable PCs are directly connected to each other by a cable. If the link is 

10Gbps, each PC decides on its own when to sleep their respective ports. 

On the other hand, if the link that connects the two is a 1 Gbps link, both 

PCs have to communicate before deciding on when to trigger sleep mode. 

Transitions between sleep and wake cannot be interrupted in unidirectional 

links. Therefore, if a packet arrives to the equipment while it is transitioning 

to sleep, the packet has to wait for sleep to finish and wake to be conse-

quently triggered. Depending on the network configuration and sleep/wake 

transition times, this particular packet could be dropped or delayed. Bidirec-

tionality entails longer delays in 1 Gbps links when attempting to trigger 

sleep mode as both sides have to agree on when to trigger it. The switches 

used for our research have a maximum bandwidth of 1Gbps, thus, the EEE 

we assess is bidirectional. This means that for our experiments, every equip-

ment plugged into the switch is EEE capable else the interface reverts to 

legacy ethernet. 

b. Modelling Power (and Energy) Consumption  

Two types of power consumption models (with and without EEE) are ab-

stracted from the measurements. Although different bandwidths (i.e. 

10Mbps, 100Mbps, 1Gbps, or Fiber optic links) are available to test without 

EEE, their behavior is similar - power consumption of these ports is fixed 

and independent of the incoming traffic. With EEE, the power (and energy) 

consumption of the port is directly linked to incoming traffic. The port op-

erates in two modes: a low power LPI mode and full higher consuming 

power mode. As EEE merely changes the power consumption of the equip-

ment’s ports, it is crucial for our model to accurately represent this feature. 

Thus, our focus is on the measurements of the power consumption of ports. 

The EEE model has to both reflect the impact of the technology on the ports 

and the total consumption.  

c. Linear Regression Analysis  

Linear regression is the simplest and most commonly used prediction model. 

This type of regression analysis is used to explain the behavior of one fixed 

variable against one or more independent variables. The linearity of the pre-

dicted model can help shed light on the accuracy of the model. The basic 

shape of a linear equation is one with only one fixed variable and another 

unknown, independent variable. This basic linear model can be shown by 

this formula: y = c + b * x, where y is the predicted value, c, a constant, b 

represents a regression coefficient, and x is the independent variable. Be-

sides depicting correlation between different variables, regression models 
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can also be used to forecast trends. It can provide insight into the relationship 

between EEE and power consumption of our switches. The power consump-

tion of single switch ports (note: the number of switch ports is an independ-

ent variable) is the dependent variable which could be forecasted using our 

model. However, a primary concern with regression analysis is overfitting a 

model into the data by taking into account multiple independent variables. 

Diverse range of variables could lead to inefficient models. Simplicity of the 

developed model is key to its efficiency. Another concern would be under 

fitting a model. This problem occurs when models attempt to reveal a de-

pendence that does not exist. This problem could arise when independent 

variables do not affect the independent variable. Therefore, a bias towards 

certain aspects of the data could falsely lead a prediction of a non-existent 

linearity. 

4. METHODOLOGY 

 

In this section, we describe the tools and equipment used to conduct the ex-

periments. They include measurement tools, graphing tools and network 

equipment. 

a. Measurement Tools  

PowerSpy21 by Alciom (see Figure 2), is employed for 

the measurement of the switches’ power consumption. 

Plugging the switch into PowerSpy2 yields real time 

data on the power consumption of the switch. Pow-

erSpy2 is a wall plug that measures a myriad of infor-

mation about the plugged devices and the device uses 

bluetooth to communicate the data to a special software that only runs on 

windows. The biggest advantage of using PowerSpy2 is its ability to detect 

subtle changes in power consumption. In order to measure the ports’ power 

consumption, a measuring device that can detect variations in mW is re-

quired. PowerSpy2 has such a capability and it could measure as low as 10 

mW with an accuracy of 1%. The device’s baseline power consumption of 

1 W is automatically deducted from its measurements in order to present the 

most accurate data. The Alciom software displays information on Voltage, 

Current and Power in real time. A multitude of logging features are available 

as well as providing a download facility for all measured data in a csv for-

mat. Three main functions of the Powerlog software are: automatic import 

of PowerSpy2 log files on real time power consumption (see Figure 3 and 

                                                           
1http://www.alciom.com/en/products/powerspy2-en-gb-2.html  

 
Figure 2: PowerSpy2 

http://www.alciom.com/en/products/powerspy2-en-gb-2.html
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the focus is on the Prms (W0 

display of the dashboard), 

interactive power plot (see 

Figure 4) and statistics (see 

Figure 5). In Figure 4, the 

focus is on the power graph 

because it depicts the power 

consumption of the device. 

It provides a visualization of 

power consumption trends 

and could help provide in-

sight into anomalies or prob-

lems with the equipment. 

The software has control fa-

cility for resetting or restart-

ing all measurements. Fig-

ure 5 shows the following 

information about power 

consumption of the equip-

ment: average, standard de-

viation, maximum and min-

imum values. It provides a 

reset facility of the statistics. 

The crucial part of this re-

search is to be able to gener-

ate real traffic in order to 

evaluate how the network 

equipment reacts under real 

pressure. Hence, we use 

JPerf to generate all traffic 

for our experiments. JPerf is 

a graphic wrapper for the 

traffic generating utility IP-

erf. Details are found here2. 

