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This paper considers the design of the robust preview controller for a class of uncertain discrete-time Lipschitz nonlinear systems.
According to the preview control theory, an augmented error system including the tracking error and the known future information
on the reference signal is constructed. To avoid static error, a discrete integrator is introduced. Using the linear matrix inequality
(LMI) approach, a state feedback controller is developed to guarantee that the closed-loop system of the augmented error system is
asymptotically stable with𝐻∞ performance. Based on this, the robust preview tracking controller of the original system is obtained.
Finally, two numerical examples are included to show the effectiveness of the proposed controller.

1. Introduction

Preview control is an important control technique for
improving the tracking performance of the closed-loop
system by utilizing the known future information about
reference signals or disturbances [1–3]. Its study began in
the 1960s. Compared with other control methods, the main
advantages of preview control theory consist of enhancing
the transient response of the closed-loop system and reducing
energy consumption. In the past few years, a substantial
amount of research on preview control design has been
reported in the literature. In [4], the information fusion
estimation technique was adopted to address the discrete
linear preview tracking problem. In [5–7], the robust preview
control schemes were established to realize the problem of
asymptotic output tracking for several types of uncertain
linear discrete-time systems. In [8, 9], the design of optimal
preview controller for continuous- and discrete-time linear
descriptor systems was developed via the classical difference
method. In [10], the stochastic linear quadratic optimal
tracking problem with preview compensation for linear

continuous-time Markovian jump systems was investigated.
In addition to the theoretical progresses, practical applica-
tions can be found in many realistic physical systems such
as vehicle suspension systems [11, 12], robot systems [13], and
rigid body motion control systems [14, 15].

The Lipschitz system is a typical nonlinear system in
which the nonlinearity satisfies the Lipschitz condition.Many
physical models can be described by Lipschitz systems, such
as robotic manipulator [16] and Chua’s circuit [17]. Due to its
clear physical meaning, this class of systems has aroused con-
siderable interest [18–20]. Meanwhile, the uncertainties and
external disturbance frequently appear in control systems,
and they candegrade performance of the systems or even lead
to instability. In this situation, robust control theory plays an
important role in the field of practical engineering. Recently,
the robust tracking problem of Lipschitz systems has been
widely studied and different approaches have been proposed.
In [21], a novel nonlinear feedback controller was presented
to address the issue of robust output tracking with distur-
bance rejection for a class of Lipschitz nonlinear systems.
By combining adaptive principle with sliding mode control
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method, an LMI-based robust tracker design for Lipschitz
time-delay systemswas developed in [22]. In [23],𝐻∞ control
principle was applied to the robust tracking control problem
of Lipschitz switched dynamic systems. However, to the best
of our knowledge, few studies have been reported in the
literature concerning the robust output tracking problem for
uncertain Lipschitz nonlinear systems via preview control
method. This motivates the present investigation.

This paper considers the problem of designing a robust
tracking controller with preview action for a class of discrete-
time uncertain Lipschitz nonlinear systems. According to
preview control theory, our primary task is to construct an
augmented error system which incorporates the tracking
error and the reference preview information. In the litera-
ture, a classical approach consists of taking the forward or
backward difference operator on the system state and control
input. Unfortunately, this approach is not applicable in this
paper due to the uncertain and nonlinear characteristics of
system. To tackle this issue, we adopt an auxiliary variable
method to successfully derive the augmented error system.
Then, the robust preview tracking problem of the original
system is reduced into a robust control problem of the
augmented error system. Next, a state feedback controller is
developed, and some criteria are established using the LMI
technique to ensure that the closed-loop system is asymptot-
ically stable with𝐻∞ performance. Based on the criteria, the
robust tracking controller design with preview action for the
original system is derived. Finally, two numerical examples
authenticate the effectiveness of the proposed controller. The
main contributions of the present study lie in the following
aspects: (i) in real world, the system uncertainties and exter-
nal disturbances are unavoidable and, thus, they are taken
into account; (ii) in contrast to the conventional approach
[7, 24], a novel auxiliary variable approach is provided for the
first time to construct the augmented error system; (iii) the
robust tracking controller design via preview control method
is proposed for a class of uncertain Lipschitz systems.

Notations. 𝑅𝑛 denotes the n-dimensional Euclidean space;𝑅𝑛×𝑚 denotes the 𝑛 × 𝑚 matrix space; For a matrix 𝑃, 𝑃 > 0
means that 𝑃 is positive definite; for matrices 𝑃 and 𝑄, 𝑃 > 𝑄
stands for 𝑃 − 𝑄 > 0; 𝐼 and 0 denote the identity matrix
and the zeromatrixwith appropriate dimension, respectively;𝑙2[0,∞) refers to the space of square summable infinite vector
sequence and for 𝜔(𝑘) ∈ 𝑙2[0,∞), its norm is given by
‖𝜔(𝑘)‖2 = √∑∞𝑘=0 𝜔𝑇(𝑘)𝜔(𝑘); 𝑓󸀠(𝑥) represents the Jacobi
matrix of the vector function 𝑓(𝑥).
2. Problem Formulation

Consider the discrete-time nonlinear system

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘)) + (𝐴 + Δ𝐴) 𝑥 (𝑘) + (𝐵 + Δ𝐵) 𝑢 (𝑘)
+ 𝐿𝜔 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,
(1)

where 𝑥(𝑘) ∈ 𝑅𝑛 is the state and 𝑢(𝑘) ∈ 𝑅𝑚 is the
control input; 𝑦(𝑘) ∈ 𝑅𝑝 is the output and 𝜔(𝑘) ∈ 𝑅𝑞 is

the external disturbance belonging to 𝑙2[0,∞); 𝐴, 𝐵, 𝐿, 𝐶 are
constant matrices with appropriate dimensions and 𝐶 is of
full row rank. Δ𝐴 = Δ𝐴(𝑘, 𝑥, 𝛿) and Δ𝐵 = Δ𝐵(𝑘, 𝑥, 𝛿) are
uncertainmatrices that depend on time 𝑘, the state 𝑥, or some
parameter vector 𝛿. 𝑓(𝑥) ∈ 𝑅𝑛 is a nonlinear function vector.

The following assumptions are made for system (1).

Assumption 1. There exist real constant matrices with appro-
priate dimensions 𝐷𝑖, 𝐸𝑖 (𝑖 = 1, 2) and uncertain matricesΣ𝑖 = Σ𝑖(𝑘, 𝑥, 𝛿) (𝑖 = 1, 2) such that

Δ𝐴 = 𝐷1Σ1𝐸1,
Δ𝐵 = 𝐷2Σ2𝐸2,
Σ𝑇𝑖 Σ𝑖 ≤ 𝐼.

(2)

Assumption 1 describes the matching condition on the
parameter uncertainties, and it is a rather general assumption
for robust control problems.

Assumption 2 (see [25–27]). 𝑓(𝑥) is a nonlinear perturbation
satisfying 𝑓(0) = 0, and 𝑓󸀠(𝑥) exists and is continuous;
furthermore,

𝑓󸀠 (𝑥) = 𝑀𝐹(𝑥)𝑁, (3)

where 𝑀 ∈ 𝑅𝑛×𝑟, 𝑁 ∈ 𝑅𝑠×𝑛 are well-defined real
matrices and 𝐹(𝑥) ∈ 𝑅𝑟×𝑠 is a norm-bound matrix satisfying𝐹𝑇(𝑥)𝐹(𝑥) ≤ 𝐼.
Remark 3. Note that the class of systems satisfying Assump-
tion 2 is a subset of the class of Lipschitz nonlinear systems
and it widely exists in the literature [25–28]. As commented
in [25, 26], the Lipschitz property formulated in (3) does
not involve any approximation of nonlinearity by its norm;
thus this important formulation shall help to obtain less
conservative conditions, especially when the nonlinearity has
high Lipschitz constant. Moreover, we do not require𝑀,𝑁 to
be 𝑛 × 𝑛 dimensional matrices; thus, the condition about the
nonlinearity 𝑓(𝑥) in this paper is more general than that in
[25–27].

The reference signal is 𝑟(𝑘) and satisfies the following
assumption.

Assumption 4 (see [5, 6]). The reference signal 𝑟(𝑘) is pre-
viewable, and the preview length is𝑀𝑟; that is, at each time𝑘,𝑀𝑟 future values 𝑟(𝑘 + 1), 𝑟(𝑘 + 2), ⋅ ⋅ ⋅ , 𝑟(𝑘 + 𝑀𝑟), and the
current reference signal 𝑟(𝑘) are available. The future values
of the reference signal beyond 𝑘+𝑀𝑟 are assumed to be zeros,
namely,

𝑟 (𝑘 + 𝑖) = 0, 𝑖 = 𝑀𝑟 + 1,𝑀𝑟 + 2, ⋅ ⋅ ⋅ . (4)

Moreover, there exists a constant vector 𝑟 such that

lim
𝑘󳨀→∞

𝑟 (𝑘) = 𝑟. (5)

Remark 5. Assumption 4 describes the preview property of
the reference signal and is a basic assumption in preview
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control theory. References [1, 5] have shown that only the
recent previewable signal significantly affects the system
performance, and this time period is regarded as the preview
interval of the reference signal. The reference information
within the preview interval is known beforehand, while the
future reference values exceeding the preview interval are
unknown and generally assumed to be constant or zero.

The tracking error signal 𝑒(𝑘) is defined as

𝑒 (𝑘) = 𝑦 (𝑘) − 𝑟 (𝑘) . (6)

At the same time, we introduce the following quadratic
performance index

𝐽 = ∞∑
𝑘=0

[𝑒𝑇 (𝑘)𝑄𝑒𝑒 (𝑘) + 𝑢𝑇 (𝑘)𝐻𝑢 (𝑘)] , (7)

where𝑄𝑒 > 0,𝐻 > 0 are given weighting matrices.
Our objective is to design a controller with preview action

such that the output 𝑦(𝑘) tracks the reference signal 𝑟(𝑘)
without static error even in the presence of uncertainties and
external disturbance, that is,

lim
𝑘󳨀→∞

𝑒 (𝑘) = lim
𝑘󳨀→∞

(𝑦 (𝑘) − 𝑟 (𝑘)) = 0. (8)

Remark 6. The tracking control problems for continuous-
time Lipschitz systems have been widely studied in [21–23].
Nevertheless, there is very limited work on discrete-time
counterparts. It is well known that discrete-time systems
play an important role in the field of practical engineering.
Indeed, real-time monitoring and control are essentially
based on discrete-time dynamic systems. This has motivated
us to investigate the tracking control problem in discrete-
time. Moreover, our results are also applied to continuous-
time systems via discretization methods. Among them, Euler
approximation is the preferred technique.

Let us now recall three useful lemmas for the develop-
ment of our work.

Lemma 7 (see [7]). System 𝑥(𝑘+1) = 𝐴𝑥(𝑘) is asymptotically
stable if there exist matrices 𝑃 > 0 and 𝐺 such that

[𝑃 − 𝐺 − 𝐺𝑇 𝐺𝑇𝐴𝑇𝐴𝐺 −𝑃 ] < 0. (9)

Lemma 8 (see [29]). Let 𝑀, 𝑁, and 𝐹 be real matrices of
appropriate dimensions, with 𝐹 satisfying 𝐹𝑇𝐹 ≤ 𝐼. Then, the
following inequality holds for any constant 𝜇 > 0:

𝑀𝐹𝑁 + (𝑀𝐹𝑁)𝑇 ≤ 𝜇−1𝑀𝑀𝑇 + 𝜇𝑁𝑇𝑁. (10)

Lemma 9 ([30] (Schur complement lemma)). Symmetric
matrix [ 𝑆11 𝑆12

𝑆𝑇
12
𝑆22
] < 0 if and only if one of the following two

conditions is satisfied:

(i) 𝑆11 < 0, 𝑆22 − 𝑆𝑇12𝑆−111 𝑆12 < 0;
(ii) 𝑆22 < 0, 𝑆11 − 𝑆12𝑆−122 𝑆𝑇12 < 0.