Choice of Network Equip-
ment  

As our research goal is to test 

a piece of commercial grade equipment running EEE, we have opted for 

                                                           
2 http://wirelesslanprofessionals.com/wp-content/uploads/2011/02/How-to-Guide-on-JPerf-and-IP-

erf.pdf  

 
Figure 3: Real Time Power Consumption 

 

 
Figure 4: Power Consumption Graphing Tool 

 
Figure 5: Statistical Calculation of Powerlog Software 

http://wirelesslanprofessionals.com/wp-content/uploads/2011/02/How-to-Guide-on-JPerf-and-IPerf.pdf
http://wirelesslanprofessionals.com/wp-content/uploads/2011/02/How-to-Guide-on-JPerf-and-IPerf.pdf
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Cisco 2960-X switch. This particular switch is advertised as an energy sav-

ing solution for small offices and businesses. Besides EEE, the switch is also 

equipped with sleep/hibernation techniques that allow the network adminis-

trator to configure specific times where the switches would go into hiberna-

tion mode. This mode would not allow any traffic to pass through the 

switches and thus significantly reduces the power consumption. The inclu-

sion of these features in the switch allows us to pit EEE against other power 

saving techniques in order to better understand the benefits it yields. Exper-

iments conducted involve the use of two 24-port and two 48-port switches. 

In order to capture variations that could occur in the manufacture of 

switches, we have opted for two different switches of the same model. We 

have also opted for 24-port and 48-port variations in order to investigate 

how power consumption of the switch scales (if any) with the size of the 

switch. Two different sizes of switches could demonstrate if EEE could 

yield better results with bigger equipment (i.e. with more number of ports). 

b. Power Profiling of Switch Ports  

As previously mentioned, power profiling a switch’s ports is essential for 

the development of the power consumption model. Hence, devised experi-

ment procedures encompass placing a switch in an idle mode without any 

traffic followed by connecting the switch’s ports incrementally (i.e. one by 

one) to a network equipment. Connecting the network equipment to the 

switch activates that port in the switch and total power consumption for uti-

lizing that port is monitored by PowerSpy2 and displayed by its Powerlog 

software. For every port that is plugged, the statistics component is reset 

before the experiment commences (see Figure 5) and the total power con-

sumption of this port is logged. Each experiment is systematically carried 

out by connecting a port of the switch at a time until all ports of the switch 

have been connected. Each set of experiments involves 10 repeated runs. 

The architecture of our experimental setup is shown in Figure 6. As shown 

in Figure 6, two switches 

are employed for the exper-

iments. One switch is meas-

ured by PowerSpy2 while 

the other serves as a hub to 

connect the ports. Only one 

switch is measured at a time 

in order to be able to assess 

the power consumption of a 

single port. The setup is the 

same for both the 24-port 

 
Figure 6: Architecture of the Experimental Setup for Power 

Profiling Switch Ports 
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and 48-port variants. However, the 48-port variant is matched by another 

48-port variant in order to be able to connect all the ports. Our main aim of 

profiling the ports is to assess the impact of EEE. Hence, the set of experi-

ments are coded into two categories namely: (with) EEE and No EEE. When 

EEE is not enabled, the bandwidths are switched between 10 Mbits/s, 100 

Mbits/s, 1Gbits/s and Fiber optic port. However, when EEE is enabled, the 

only focus is on the highest available bandwidth which is 1 Gbits/s. As EEE 

is supposed to shut the ports when traffic is not present, coupling EEE with 

lower bandwidths is not a commercially viable option and consequently, 

only 1 Gbits/sEEE links are utilized. Experiments conducted are tabulated 

in Table 1. Once data is collected from these experiments, an appropriate 

power model is developed and utilized for the rest of the experiments. 
(with) EEE No EEE 

1. 1 Gbits/s link speed 

2. 100 Mbits/s link speed 

3. 10 Mbits/s link speed 

4. Fiber optic 

1. 1 Gbits/s link speed 

 

Table 1: Experiments (with) EEE and No EEE 

c. Power Measurement of Switch with Different Traffic Patterns 

The next set of experiments we devise are to measure the power consump-

tion of the switch under different traffic patterns in order to better estimate 

the benefits of deploying EEE in core networks. As EEE is heavily influ-

enced by traffic, we devise a set of tests to put it through its paces. We have 

consequently designed 4 different traffic scenarios intended to test EEE in 

all its different aspects. The traffic patterns are as follows: 
Traffic Patterns Description 

Full Traffic (FT) consists of a 100% load on the link for the entire duration of the ex-

periment 

Sinusoidal Traffic (ST) consists of a burst traffic for 20 seconds per each minute of the ex-

periment 

Short Low Sinusoidal Traffic (LST) consists of a burst traffic for 1 second per each minute of the experi-

ment 

Minimum Traffic (MT) consists of a constant load of 4 kbit/s over the link for the entire du-

ration of the experiment 

Table 2: Different Traffic Patterns 

In Table 2, ST and LST are examples of burst traffic chosen to test the via-

bility of sending traffic in bursts with EEE. Such traffic patterns are pre-

ferred patterns to balance performance and savings since EEE induce power 

savings in LPI states. Additionally, LST is chosen based on the delay re-

searchers claim when EEE switches between sleep and wake states. Sending 

a 1 second traffic forces the switch to quickly change state and hence, 

demonstrating the delay inherent to it. As for the MT pattern, according to 

the EEE standard [10], there is a threshold for incoming packet sizes that 

prevents EEE links from waking up. This threshold is set to prevent links 

from waking up under unnecessary traffic from STP packets and similar 
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protocols. Therefore, if we send packets which are sufficiently small, we can 

theoretically send traffic 

without waking up the links. 