3. Construction of the Augmented
Error System

Let 𝐴1 = ∫10 𝑀𝐹((1 − 𝜆)𝑥(𝑘))𝑁d𝜆. From the Mean-Value
theorem [31], we have

𝑓 (𝑥 (𝑘)) = ∫1
0
𝑀𝐹((1 − 𝜆) 𝑥 (𝑘))𝑁𝑥 (𝑘) d𝜆

= 𝐴1𝑥 (𝑘) .
(11)

Substituting (11) into the state equation of system (1) leads
to

𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴 + 𝐴1) 𝑥 (𝑘) + (𝐵 + Δ𝐵) 𝑢 (𝑘)
+ 𝐿𝜔 (𝑘) ,

𝑦 = 𝐶𝑥 (𝑘) .
(12)

The current goal is to construct the augmented error
system by incorporating the tracking error and the preview
information. Note that the traditional difference approach
[7, 24] is not applicable here because the system uncertainty
is related to time 𝑘. To overcome this difficulty, we propose a
novel auxiliary variable method. Since 𝐶 is of full row rank,
there exists a matrix 𝑇 such that

𝐶𝑇 = 𝐼. (13)

Hence, the auxiliary variable is selected as

𝑥∗ (𝑘) = 𝑇𝑟 (𝑘) . (14)

Define a new state vector 𝑥𝑠(𝑘) = 𝑥(𝑘) − 𝑥∗(𝑘). It yields
from (12) and (14) that

𝑥𝑠 (𝑘 + 1) = (𝐴 + Δ𝐴 + 𝐴1) 𝑥𝑠 (𝑘) + (𝐵 + Δ𝐵) 𝑢 (𝑘)
+ 𝐿𝜔 (𝑘) + (𝐴 + Δ𝐴 + 𝐴1) 𝑇𝑟 (𝑘)
− 𝑇𝑟 (𝑘 + 1) ,

(15)

Using the output equation of systems (1), (6), and (15), one
can obtain

𝑒 (𝑘 + 1) = 𝐶 (𝐴 + Δ𝐴 + 𝐴1) 𝑥𝑠 (𝑘)
+ 𝐶 (𝐵 + Δ𝐵) 𝑢 (𝑘) + 𝐶𝐿𝜔 (𝑘)
+ 𝐶 (𝐴 + Δ𝐴 + 𝐴1) 𝑇𝑟 (𝑘) − 𝑟 (𝑘 + 1) .

(16)

Taking the preview information about reference signal
into account, we define the following vector:

𝑥𝑟 (𝑘) =
[[[[[[
[

𝑟 (𝑘)
𝑟 (𝑘 + 1)
...

𝑟 (𝑘 +𝑀𝑟)

]]]]]]
]
. (17)

From Assumption 4, it is easily seen that

𝑥𝑟 (𝑘 + 1) = 𝐴𝑟𝑥𝑟 (𝑘) , (18)
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where

𝐴𝑟 =

[[[[[[[[[[[[[
[

0 𝐼 0 ⋅ ⋅ ⋅ 0
0 0 𝐼 ⋅ ⋅ ⋅ 0
... ... ... ...
0 0 0 ⋅ ⋅ ⋅ 𝐼
0 0 0 ⋅ ⋅ ⋅ 0

]]]]]]]]]]]]]
]

. (19)

Note that the vector 𝑥𝑟(𝑘) ∈ 𝑅𝑝(𝑀𝑟+1) is given by preview
and all future information on the reference signal available at
the time 𝑘 is summarized in (18). In this way, the reference
preview information can be incorporated into the controller
design conveniently.

Define an augmented state vector 𝑥𝑚(𝑘) =
[𝑒𝑇(𝑘) 𝑥𝑠𝑇(𝑘) 𝑥𝑇𝑟 (𝑘)]𝑇. From (15)-(18), one yields

𝑥𝑚 (𝑘 + 1) = (𝐴𝑚 + Δ𝐴𝑚) 𝑥𝑚 (𝑘)
+ (𝐵𝑚 + Δ𝐵𝑚) 𝑢 (𝑘) + 𝐿𝑚𝜔 (𝑘) ,

(20)

where

𝐴𝑚 = [[[[
[

0 𝐶𝐴 𝑆𝑒
0 𝐴 𝑆𝑥
0 0 𝐴𝑟

]]]]
]
,

Δ𝐴𝑚 = [[[[
[

0 𝐶 (Δ𝐴 + 𝐴1) Δ𝑆𝑒
0 Δ𝐴 + 𝐴1 Δ𝑆𝑥
0 0 0

]]]]
]
,

𝐵𝑚 = [[[[
[

𝐶𝐵
𝐵
0
]]]]
]
,

Δ𝐵𝑚 = [[[[
[

𝐶Δ𝐵
Δ𝐵
0
]]]]
]
,

𝐿𝑚 = [[[[
[

𝐶𝐿
𝐿
0
]]]]
]

(21)

and

𝑆𝑒 = [𝐶𝐴𝑇 −𝐼 0 ⋅ ⋅ ⋅ 0] ,
𝑆𝑥 = [𝐴𝑇 −𝑇 0 ⋅ ⋅ ⋅ 0] ,
Δ𝑆𝑒 = [𝐶 (Δ𝐴 + 𝐴1) 𝑇 0 0 ⋅ ⋅ ⋅ 0] ,
Δ𝑆𝑥 = [(Δ𝐴 + 𝐴1) 𝑇 0 0 ⋅ ⋅ ⋅ 0] .

(22)

Also, Δ𝐴𝑚, Δ𝐵𝑚 satisfy Δ𝐴𝑚 = ∫10 𝑀𝑚Π𝜆𝑁𝑚 d𝜆, Δ𝐵𝑚 =𝐷𝑚Σ2𝐸2, where

𝑀𝑚 = [[[[
[

𝐶𝐷1 𝐶𝑀
𝐷1 𝑀
0 0

]]]]
]
,

Π𝜆 = [[
Σ1 0
0 𝐹 ((1 − 𝜆) 𝑥 (𝑘))]]

,

𝑁𝑚 = [[
0 𝐸1 𝐸1𝑇 0 0 ⋅ ⋅ ⋅ 0
0 𝑁 𝑁𝑇 0 0 ⋅ ⋅ ⋅ 0]]

,

𝐷𝑚 = [[[[
[

𝐶𝐷2
𝐷2
0
]]]]
]
.

(23)

Remark 10. In the derivation of system (20), (11) plays an
important role in transforming the original nonlinear uncer-
tain system into a linear uncertain system.This facilitates the
preview controller design of Lipschitz nonlinear systems.