The MT traffic pattern is set 

to test this aspect of EEE 

while FT pattern sets the up-

per limit of power consump-

tion in EEE. The architecture 

of the experiment setup is de-

picted in Figure 7. Based on 

Figure 7, two EEE capable 

PCs are connected to EEE en-

abled switch with PC 1 send-

ing various traffic patterns to 

PC 2. The experiments run for a duration of 10 minutes. When EEE is ab-

sent, the power consumption of a port is not affected by traffic as it always 

operates with maximum power. Hence, no traffic pattern is used for experi-

ments with No EEE. Experiments conducted are tabulated in Table 3. 
(with) EEE No EEE 

1. FT 

2. ST 

3. LST 

4. MT 

1. 1 Gbits/s bandwidth 

2. 100 Mbits/s bandwidth 

 

Table 3: Experiments (with) EEE and No EEE (24-port and 48-port) 

d. Compare Power Savings 

The final part of the experiments is to utilize our developed model for as-

sessing EEE against alternative solutions in a real scenario. Hence, we set 

up a scenario with a lab of 48 PCs. This scenario could be scaled up into a 

multitude of equivalent scenarios in a core network or data center environ-

ment. The options we have are either getting 2 x 24-port switches or a single 

48-port switch. Each switch can either be EEE enabled or a simple legacy 

ethernet switch. With legacy switches, ports could be shut down manually 

or switches completely turned off. The first scenario would be to test the 

power disparity between regular legacy switches of different sizes. This sce-

nario represents a situation where traffic is unpredictable. The network ad-

ministrator does not have access to traffic information and has no prediction 

of Up and Down times in the network. Therefore, the PCs in the lab are left 

continuously running for 24 hours a day. On a legacy switch, this means that 

the ports will never sleep but just keep running. As the traffic is considered 

to be a constant 24-hour traffic, there is no way we can measure the expected 

energy consumption using EEE. In order to calculate the energy consump-

tion with EEE, the number of idle hours has to be known. Additionally, two 

 
Figure 7: Architecture of the Experimental Setup for 

Power Measurement of Switch Based on Traffic 

Throughput 
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NO EEE switches are used for this experiment. Thus, we can only use legacy 

switches for this scenario and this provides the opportunity to compare en-

ergy consumption of switches with differing sizes. The setup of the experi-

ments is as follows: two NO EEE 24-port switches versus one NO EEE 48-

port switch. Additionally, it is interesting to investigate how much to sleep 

the greedier option in order to come up with a better alternative. For exam-

ple, how long should the two 24-port switches be shut down for their energy 

savings in order to match that of a single 48-port switch. This finding can 

inform network administrator of a better option for energy savings. On the 

other hand, if the network administrator knows that half of the PCs are not 

used at night, a second scenario could be devised in a manner whereby 24 

PCs will continuously work for 24 hours a day while the remaining 24 PCs 

could run for 16 hours a day. Given similar switches and parameters of the 

first experiment, the following scenario could be arranged: two NO EEE 24-

port switches versus one EEE 48-port switch; two NO EEE 24-port switches 

versus two EEE 24-port switch. Since a 48-port switch cannot be shut down 

at night as 24 ports are still needed, having a legacy 48-port switch in our 

scenario is not feasible. Therefore, choosing an EEE enabled 48-port switch 

for this scenario is a viable choice. On the other hand, as we have 24 PCs 

that can hibernate at night, we could then attach all these machines to the 

same switch and shut down the switch during the night. The second scenario 

arrangement is a direct comparison between EEE and legacy technologies 

while the first arrangement is a test of energy consumption scaling in 

switches. In this scenario, we can then test legacy methods of energy savings 

versus EEE in an attempt to see if EEE could bring about the needed benefits 

over its old fashioned manual counterpart. 

5. RESULTS AND DISCUSSION 

In this section, experimental results are presented and discussed. To reiterate 

experiments conducted are: with and without EEE for 24-port as well as 48-

port switches; different bandwidths; and finally, different traffic patterns. 

a. Power Profiling of Switch with 24 Ports (NO EEE and (with) EEE) 

For each variable set (i.e. bandwidth of 1 Gbits/s, 100 Mbits/s, and 10 

Mbits/s) in our methodology, all 24 ports in the switch are plugged in one 

by one with their corresponding power consumption measured. The base 

power consumption of the switch with no ports connected is measured at 

30.00W. Each spike in the graphs shown in Figures 8-11, represents a new 

link being plugged in for an EEE enabled (and without) switch. It is noted 

that the increase power consumption when a link is connected is consistent. 

A summary of the results is tabulated in Table 4. link being plugged in for 
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an EEE enabled (and without) switch. It is noted that the increase power 

consumption when a link is connected is consistent. A summary of the re-

sults is tabulated in Table 4.  