Notice that the control input of system (20) is 𝑢(𝑘) rather
than the difference of 𝑢(𝑘). If we directly develop a state
feedback controller for system (20), this controller will do
not include the integral of tracking error. Then, the corre-
sponding closed-loop system does not contain the integral
control action that is capable of handling the static error
[5]. To achieve the desired robust tracking performance and
eliminate the static error, a discrete integrator is introduced
as

V (𝑘 + 1) = V (𝑘) + 𝑒 (𝑘) , (24)

where the initial value V(⋅) can be arbitrarily assigned and
generally taken as zero.

Combining (20) and (24) leads to

𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴)𝑥 (𝑘) + (𝐵 + Δ𝐵) 𝑢 (𝑘)
+ 𝐿𝜔 (𝑘) , (25)
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where

𝑥 (𝑘) = [
[
𝑥𝑚 (𝑘)
V (𝑘) ]]

,

𝐴 = [
[
𝐴𝑚 0
𝑆𝑚 𝐼

]
]
,

𝑆𝑚 = [𝐼 0 0] ,

Δ𝐴 = [
[
Δ𝐴𝑚 0
0 0]]

,

𝐵 = [
[
𝐵𝑚
0 ]]
,

Δ𝐵 = [
[
Δ𝐵𝑚
0 ]]

,

𝐿 = [
[
𝐿𝑚
0 ]]
.

(26)

Moreover, Δ𝐴, Δ𝐵 satisfy

Δ𝐴 = ∫1
0
𝑀Π𝜆𝑁 d𝜆,

Δ𝐵 = 𝐷Σ2𝐸2,
(27)

where𝑀 = [𝑀𝑚
0
] , 𝑁 = [𝑁𝑚 0] , 𝐷 = [𝐷𝑚0 ].

The corresponding performance index for system (25) is
then changed to

𝐽 = 𝐽 + ∞∑
𝑘=0

V𝑇 (𝑘) 𝑄VV (𝑘) = ∞∑
𝑘=0

[𝑒𝑇 (𝑘)𝑄𝑒𝑒 (𝑘)
+ 𝑢𝑇 (𝑘)𝐻𝑢 (𝑘) + V𝑇 (𝑘)𝑄VV (𝑘)]

(28)

Define the performance signal

𝑧 (𝑘) = 𝐸𝑥 (𝑘) + 𝐷𝑢 (𝑘) , (29)

𝐸 = [[[[[
[

𝑄1/2𝑒 0 0 0
0 0 0 𝑄1/2V
0 0 0 0

]]]]]
]
,

𝐷 = [[[[
[

0
0
𝐻1/2
]]]]
]
.

(30)

Then, the performance index (28) is further transformed into

𝐽 = ∞∑
𝑘=0

𝑧𝑇 (𝑘) 𝑧 (𝑘) = ‖𝑧‖22 . (31)

In preview control theory, system (25) is usually called an
augmented error system. So far, the preview tracking problem
of system (1) has been reduced to a robust control problem of
system (25) under performance index (31).

4. Design of the Robust Preview Controller

For a prescribed scalar 𝛾 > 0, we aim to construct a state
feedback controller

𝑢 (𝑘) = 𝐾𝑥 (𝑘) (32)

for system (25) such that the resulting closed-loop system

𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾)𝑥 (𝑘) + 𝐿𝜔 (𝑘) (33)

is asymptotically stable. Also, the effect of 𝜔(𝑘) on the
performance signal 𝑧(𝑘) is attenuated below aprescribed level
in the𝐻∞ sense, namely,

𝐽𝜔 = ∞∑
𝑘=0

(𝑧𝑇 (𝑘) 𝑧 (𝑘) − 𝛾2𝜔𝑇 (𝑘) 𝜔 (𝑘)) < 0 (34)

for all nonzero 𝜔(𝑘) ∈ 𝑙2[0,∞) under zero initial conditions.
Theorem 11. Suppose that Assumptions 1–4 are satisfied. For
a prescribed scalar 𝛾 > 0, the closed-loop system (33) is
asymptotically stable with disturbance attenuation level 𝛾, if
there exist matrices 𝑃 > 0, 𝐺 and𝐾 such that

[[[[[[[
[

𝑃 − 𝐺 − 𝐺𝑇 0 𝐺𝑇 (𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾)𝑇 𝐺𝑇 (𝐸 + 𝐷𝐾)𝑇
0 −𝛾2𝐼 𝐿𝑇 0

(𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾)𝐺 𝐿 −𝑃 0
(𝐸 + 𝐷𝐾)𝐺 0 0 −𝐼

]]]]]]]
]
< 0. (35)
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Proof. System (33) with 𝜔(𝑘) = 0 is first considered. We
implement a congruence transformation to (35) with an
invertible symmetric matrix Γ defined by

Γ = [[[
[

𝐼 0 0 00 0 𝐼 00 𝐼 0 00 0 0 𝐼
]]]
]
. (36)

Pre- and postmultiplying (35) by Γ and its transpose, respec-
tively, one can obtain that

[[[[[[[
[

𝑃 − 𝐺 − 𝐺𝑇 𝐺𝑇 (𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾)𝑇 0 𝐺𝑇 (𝐸 + 𝐷𝐾)𝑇
(𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾)𝐺 −𝑃 𝐿 0

0 𝐿𝑇 −𝛾2𝐼 0
(𝐸 + 𝐷𝐾)𝐺 0 0 −𝐼

]]]]]]]
]
< 0. (37)

Thus, the following inequality holds

[
[

𝑃 − 𝐺 − 𝐺𝑇 𝐺𝑇 (𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾)𝑇
(𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾)𝐺 −𝑃 ]

]
< 0.

(38)

In the light of Lemma 7, system (33) is asymptotically stable
with 𝜔(𝑘) = 0.