 

Table 4 shows that the average power consumption of a 1 Gbits/s link (NO 

EEE) is approximately 3 times more than 100 and 10 Mbits/s (NO EEE) 

while the difference between the latter two is less pronounced. On the other 

hand, the average power consumption of a 1 Gbits/s link without EEE is 

Power Consumption of Switch with 24 Ports 

 
Figure 8: 1 Gbits/s link speed (no EEE) 

 
Figure 9: 100 Mbits/s link speed (no EEE) 

 
Figure 10: 10 Mbits/s link speed (no EEE) 

 
Figure 11: 1 Gbits/s link speed (with EEE) 
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approximately 7 times that of a 1 Gbits/s link with EEE. A graphical repre-

sentation of the power consumption of the number of connected ports in a 

24-port switch (NO EEE) are depicted in Figure 12. Table 4 shows that the 

average increase in power consumption for each connected link is approxi-

mately 0.05 W. As there is no traffic passing through the switch, this in-

crease in power corresponds to the link in LPI mode. With the maximum 

power consumption of the link measured at 0.33 W for 1 Gbits/s link, LPI 

mode is about 15.1% of the maximum power consumption of the link. 
Column A 

Bandwidth 

Column B 

Average  

increase  

in power  

consumption for 

each new link (W) 

Column C 

Normalized 

value for  

Column B 

Column D 

Maximum con-

sumption for 

switch 24 con-

nected ports (W) 

Column E 

Normalized 

value for  

Column D 

1 Gbits/s (NO EEE) 0.33 1.00 37.88 1.00 

100 Mbits/s (NO EEE) 0.10 0.16 32.28 0.16 

10 Mbits/s (NO EEE) 0.07 0.07 31.66 0.07 

1 Gbits/s ((with) EEE 

in LPI state) 

0.05 0.00 31.22 0.00 

Table 4: A Summary of (with) EEE and NO EEE with 24 ports 

Table 5 shows that the average power consumption of a 1 Gbits/s link (NO 

EEE) is approximately 3 times more than 100 and 10 Mbits/s (NO EEE) 

while the difference between the latter two is less pronounced. On the other 

hand, the average power consumption of a 1 Gbits/s link without EEE is 

approximately 9 times that of a 1 Gbits/s link with EEE. A graphical repre-

sentation of the power consumption of the number of connected ports in a 

48-port switch (NO EEE) are depicted in Figure 13. Table 5 shows that the 

average increase in power consumption for each connected link is approxi-

mately 0.04 W. As there is no traffic passing through the switch, this in-

crease in power corresponds to the link in LPI mode. With the maximum 

power consumption of the link measured at 0.35 W for 1 Gbits/s link, LPI 

mode is about 11.4% of the maximum power consumption of the link. 
Column A 

Bandwidth 

Column B 

Average increase  

in power consump-

tion for each new 

link (W) 

Column C 

Normalized 

value for Col-

umn B 

Column D 

Maximum con-

sumption for 

switch 24 con-

nected ports (W) 

Column E 

Normalized 

value for Col-

umn D 

1 Gbits/s (NO EEE) 0.35 1.00 51.10 1.00 

100 Mbits/s (NO EEE) 0.10 0.20 39.34 0.20 

10 Mbits/s (NO EEE) 0.07 0.10 37.90 0.10 

1 Gbits/s ((with) EEE 

in LPI state) 

0.04 0.00 36.46 0.00 

Table 5: A Summary of (with) EEE and NO EEE with 48 ports 

b. Power Measurement of Switch According to Traffic Throughput 

For this set of experiments, two EEE enabled PCs are connected to a switch, 

sending traffic to each other. The parameters set for these experiments (see 

Table 3) are: four traffic patterns (i.e. FT, ST, LST, MT); two different link 

bandwidths (i.e. 1 Gbits/s and 100 Mbits/s); two different technologies (i.e. 
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EEE and No EEE). Each experiment runs for a duration of 10 minutes. Re-

sults of the experiments have been tabulated in Tables 6 and 7. Based on the 

results, it is evident that for a bandwidth of 1 Gbits/s, an EEE enabled switch 

will be more power efficient compared with one that is without EEE. Among 

all the different traffic patterns (for both the 24 and 48 ports), FT is the one 

that is not power efficient while MT is the most power efficient. 
Parameters (24-port) Total Power  

Consumption (W) 

Power Gain (%) 

Bandwidth EEE Traffic Pattern 

1 Gbits/s NO EEE  5.1050 0.00 

100 Mbits/s NO EEE  5.0250 1.57 

1 Gbits/s With EEE  5.0573 0.93 

1 Gbits/s With EEE FT 5.1479 -0.84 

1 Gbits/s With EEE ST 5.0846 0.40 

1 Gbits/s With EEE LST 5.0613 0.86 

1 Gbits/s With EEE MT 5.0591 0.90 

Note: 1 Gbits/s (NO EEE) is used as the benchmark 

Table 6: Total power consumption of a 24-port switch  

Power Consumption of Connected Ports with NO EEE (24-port) 

 
Figure 12: Power Consumption and the Number of Connected Ports with NO EEE in a 24-port 

Switch 

Power Consumption of Connected Ports with NO EEE (48-port) 

 
Figure 13: Power Consumption and the Number of Connected Ports with NO EEE in a 48-port 

Switch 
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Parameters (48-port) Total Power  

Consumption (W) 

Power Gain (%) 

Bandwidth EEE Traffic Pattern 

1 Gbits/s NO EEE  5.8730 0.00 

100 Mbits/s NO EEE  5.7916 1.39 

1 Gbits/s With EEE  5.7656 1.83 

1 Gbits/s With EEE FT 5.8988 -0.44 

1 Gbits/s With EEE ST 5.8196 0.91 

1 Gbits/s With EEE LST 5.7755 1.66 

1 Gbits/s With EEE MT 5.7693 1.77 

Note: 1 Gbits/s (NO EEE) is used as the benchmark 

Table 7: Total power consumption of a 48-port switch  

c. Overview of Power Consumption of EEE-enabled Switches 

The base power consumption of a 24-port switch with EEE (i.e. 30.10 W) 

is slightly higher than the switch without EEE (30.00 W see Section V.A). 

Once our PCs are connected, this power consumption rises to 30.19 W (see 

Figure 18). Our previous experiments show that a port in LPI consumes 

around 0.05 W power. The increase in power consumption approximately 

corresponds to the sum of two LPI consumption (hence, this data confirms 

previous LPI measurements). Once traffic reaches the switch, it seems that 

the power consumption corresponds accordingly and rises to 30.72 W (see 

Figure 18). This rise can be attributed to the ports moving to an LPI to an 

active state. This increase in power consumption is measured at around 0.25 

W per port. The sum of this figure and LPI consumption is 0.30 W, which 

approximately corresponds to the power consumption of 1 Gbits/s link with 

NO EEE (see Table 4). Therefore, with no traffic, the EEE link consumes 

around 2.02% of its possible maximum power value and the link consumes 

the maximum power value once a traffic arrives. It seems there is no visible 

real time delay between the sleep and wake transitions. The base power con-

sumption of a 48-port switch with EEE is at 34.54 W (see Section V. B).  

Once our PCs are connected, this power consumption rises to 34.62 W. 

Our previous experiments show that a port in LPI consumes around 0.04 W 

(see Table 5). The increase in power consumption approximately corre-

sponds to the sum of two LPI consumption (once again, this data confirms 

our previous measurements of LPI).  

When traffic reaches the switch, it seems that power consumption corre-

sponds accordingly and rises to 35.21 W (see Figure 19). This rise could be 

attributed to the ports moving from an LPI to an active state. This increase 

in power consumption is measured at around 0.30 W per port. If we add the 

LPI consumption to this figure, the result is 0.34 W, which corresponds to 

the power consumption of 1 Gbits/s link with No EEE (see Table 5). There-

fore, with no traffic, the EEE link consumes approximately 1.90% of its 

maximum power value and the link consumes the maximum power value on 

the arrival of the traffic. To reiterate, there is no visible real time delay be-

tween the sleep and wake transitions. 
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 Power Consumption of Switch with 48 Ports 

 
Figure 14: 1 Gbits/s link speed (no EEE) 

 
Figure 15: 100 Mbits/s link speed (no EEE) 

 
Figure 16: 10 Mbits/s link speed (no EEE) 

 
Figure 17: 1 Gbits/s link speed (with EEE) 

 

Power Consumption of EEE enabled Switch with ST Traffic Pattern 

 
Figure 18: 24-port 

 
Figure 19: 48-port 
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d. Comparison of Power Consumption of 24-port and 48-port 

Switches (With and Without EEE) 

To reiterate, the base power con-

sumption of the 24-port and 48-

port switches without any ports 

connected is 30.00 W and 34.54 

W respectively. The power con-

sumption of the switches after 

connecting the ports, are shown 

in Figure 20. Without EEE, the 

difference in the power consump-

tion is quite significant with the 

48-port consuming 51.1 W com-

pared to 37.88 W for the 24-port. The difference is less stark with EEE-

enabled where the consumption of the switch is 31.30 W and 35.61 W for 

the 24-port and 48-port variants respectively. It is also noted that the power 

consumption of a single switch port is slightly higher on the 48-port variant 

measuring at 0.35 W compared to its 24-port counterpart measuring at 0.33 

W. Another point to note is that when connecting 24 PCs to the 48-port 

switch, the difference between the power consumption of the switch and that 

of a 24-port one is merely the difference between their base power. As the 

links for both switches consume almost the same amount of power, the only 

difference between the two is the increased number of ports on the 48-port 

switch and the slight increase in base power consumption when no port is 

connected. These results are tabulated Tables 8 and further comparative 

analysis has been tabulated in Table 9. As the 48-port switch with all the 

ports connected has the highest total power consumption, it is used as the 

benchmark for the other configurations. The power gain indicates the power 

efficiency of using EEE-enabled switches. Based on the analysis shown in 

Table 8, a 48-port with 48 connected pcs seem to indicate the highest power 

gain. Table 9 depicts calculated power ratios to facilitate easy comparison. 

Based on the tabulated results, the following conclusions could be drawn. 

Firstly, a 24-port EEE-enabled switch with 24 connected pcs is more power 

efficient than a 48-port EEE-enabled switch with 24 connected pcs. On the 

other hand, a 48-port EEE-enabled switch with 48 connected pcs is more 

power efficient that two 24-port EEE-enabled switch with 48 connected pcs.  
Parameters Power Consumption (W) Power Gain 

(%) Switch No. of Con-

nected PCs 

Bandwidth Traffic NO EEE WITH 

EEE 

24-port 24 1 Gbits/s No Traffic 37.88 31.30 17.37 

48-port 24 1 Gbits/s No Traffic 42.82 35.52 17.05 

48-port 48 1 Gbits/s No Traffic 51.10 36.51 28.55 

Note: Power Gain is calculated efficiency gained for switches WITH EEE compared to NO EEE 