Then consider the Lyapunov function 𝑉(𝑥) = 𝑥𝑇𝑃−1𝑥.
For system (33) under zero initial conditions, 𝐽𝜔 in (34) is
equivalent to

𝐽𝜔 = ∞∑
𝑘=0

[𝑧𝑇 (𝑘) 𝑧 (𝑘) − 𝛾2𝜔𝑇 (𝑘) 𝜔 (𝑘) + Δ𝑉 (𝑥 (𝑘))]
+ 𝑉 (𝑥 (0)) − 𝑉 (𝑥 (∞))

≤ ∞∑
𝑘=0

[𝑧𝑇 (𝑘) 𝑧 (𝑘) − 𝛾2𝜔𝑇 (𝑘) 𝜔 (𝑘) + Δ𝑉 (𝑥 (𝑘))]

= [𝑥 (𝑘)𝜔 (𝑘)]
𝑇Ω[𝑥 (𝑘)𝜔 (𝑘)]

(39)

where

Ω
= [
[
𝐴𝑐𝑇𝑃−1𝐴𝑐 − 𝑃−1 + (𝐸 + 𝐷𝐾)𝑇 (𝐸 + 𝐷𝐾) 𝐴𝑐𝑇𝑃−1𝐿

𝐿𝑇𝑃−1𝐴𝑐 𝐿𝑇𝑃−1𝐿 − 𝛾2𝐼]]
(40)

with 𝐴𝑐 = 𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾.
Based on the above analysis, 𝐽𝜔 ≤ 0 holds if Ω < 0 is

satisfied. Next, we will prove that condition (35) guaranteesΩ < 0.
From (35) and the inequality −𝐺𝑇𝑃−1𝐺 ≤ 𝑃−𝐺−𝐺𝑇, one

can obtain that

[[[[[[[
[

−𝐺𝑇𝑃−1𝐺 0 𝐺𝑇 (𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾)𝑇 𝐺𝑇 (𝐸 + 𝐷𝐾)𝑇
0 −𝛾2𝐼 𝐿𝑇 0

(𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾)𝐺 𝐿 −𝑃 0
(𝐸 + 𝐷𝐾)𝐺 0 0 −𝐼

]]]]]]]
]
< 0. (41)

Performing a congruence transformation to the above
inequality with the invertible matrix diag(𝐺−𝑇, 𝐼, 𝐼, 𝐼) yields

[[[[[[[
[

−𝑃−1 0 (𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾)𝑇 (𝐸 + 𝐷𝐾)𝑇
0 −𝛾2𝐼 𝐿𝑇 0

𝐴 + Δ𝐴 + 𝐵𝐾 + Δ𝐵𝐾 𝐿 −𝑃 0
𝐸 + 𝐷𝐾 0 0 −𝐼

]]]]]]]
]
< 0. (42)
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Notice that diag(−𝑃, −𝐼) < 0; then applying Lemma 9 to (42)
leads toΩ < 0. The proof is completed.

Indeed, the inequality (35) provided in Theorem 11
cannot be applied directly due to the presence of some
uncertain terms. Thanks to Lemmas 8 and 9, the condition in

Theorem 11 can be converted into the computationally
tractable LMI condition.

Theorem 12. Suppose that Assumptions 1–4 are satisfied. For
a prescribed scalar 𝛾 > 0, system (33) is asymptotically stable
with disturbance attenuation level 𝛾, if there exist matrices 𝑃 >0, 𝐺, and𝑊 and a scalar 𝜀 > 0 such that

[[[[[[[[[[[[[
[

𝑃 − 𝐺 − 𝐺𝑇 0 𝐺𝑇𝐴𝑇 +𝑊𝑇𝐵𝑇 𝐺𝑇𝐸𝑇 +𝑊𝑇𝐷𝑇 𝐺𝑇𝑁𝑇 𝑊𝑇𝐸𝑇2
0 −𝛾2𝐼 𝐿𝑇 0 0 0

𝐴𝐺 + 𝐵𝑊 𝐿 −𝑃 + 𝜀 (𝑀𝑀𝑇 + 𝐷𝐷𝑇) 0 0 0
𝐸𝐺 + 𝐷𝑊 0 0 −𝐼 0 0
𝑁𝐺 0 0 0 −𝜀𝐼 0
𝐸2𝑊 0 0 0 0 −𝜀𝐼

]]]]]]]]]]]]]
]

< 0. (43)

Furthermore, the feedback gain matrix 𝐾 is given by 𝐾 =𝑊𝐺−1.
Proof. Let the left-hand side of inequality (35) be Φ. From
(27),Φ can be expressed as

Φ = Ψ + ∫1
0
(𝑀𝑙Σ𝜆𝑁𝑙 + 𝑁𝑙𝑇Σ𝑇𝜆𝑀𝑙𝑇) 𝑑𝜆, (44)

where

Ψ

=
[[[[[[[
[

𝑃 − 𝐺 − 𝐺𝑇 0 𝐺𝑇 (𝐴 + 𝐵𝐾)𝑇 𝐺𝑇 (𝐸 + 𝐷𝐾)𝑇
0 −𝛾2𝐼 𝐿𝑇 0

(𝐴 + 𝐵𝐾)𝐺 𝐿 −𝑃 0
(𝐸 + 𝐷𝐾)𝐺 0 0 −𝐼

]]]]]]]
]
,

𝑀𝑙 =
[[[[[
[

0 0
0 0
𝑀 𝐷
0 0

]]]]]
]
,

Σ𝜆 = [Π𝜆 00 Σ2] ,

𝑁𝑙 = [ 𝑁𝐺 0 0 0
𝐸2𝐾𝐺 0 0 0] .

(45)

It can be verified that Σ𝜆𝑇Σ𝜆 ≤ 𝐼; then from Lemma 8, it
follows that

𝑀𝑙Σ𝜆𝑁𝑙 + 𝑁𝑙𝑇Σ𝑇𝜆𝑀𝑙𝑇 ≤ 𝜀𝑀𝑙𝑀𝑙𝑇 + 𝜀−1𝑁𝑙𝑇𝑁𝑙. (46)

Notice that the right-hand side of inequality (46) is irrelevant
to 𝜆; thus its integral over [0, 1] is itself. By exploiting the
property of integral, one has

∫1
0
(𝑀𝑙Σ𝜆𝑁𝑙 + 𝑁𝑙𝑇Σ𝑇𝜆𝑀𝑙𝑇) 𝑑𝜆
≤ 𝜀𝑀𝑙𝑀𝑙𝑇 + 𝜀−1𝑁𝑙𝑇𝑁𝑙.

(47)

From (44) and (47), the following inequality is obtained:

Φ ≤ Ψ + 𝜀𝑀𝑙𝑀𝑙𝑇 + 𝜀−1𝑁𝑙𝑇𝑁𝑙. (48)

Thus,Φ < 0 ifΨ+𝜀𝑀𝑙𝑀𝑙𝑇+𝜀−1𝑁𝑙𝑇𝑁𝑙 < 0. Applying Lemma9
again, Ψ + 𝜀𝑀𝑙𝑀𝑙𝑇 + 𝜀−1𝑁𝑙𝑇𝑁𝑙 < 0 is equivalent to

[Ψ + 𝜀𝑀𝑙𝑀𝑙𝑇 𝑁𝑙𝑇𝑁𝑙 −𝜀𝐼] < 0. (49)

Letting𝑊 = 𝐾𝐺, then (49) can be formulated in the form of
(43). Thus, if LMI (43) holds, then inequality (35), i.e.,Φ < 0,
holds.Theorem 12 is derived immediately byTheorem 11.This
completes the proof.

In order to make the controller structure clear and
highlight the preview action of reference information, we
partition the control gain matrix 𝐾 so that

𝐾
= [𝐾𝑒 ¦ 𝐾𝑥 ¦ 𝑘𝑟 (0) 𝑘𝑟 (1) ⋅ ⋅ ⋅ 𝑘𝑟 (𝑀𝑟) ¦ 𝐾V] . (50)

Then (32) can be rewritten as

𝑢 (𝑘) = 𝐾𝑒𝑒 (𝑘) + 𝐾𝑥𝑥𝑠 (𝑘) +
𝑀𝑟∑
𝑖=0

𝑘𝑟 (𝑖) 𝑟 (𝑘 + 𝑖)
+ 𝐾VV (𝑘) .

(51)

Based on the above analysis, the main result of this paper is
summarized below.
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Theorem 13. Suppose that Assumptions 1–4 are satisfied. If
LMI (43) in Theorem 12 is feasible, then the robust preview
controller of system (1) is

𝑢 (𝑘) = 𝐾𝑒𝑒 (𝑘) + 𝐾𝑥𝑥 (𝑘) +
𝑀𝑟∑
𝑖=0

𝑘𝑟 (𝑖) 𝑟 (𝑘 + 𝑖)
+ 𝐾V(𝑘−1∑

𝑖=0

𝑒 (𝑖) + V (0)) − 𝐾𝑥𝑇𝑟 (𝑘) .
(52)

where control gains 𝐾𝑒, 𝐾𝑥, 𝑘𝑟(0), 𝑘𝑟(1), ⋅ ⋅ ⋅ , 𝑘𝑟(𝑀𝑟), 𝐾V are
determined by (50). Under this controller, the output 𝑦(𝑘) can
track the reference signal 𝑟(𝑘) without static error.
Remark 14. Note that the controller design strategy provided
in this paper consists of five parts. As shown in (52), the
first part represents the compensation action on the tracking
error, the second part represents the state feedback control
action, the third part is the preview compensator with respect
to the reference signal, the fourth part is the integral action
on the tracking error, and the last one depends on the current
reference information. It should be pointed out that the key
point for improving tracking performance consists of the
efficient use of the reference preview information, i.e., the pre-
view compensator, which is not taken into account in [21–23].

Remark 15. Notice that, without the nonlinearity and the
external disturbance, system (1) is reduced to a discrete-time
linear system with norm-bounded parameter uncertainties.
The stabilization problem for such a system has been deeply
investigated in [32–34]. It is noteworthy that, in this paper,
the zero solution of the closed-loop system of system (1) is
asymptotically stable in the case, where 𝑟(𝑘) is identically
equal to zero. Note that in this situation 𝑥(𝑘) becomes a part
of the augmented state vector due to 𝑥𝑠(𝑘) = 𝑥(𝑘) − 𝑥∗(𝑘) =𝑥(𝑘) − 𝑇𝑟(𝑘) = 𝑥(𝑘). Thus, if the reference signal is 𝑟(𝑘) ≡ 0,
the stabilization of system (1) can be achieved. That is, the
stabilization issue is a special case of this paper. It should be
emphasized that our proposed controller design is developed
via the error system method; therefore, this method which
is used to study stability problem is quite different from
that in [32–34]. In addition, it should be mentioned that the
controller design schemes discussed in [18, 35] are only effec-
tive for achieving stabilization of Lipschitz systems and not
suitable to deal with the tracking problem considered here.

Remark 16. The choice of the design parameters will directly
influence the tracking performance. To achieve satisfactory
control effect, the related design parameters can be selected
using the classic trial-and-error technique [36–38] but sub-
ject to satisfaction of all the requirements made in the paper.

5. Numerical Examples

Example 1. Consider the single-link flexible joint robot sys-
tem [39–42]

𝑥̇ (𝑡) = 𝑔 (𝑥 (𝑡)) + 𝑇𝑥 (𝑡) + 𝐷𝑢 (𝑡) ,
𝑦 (𝑡) = 𝐶𝑥 (𝑡) , (53)

where

𝑔 (𝑥 (𝑡)) = [[[[[
[

0
0
0

−3.33 sin (𝑥3 (𝑡))

]]]]]
]
,

𝑇 = [[[[[
[

0 1 0 0
−48.6 −1.25 48.6 0
0 0 0 1
19.5 0 −19.5 0

]]]]]
]
,

𝐷 = [[[[[
[

0
21.6
0
0

]]]]]
]
,

𝐶 = [[[[[
[

0.7
0
2.9
0

]]]]]
]

𝑇

.

(54)

We suppose that system (53) is subject to parameter
uncertainties and external disturbance. Under this assump-
tion, system (60) can be rewritten under the form

̇𝑥 (𝑡) = 𝑔 (𝑥 (𝑡)) + (𝑇 + Δ𝑇) 𝑥 (𝑡) + (𝐷 + Δ𝐷) 𝑢 (𝑡)
+ 𝐵𝜔𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,
(55)

where 𝐵𝜔 = [−0.1 0 0.2 0]𝑇 , Δ𝑇 = 𝐷1Σ1𝐸1, Δ𝐷 =𝐷2Σ2𝐸2 with

𝐷1 =
[[[[[
[

0.01 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

]]]]]
]
,

Σ1

= [[[[[
[

𝑎 0 0 0
0 0.1sin (10𝜋𝑡) + 𝑎 0 0
0 0 0.2sin (10𝜋𝑡) + 𝑎 0
0 0 0 0.01

]]]]]
]
,
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𝐸1 =
[[[[[
[

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

]]]]]
]
,

𝐷2 =
[[[[[
[

0.1 0 0 0
0 0.1 0 0
0 0 0 0
0 0 0 0

]]]]]
]
,

Σ2 = 04×4,

𝐸2 =
[[[[[
[

0.01
0
0
0

]]]]]
]
,

(56)

where 𝑎 is an uncertain parameter, which varies between−0.5 and 0.5, i.e., −0.5 ≤ 𝑎 ≤ 0.5. The external disturbance
is taken as 𝜔(𝑡) = sin(𝑡) exp(−2𝑡). The other parameters𝑔(𝑥(𝑡)), 𝑇, 𝐷,𝐶 are defined as described previously.