Table 8: Power Consumption for different configurations (With and Without EEE) 

Power Consumption of a 24-port and 48-port 

Switch with and without EEE 

 
Figure 20: 24-port and 48-port Switches 
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Parameters Power Consumption  

Switch No. of 

Con-

nected 

PCs 

Band-

width 

Traffic NO EEE 

(W) 

Power 

Ratio 

(NO 

EEE) 

WITH 

EEE 

(W) 

Power 

Ratio 

(WITH 

EEE) 

24-port 24 1 Gbits/s No Traffic 37.88 1.21 31.30* 1.00 

48-port 24 1 Gbits/s No Traffic 42.82 1.37 35.52 1.13 

48-port 48 1 Gbits/s No Traffic 51.10 1.63 36.51 1.17 

2 x24-port 48 1 Gbits/s No Traffic 75.76 2.42 62.60 2.00 

Note: The reference value is the lowest power consumption value with *. Additionally, the values for 2 x 24-port are 

derived from one 24-port for comparison purposes 

Table 9: Power Ratio for different configurations (With and Without EEE) 

e. Estimated Power (and Energy) Consumption Models 

The development of the power and energy models (see Table 10) for the 

switches in this research are derived from measurements discussed in pre-

ceding sections in this book chapter. As previously mentioned, a traffic of 4 

kbps (see Table 2) or less does not trigger a port to wake up. Hence, the 

power (and energy) consumption equation has to consider this condition. 

Consequently, when traffic is 4kbps or less, all ports remain in LPI mode.  
Switch Model Key 

NO EEE PS = (NP x PP) + PB                                              (1)  PS Power consumption of switch (W) 

PP Power consumption of a single port (W) 

PB Base power consumption of switch with 

no connected port (W) 

With EEE PS = (NSP x PLPI) + (NAP x PLPI) + PB     (2) PLPI Power consumption of a single port in 

LPI state (W) 

NP Number of connected ports 

NSP Number of ports in sleep state (ports with 

no traffic running through them) 

NAP Number of active ports (ports with traffic 

running through them) 

With EEE For B > 4kbps 

ES = PB  x TD  + NAP x (PP  x TA) +  

NSP x (PLPI  x TS)                               (3) 

ES Energy consumption of switch (Wh) 

B Bandwidth (kbps) 

For B <= 4kbps 

ES = (PB  + NP x PLPI) x TD                           (4) 

TA Total duration with traffic (h) 

TS Total duration without traffic (h) 

TD Total duration of experiment (h) 

TD =  TA  + TS 

Table 10: Power (and Energy) Consumption Models for the Switches 

f. Deployment of the Power (and Energy) Models to Estimate Power 

(and Energy Savings) 

In this section of the chapter, we shall use two scenarios to demonstrate 

how the Power (and Energy) Consumption Models tabulated in Table 10 

are deployed (see Tables 11 - 13). 
Scenario (1 Gbits/s) Formula Substitution Measured Values 

Scenario 1.1 

One NO EEE 24-port 

switch 

Use Equation 1 (Table 11) 

P24 = (24 x PP) + PB 

     = 24 x 0.33 + 30.00 W 

     = 37.92 W 

Per Port 

PP = 0.33 W (for 24-port, from Table 4) 

PP = 0.35 W (for 48-port, from Table 5) 
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Scenario 1.2 

Two NO EEE 24-port 

switches 

P24 x 2 = 2 x P24 = 2 x 37.92 W 

         = 75.84 W 

E24 x 2 = 75.84 W x 24 h 

         = 1820.26 Wh (per day) 

Per Switch 

PB = 30.00 W (for 24-port from Section V. 

A) 

PB = 34.54 W (for 48-port from Section V. 

B) 

Scenario 1.3 

One NO EEE 48-port 

switch 

 

Use Equation 1 (Table 11) 

P48 = (48 x PP) + PB 

     = 48 x 0.35 + 34.54 W 

     = 51.34 W 

E48 = 51.34 W x 24 (h) (per day) 

     = 1232.16 Wh 

 

NP = 24 (for 24-port switch) 

NP = 48 (for 48-port switch) 

TD = 24h (per day) 

Conclusion 1 Drawn for 

Scenarios 1.1-1.3 

P48 > P24, and the increase in power consumption is 35.39%. 

E48 < E24 x 2 , therefore, it is more energy efficient to use one 48-port switch then 2 separate 

24-port switches and the energy gain is 32.30%. 

 

Scenario 1.4 

Analysis for NO EEE 24-

port and 48-port switches 

 

Assumption: 

There are two 24-port and one 48-port 

switches.  Based on conclusion 1, the en-

ergy consumption (per day) for a 48-port is 

less than two 48-ports. The goal of the fol-

lowing analysis is to investigate how many 

hours to sleep the 2 x 48-port switches (per 

day) in order to bring about energy savings 

compared to 1 x 48-port switch. 

2 x P24 x TA <= E48  (from Scenario 1.3) 

2 x P24 x (24 - TS) <= E48   

TS => 24 – [E48/(2 x P24) (substitute for E48 

and P24 ) with values from Scenarios 1.1 

and 1.3) 

TS => 7.753 hours per day 

 

TA = Duration for an active port 

TS  = Duration for a sleeping port 

 

Conclusion 2 Drawn for 

Scenario 1.4 

The 2 x 24-port switches will have to sleep for at least 7.753 hours per day in order to be 

more energy efficient than 1 x 48-port switches (with NO EEE) 

Table 11: Scenario 1 - Deployment of Power (and Energy) Consumption Models for the Switches (NO 

EEE) 
Scenario (1 Gbits/s) Formula Substitution Measured Values 

Scenario 2.1 

Two NO EEE 24-port 

switches 

 

 

Scenario 2.1.1 Assumption 

One 24-port runs for 24h while another 

runs for 16h per day. 

 

From Scenario 1.1, the power consump-

tion of a NO EEE 24-port switch is: 

P24 = 37.92 W 

 

TD1 = 24h and TD2 = 16h 

E24x2 = (24 x P24) + (16 x P24) 

        = (24 x 37.92) + (16 x 37.92) Wh 

        = 1516.80 Wh 

Per Port 

PP = 0.33 W (for 24-port, from Table 4) 

PP = 0.35 W (for 48-port, from Table 5) 

PLPI = 0.05 W (for 24-port, from Section V. 

A) 

PLPI = 0.04 W (for 48-port, from Section V. 

B) 

Scenario 2.1.2 Assumption 

Both 24-port switches run for 16h per day. 

 

From Scenario 1.1, the power consump-

tion of a NO EEE 24-port switch is: 

P24 = 37.92 W 

 

TD2 = 16h 

E24x2 = 2 x (16 x P24) 

        = 1213.44 Wh 

Per Switch 

PB = 30.00 W (for 24-port from Section V. 

A) 

PB = 34.54 W (for 48-port from Section V. 

B) 

Scenario 2.2 

One EEE 48-port switch 
Assumption 

All 48 ports run continuously for 16h (per 

day) 

Only 24 ports (out of the 48 ports) run 

continuously for the remaining 8 hours 

while the other 24 ports are in sleeping 

mode 

NP = 24 (for 24-port switch) 

NP = 48 (for 48-port switch) 

NAP1 = 48 

NAP2 = 24 

NSP1 = 0 

NSP2 = 24 
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Part 1 Use Equation 3 (see Table 11) and 

TD2 = 16h 

E48(D2)  = PB  x TD2  + NAP1 x (PP  x TA1) 

              + NSP1 x (PLPI  x TS1) 

E48(D2)  = 34.54 x 16 + 48 x (0.35 x 16) 

              + 0 x (0.04 x 0) 

E48(D2)  = 821.44 Wh 

 

Part 2 Use Equation 3 (see Table 11) and 

TD3 = 8h 

E48(D3)  = PB  x TD3  + NAP2 x (PP  x TA2) 

              + NSP2 x (PLPI  x TS2) 

E48(D3)  = 34.54 x 8 + 24 x (0.35 x 8) 

              + 24 x (0.04 x 8) 

E48(D3)  = 351.20 Wh 

 

Part 3  

The total energy consumption per day 

E48(Total)  = E48(D2) + E48(D3)  

E48(Total)  = 821.44 W + 351.20 W 

             = 1172.64 W 

TD1 = 24h (per day) 

TD2 = 16h (per day) 

TD3 = 8h (per day) 

TA1 = 16h (per day) 

TA2 = 8h (per day) 

TS1  = 0h (per day) 

TS2  = 8h (per day) 

B > 4kbps 

Conclusion 3 Drawn for 

Scenarios 2.1.1-2.2 

Based on Scenario 2.1.1, E48 < E24 x 2 , therefore, it is more energy efficient to use one 48-

port switch than 2 separate 24-port switches so that some of the ports can go to sleep when 

there is reduced traffic. The energy gain for Scenario 2 is 22.68%. 

Based on Scenario 2.1.2, E48 < E24 x 2 , therefore, it is more energy efficient to use one 48-

port switch than 2 separate 24-port switches for the same running condition of 16h per day. 

The energy gain for Scenario 2 is 2.69%. 

Table 12: Scenario 2 - Deployment of Power (and Energy) Consumption Models for the Switches 

(EEE and NO EEE) 
Scenario (1 Gbits/s) Formula Substitution Measured Values 

Scenario 3.1 

Two NO EEE 24-port 

switches 

 

Assumption 

One 24-port switch runs for 24h (per day) 

while the other runs for 16h (per day). TD1 

= 24h and TD2 = 16h 

 

Use the outcome of Scenario 1.1 

E24x2 = 1516.80 Wh 

Per Port 

PP = 0.33 W (for 24-port, from Table 4) 

PP = 0.35 W (for 48-port, from Table 5) 

PLPI = 0.05 W (for 24-port, from Section V. 

A) 

PLPI = 0.04 W (for 48-port, from Section V. 

B) 

Per Switch 

PB = 30.00 W (for 24-port from Section V. 

A) 

PB = 34.54 W (for 48-port from Section V. 