By applying the Euler discretization to system (55) with
the sample time 𝛿, a discrete-time system is obtained in the
form

𝑥 (𝛿 (𝑘 + 1)) = 𝑓 (𝑥 (𝛿𝑘)) + (𝐴 + Δ𝐴) 𝑥 (𝛿𝑘)
+ (𝐵 + Δ𝐵) 𝑢 (𝛿𝑘) + 𝐿𝜔 (𝛿𝑘) ,

𝑦 (𝛿𝑘) = 𝐶𝑥 (𝛿𝑘) ,
(57)

where𝑓(𝑥) = 𝛿𝑔(𝑥), 𝐴 = 𝐼+𝛿𝑇, Δ𝐴 = 𝛿Δ𝑇, 𝐵 = 𝛿𝐷, Δ𝐵 =𝛿Δ𝐷, 𝐿 = 𝛿𝐵𝜔.
It is clear that 𝐶 is of full row rank, 𝜔(𝛿𝑘) =

sin(𝛿𝑘) exp(−2𝛿𝑘) ∈ 𝑙2[0,∞), and Σ𝑖 (𝑖 = 1, 2) satisfiesΣ𝑇𝑖 Σ𝑖 ≤ 𝐼. Moreover, 𝑓(0) = 0 and some matrices related to
(3) are obtained as follows:

𝑀 = [[[[[
[

0
0
0
√3.33

]]]]]
]
,

𝑁 = 𝛿 [0 0 −√3.33 0] ,
𝐹 (𝑥) = cos (𝑥3) .

(58)

Set 𝛿 = 0.05𝑠, 𝐻 = 0.01, 𝑄𝑒 = 0.01, 𝑄V = 0.1 and 𝛾 =1.5. 𝑇 = [1 0 3/29 0]𝑇 is a solution of (13). To compare
the effect of the preview length on the tracking performance,
three cases are considered, including 𝑙𝑟 = 0𝑠 (i.e.,𝑀𝑟 = 0),𝑙𝑟 = 0.25𝑠 (𝑀𝑟 = 5), and 𝑙𝑟 = 0.4𝑠 (𝑀𝑟 = 8). By solving LMI
(43) in Theorem 12, the desired controller can be obtained.
Then, the closed-loop output is derived.
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Figure 1: The output response to reference signal (59).
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Figure 2: The tracking error to reference signal (59).

For the purpose of simulation, the reference signal 𝑟(𝑡) is
taken as

𝑟 (𝑡) =
{{{{{{{{{

0, 𝑡 < 1.5
3 (𝑡 − 1.5) , 1.5 ≤ 𝑡 ≤ 2.5
3, 𝑡 > 2.5.

(59)

We assume that the preview length of 𝑟(𝑡) is 𝑙𝑟 and denote𝑀𝑟 = 𝑙𝑟/𝛿.
The closed-loop output and the tracking error are pre-

sented in Figures 1 and 2, respectively. Figure 3 shows the
control input. It is observed that all output trajectories can
track the reference signal without static error, irrespective of
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Table 1: Performance index results.

Performance Index Standard𝐻∞ controller Preview controller
(𝑀𝑟 = 5) Preview controller

(𝑀𝑟 = 8)
IAE 22.9754 8.7716 1.9887
ISE 21.5247 3.2716 0.2359
ITAE 1025.2860 378.9774 81.4084
ITSE 954.8567 141.3613 9.4950
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Figure 3:The control input to reference signal (59).

the uncertainties and disturbances. The simulations authen-
ticate the fine and robust performance of the controllers.
Moreover, compared with the controller without preview,
the controller with preview action provides better tracking
performance even in the presence of uncertainties and
external disturbance. Furthermore, as shown in Table 1, the
effectiveness of the controller is evaluated and compared with
standard𝐻∞ controller using error performance indices. We
can clearly see that all these performance indices values are
decreased when using the preview controller. This is because
our proposed controller not only has disturbance rejection
ability but also includes preview compensator for improving
tracking quality.

When the reference signal is taken as

𝑟 (𝑡) = {{{
0, 𝑡 < 1.5
3, 𝑡 ≥ 1.5 (60)

the simulation results are shown in Figures 4, 5, and 6.
Figure 4 shows the output response of the closed-loop sys-

tem. Figure 5 illustrates the tracking error between the actual
and desired outputs, and Figure 6 plots the control input. It
is concluded from these figures that the control techniques
in three cases are all capable of overcoming uncertainties and
external disturbances and provide asymptotic tracking of the
reference signal. The difference is that our proposed preview
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Figure 4: The output response to reference signal (60).
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Figure 5: The tracking error to reference signal (60).

controller produces faster response, shortens the settling
time, and reduces the overshoot simultaneously compared to
the controller without preview. This is because in the design
of the controller the compensation action on the reference
signal is taken into account in addition to robustness. Table 2
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Table 2: Performance index results.

Performance Index Standard𝐻∞ controller Preview controller
(𝑀𝑟 = 5) Preview controller

(𝑀𝑟 = 8)
IAE 24.9509 13.4162 10.0432
ISE 52.7359 18.3726 8.8157
ITAE 877.6702 446.0528 311.4555
ITSE 1756.4146 580.1884 261.7284
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Figure 6: The control input to reference signal (60).

shows that using the preview controller helps to reduce
the values of error performance indexes. Also, the closed-
loop system can achieve better performance by adjusting the
preview length.

The practical example above confirms the effectiveness
of preview controller in improving the tracking performance
of the system. A continuous-time system is considered in
Example 1. Next, a discrete-time uncertain Lipschitz system
will be presented.

Example 2. Considering system (1), the relevant parameters
are as follows:

𝐴 = [1.3 0
0.2 0.85] ,

𝐵 = [0.20 ] ,

𝐿 = [0.10 ] ,
𝐶 = [0.05 0.5] ,
𝐷1 = [−0.1 00 0.2] ,

𝐸1 = [0.01 0
0 −0.01] ,

Σ1 = [ 0.1𝑎 0.3 sin (0.5𝜋𝑘) + 𝑎
0.2 cos (0.3𝜋𝑘) + 𝑎 −0.01 ] ,

𝐷2 = Σ2 = 02×2,
𝐸2 = 02×1.