B) 

Scenario 3.2 

Two EEE 24-port 

switches 

 

One 24-port switch runs for 24h (per day) 

while the other 24-port switch runs for 16h 

only (per day) with 8h in sleep mode. TD1 = 

24h and TD2 = 16h 

 

Part 1 Use Equation 3 (see Table 11) and 

TD1 = 24h (all 24 ports are active) 

E24(D1)  = PB  x TD1  + NAP1 x (PP  x TA1)  

              + NSP1  x (PLPI  x TS1) 

E24(D1)  = 30.00 x 24 + 24 x (0.33 x 24) 

              + 0 x (0.05 x 0) 

E24(D1)  = 910.08 Wh 

 

Part 2 Use Equation 3 (see Table 11) and 

TD2 = 16h (all 24 ports are active) 

E24(D2)  = PB  x TD2  + NAP2 x (PP  x TA2)  

              + NSP2 x (PLPI  x TS2) 

E24(D2)  = 30.00 x 16 + 24 x (0.33 x 16) 

              + 0 x (0.05 x 0) 

E24(D2)  = 606.72 Wh 

 

Part 3 Use Equation 4 (see Table 11) 

and TD3 = 8h (all 24 ports are sleeping) 

E24(D3)  =  (PB  + NP x PLPI) x TD3 

           =  (30.0 + 24 x 0.05) x 8 Wh 

           = 249.60 Wh 

                                              

 

NP = 24 (for 24-port switch) 

NP = 48 (for 48-port switch) 

NAP1 = 24 

NAP2 = 24 

NSP1 = 0 

NSP2 = 0 

NSP2 = 24 

 

TD1 = 24h (per day) 

TD2 = 16h (per day) 

TD3 = 8h (per day) 

TA1 = 24h (per day) 

TA2 = 16h (per day) 

TA3 = 0h (per day) 

TS1  = 0h (per day) 

TS2  = 0h (per day) 

TS3  = 8h (per day) 

B > 4kbps (for Part 2) 

B <= 4kbps (for Part 3) 
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The total energy consumption per day 

E24x2(Total)  = E24(D1) + E24(D2) + E24(D3)   

E24(Total)  = 910.08Wh + 606.72 Wh  

                +  249.60 Wh 

             = 1776.40 W 

Conclusion 4 Drawn for 

Scenarios 3.1-3.2 

E24 x 2  (With EEE)  < E24 x 2 (NO EEE) , therefore, it is more energy efficient to use two 24-

port switches (NO EEE) than 2 separate 24-port switches (With EEE) though one 24-port 

switch go to sleep for 8h. The energy loss for Scenario 3 is 16.46% 

Table 13: Scenario 3 - Deployment of Power (and Energy) Consumption Models for the Switches 
(EEE and NO EEE) 

In summary, results from power profiling the switch’s ports firstly showcase 

that without EEE, the power consumption of 1 Gbits/s link on a 24-port 

switch is on average 0.33 W for each new link added. Results from power 

profiling the ports on the 48-port switch on the other hand, firstly showcase, 

that without EEE, the consumption of 1 Gbits/s link is on average 0.35 W 

for each new link added. A 1 Gbits/s link then consumes 3 times more than 

a 100 Mbits/s with the latter consuming slightly more than 10 Mbits/s. The 

total energy consumption for a NO EEE 48-port is less that two separate NO 

EEE 24-port switches. If both run continuously for 24h per day, the energy 

gain is 32.30%.  Several scenarios have been created for the deployment of 

EEE-enabled 24-port and 48-port switches. One of the results to be high-

lighted for a scenario in Table 13 (2xNO EEE 24-port switch – one run for 

24h while the other 16h per day; and 2 x EEE 24-port switch – same running 

conditions) is that the latter incurs an energy loss of 16.46% when compared 

with the former. 

6. CONCLUSION 

During our experimentation, we have explored the power (and energy) con-

sumption of links in relation to their bandwidths and conclude that the power 

(and energy) consumption of ports will exponentially increase with the in-

crease of speed. With the emerging 10 Gbits/s links, the expected power 

(and energy) efficiency of those links will surpass our measured values for 

1 Gbits/s links. Our experimental measurements reveal that an EEE port runs 

at 12-15% of its total power when in low power mode. Therefore, the power 

savings (when no traffic is present) can constantly exceed 80%. However, 

our measurements equally show that the power (energy) consumption of a 

single port represents less than 1% of the total power (energy) consumption 

of the switch. The base power consumed by the switch without any port is 

still significantly high and is not affected by EEE. Experiment results also 

show that the base power consumption of switches does not significantly 

increase with the size of the switches. When doubling the size of the switch 

between 24 and 48 ports, we measure an increase of 35.39% in power (or 

energy) consumption. EEE also holds greater effect on bigger switches, with 

the power (or energy) gain on the EEE-enabled 48-port switch compared to 
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2 x EEE-enabled 24-port switch. However, it seems to be more energy effi-

cient to use 2 separate 24-port switches (NO EEE) than 2 separate 24-port 

switches (With EEE). 

The best use case for EEE is hence one where the equipment is very large 

and the traffic has a lot of downtime. According to statistics from Technavio 

[6], big data centers with link utilization rates of 30% and where the equip-

ment is very large, presents a perfect customer for a mass adoption of EEE. 

However, office spaces and computer labs will not sufficiently receive en-

ergy savings to justify a mass adoption of the technology. The implementa-

tion of EEE on the other hand, has delivered protocol related performance. 

There is no noticeable delay in transitioning from Sleep to Wake and the 

protocol delivers small but noticeable energy savings over regular 1 Gbps. 

Consequently, significant interest in re-implementing these tests on link 

speeds of 10Gbps and higher in order to assess potential benefits from EEE 

for such bandwidths. For future work, similar tests should be conducted for 

larger switches in order to test the benefits of deploying EEE in large data 

centers. Similarly, conducting similar tests on switches with different mod-

els and manufacturers will help generalize the results presented in this work. 
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