(61)

The uncertain parameter 𝑎 varies between −0.5 and 0.5, i.e.,−0.5 ≤ 𝑎 ≤ 0.5. The nonlinear function and the external
disturbance are taken as 𝑓(𝑥) = [ 0.002 arctan(𝑥2)

0.001 sin(𝑥1)+0.004(𝑥2) ] and𝜔(𝑘) = 𝑘 exp(−0.2𝑘) ∈ 𝑙2[0,∞), respectively.
Clearly, 𝐶 has full row rank and Σ𝑖 (𝑖 = 1, 2) satisfies

(2). Moreover, 𝑓(0) = 0 and the matrices related to (3) are
obtained as follows:

𝑀 = [ 0 0.10.2 0 ] ,

𝐹 (𝑥) = [[
[
0.5 cos (𝑥1) 0.2

0 0.21 + 𝑥22
]]
]
,

𝑁 = [0.01 00 0.1] .

(62)

Set 𝛾 = 0.32, 𝐻 = 0.05, 𝑄𝑒 = 0.1, 𝑄V = 1, and 𝑇 =[0 2]𝑇. For the ease of comparison, three cases are discussed,
including𝑀𝑟 = 0,𝑀𝑟 = 2, and𝑀𝑟 = 5. In the same way, the
controller gain matrix is determined by solving LMI (43) in
Theorem 12 and then the output of the closed-loop system is
derived.

To carry out the simulation, the reference signal is taken
as

𝑟 (𝑘) =
{{{{{{{{{

0, 𝑘 < 20
0.15 (𝑘 − 20) , 20 ≤ 𝑘 ≤ 40
3, 𝑡 > 40

(63)

The numerical simulation results are shown in Figures 7,
8, and 9.

Figures 7 and 8 illustrate the closed-loop output and the
tracking error, respectively. Figure 9 shows the control input.
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Figure 7: The output of the system to reference signal (63).
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Figure 8: The tracking error to reference signal (63).

Simulation results in three cases are all robust against uncer-
tainties and time-varying disturbances. Moreover, compared
to the controller with no preview, the preview controller
makes the closed-loop system have faster dynamic response
speed and higher tracking precision. The output tracking
with preview action is excellent. Furthermore, a performance
comparison between preview controller and standard 𝐻∞
controller is presented in Table 3. The superiority of preview
control method is quite clear from this table. Hence, our
proposed controller performs significantly better.

When the reference signal is taken as

𝑟 (𝑘) = {{{
0, 𝑘 < 20
3, 𝑘 ≥ 20 (64)

the simulation results are shown in Figures 10, 11, and 12.
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Figure 9: The control input to reference signal (63).
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Figure 10: The output of the system to reference signal (64).

Figures 10 and 11 show the closed-loop output and the
tracking error, respectively. Figure 12 shows the control input.
Simulations in three cases confirm the robustness of the
controllers. Comparing Figures 10, 11, and 12, we can see
that the output tracking with preview action is much better
than the one without preview. Due to the consideration
of reference preview information, the preview controller
achieves better performance indexes than the single 𝐻∞
controller, as shown in Table 4.

In addition, in this example, set 𝑓(𝑥) = 0 and 𝜔(𝑘) = 0,
and the other parameters remain unchanged. The considered
system is then converted into an uncertain discrete-time
linear system.The stabilization problem for such a system has
been addressed in [33]. Here, we take the reference signal as𝑟(𝑘) ≡ 0. According to Remark 15, our proposed method also
ensures that the closed-loop system is asymptotically stable.
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Table 3: Performance index results.

Performance Index Standard𝐻∞ controller Preview controller
(𝑀𝑟 = 2) Preview controller

(𝑀𝑟 = 5)
IAE 12.0682 7.0050 1.6428
ISE 6.3391 2.1067 0.1075
ITAE 388.1932 221.6150 49.7731
ITSE 204.3796 67.0636 3.5105

Table 4: Performance index results.

Performance Index Standard𝐻∞ controller Preview controller
(𝑀𝑟 = 2) Preview controller

(𝑀𝑟 = 5)
IAE 12.6485 7.8533 6.5527
ISE 26.2037 11.1251 5.5557
ITAE 280.9896 170.9029 132.8920
ITSE 558.5424 232.7349 110.0990
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Figure 11: The tracking error to reference signal (64).

A comparison with relevant result in [33] is presented in
Figure 13. The simulation result clearly shows the superiority
of the error system method adopted in this paper.

Remark 3. The class of nonlinear systems considered in this
paper is a part of the class of Lipschitz systems. Recently,
the standard Lipschitz systems [17, 20, 43] and the one-
sided Lipschitz systems [42] have been receiving considerable
attention owing to their extensive practical applications. How
to deal with the preview control problem of these nonlinear
systems is a challenging task. Moreover, other complexities
like actuator faults [19] and measurement delays [20] can be
taken into account in the further studies besides the system
uncertainties and the external disturbances. In addition,
once the states of system (1) are unavailable, the present
control scheme is invalid. Thus, with the help of some novel
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Figure 12: The control input to reference signal (64).

techniques in [33, 34, 43, 44], the observer-based preview
control for Lipschitz systems will be explored in the future
work.

6. Conclusion

In this paper, the robust preview tracking controller design
for a class of uncertain discrete-time Lipschitz nonlinear sys-
tems is investigated. First, we construct an augmented error
system including the tracking error and preview information.
The Mean-Value theorem plays an important role in dealing
with the nonlinearity. To add the integral control action, a
discrete integrator is introduced. Next, we develop a state
feedback controller for the augmented error system. Using
the LMI technique, some criteria on the stability and 𝐻∞
performance are proposed for the closed-loop system. Based
on this, the robust preview tracking controller of the original



14 Mathematical Problems in Engineering

k
0 5 10 15 20 25 30 35 40

sta
te

 re
sp

on
se

−3

−2

−1

0

1

2

3

4

 using the method in [33]
 using the method in [33]

 using the proposed method
 using the proposed method

Figure 13: The closed-loop state response.

system is obtained. Finally, the effectiveness of the controller
is shown by numerical examples.
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