
Citation:
Liao, F and Wang, Y and Lu, Y and Deng, J (2017) Optimal preview control for a class of linear
continuous-time large-scale systems. Transactions of the Institute of Measurement and Control, 40
(14). pp. 4004-4013. ISSN 0142-3312 DOI: https://doi.org/10.1177/0142331217740946

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/5627/

Document Version:
Article (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/5627/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk


Optimal Preview Control for a Class of Linear Continuous-Time Large-scale 

Systems 

Fucheng Liaoa* , Yu Wanga, Yanrong Lua and Jiamei Dengb 

aSchool of Mathematics and Physics, University of Science and Technology Beijing, 

Beijing 100083, China 

bLeeds Sustainability Institute, Leeds Beckett University, Leeds, UK LS2 9EN 

* Corresponding author. Email: fcliao@ustb.edu.cn

Abstract 

In this paper, the problem of optimal preview control is studied for a class of linear 

continuous-time large-scale systems. We first construct an augmented system including 

the error signal and the reference signal to transform the tracking problem into the 

regulator problem. Then, the controllers are designed for isolated augmented 

subsystems, which also constitute the controller of large-scale systems. On the basis of 

proving the asymptotic stability of closed-loop large-scale systems and the existence of 

the controller, sufficient conditions for reaching optimal preview control are given. In 

particular, the limiting condition of the correlation matrices is determined by the fact 

that the total derivative of a positive definite Lyapunov function is negative definite. 

The numerical simulation indicates that the controller can drive the large-scale systems 

to track the reference signal without steady-state error, and the tracking effect is 

improved with the increasing preview length. 
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1 Introduction 

Preview control is a control method to improve the tracking accuracy of a system 

via utilizing the known future information of desired reference signal. The scientific 

community began a journey for exploring the preview control since Sheridan (1966), 

who put forward the concept for the first time, and then theoretical results with respect 

to preview control theory have been formed after more than 50 years of research and 

development. There are some early efforts such as Bender (1968), Tomizuka (1975), 

Katayama et al. (1985), Katayama et al. (1987) and Takeshi et al. (1994). Certainly, the 

preview control for linear systems with constant coefficients was studied thoroughly 

(Katayama et al., 1985, Katayama et al., 1987, Zhang et al., 1996 and Li et al., 2002), 

and the robust preview control was also concerned (Tomizuka, 1996 and Lee et al., 

1996). In the last decade, when combining with other control theories, preview control 

was discussed deeply for multi-rate systems (Liao et al., 2003), time-varying systems 

(Liao et al., 2015), and also descriptor systems (Zhao et al., 2016). Alternatively, some 

problems on H  optimal preview control were addressed (Kojima, 2015 and Kojima 

et al., 2003). 

The systems with high dimension of state vector are referred to as large-scale 



systems which are characterized by large scale, complex structure, numerous 

influencing factors and comprehensive functions. Many practical systems, e.g., 

multiarea power system, coupled water reservoirs, nuclear power systems and processes 

in the chemical and petroleum industry (see, Lunze, 1992, Michel et al., 1977), can be 

considered as large-scale systems. A key method for analysis and design of large-scale 

systems is decomposition-aggregation, which can not only decrease parametric 

complexity and the computational difficulties that significantly grow as the scale of the 

systems increase, but also make us have a clear view over the effect of different factors 

on the behavior of the whole system (see, Araki, 1978). In fact, large-scale systems can 

be considered as the systems that consist of several isolated subsystems with connection 

to other subsystems. By devising controller for each isolated subsystem, the controller 

for the large-scale systems is obtained by integrating subsystem controllers. And if the 

correlation matrices satisfy certain constraints, the closed-loop large-scale systems 

would have the required properties (Shi et al., 1992 and Michel et al., 1977). To be more 

exact, if each of the isolated subsystems is stable, and the norms of the correlation 

matrices are small enough, then the large-scale systems are stable as well.  

Because of the interconnective matrices between subsystems, stability analysis has 

become one of the most important requirements for large-scale systems. During the past 

several years, many methods have been established for this issue, such as M- matrix 

method (Araki, 1978), piecewise Lyapunov method (Zhang et al., 2008), etc. Recently, 

small gain theorem was used to study robustness problem of large-scale systems. In 

(Duan et al., 2004), linear matrix inequality conditions were provided for this problem. 

In (Dashkovskiy et al., 2012, Liu et al., 2011), input-to-state stability Lyapunov 

functions were constructed for large-scale systems based on small gain theorem. For 



controller design, decentralized control is a main research field of large-scale systems, 

which is also acknowledge as the effective method to overcome the increasing size and 

computational complexity of the mathematical models describing large-scale systems. 

Shi et al. (1992) designed decentralized controller for model-following problem under 

the scenario that the bounds of the interconnections were known or unknown, 

respectively. When considering the interconnections between the subsystems as 

uncertainties, Labibi et al. (2002) designed a decentralized controller for large-scale 

systems via minimizing weighted sensitivity functions. Based on parameter-dependent 

Lyapunov function, Duan et al. (2008) utilized linear matrix inequality to devise the 

decentralized controller that can reduce the design conservation. In (Zhang et al., 2008), 

the authors considered the problem of H  decentralized controller design for 

discrete-time fuzzy large-scale systems, and analyzed the stability by using piecewise 

Lyapunov functions. 

As pointed out in (Moelja et al., 2006), all or parts of the reference signals are 

known in advance in certain systems. However, to the best of our knowledge, many 

controller design methods for trajectory tracking of large-scale systems do not take the 

preview information into account (see, e.g., Lunze, 1992, Ruan et al., 2005, Ruan et al., 

2008). Due to the fact that preview information of reference signal can be applied to 

improve tracking accuracy effectively, this paper is concerned with the optimal preview 

tracking control for a class of linear continuous-time large-scale systems. This paper has 

the following two novel features. The first is to express the reference signal as a new 

form similar to convex combination, where the number of items in combination is equal 

to those of subsystems. We view each item in combination as a virtual reference signal, 



then it can be observed from formula (2) that the tracking problem of the whole 

large-scale system can be converted into several tracking problems of low dimensional 

subsystems. The second is to exploit decomposition method to obtain isolated 

subsystems, and meanwhile apply state augmented technique to further translate the 

tracking problems into optimal regulation problems of several isolated augmented 

subsystems. When the norms of the associated matrices satisfy certain bounds, the 

optimal preview controllers are robust to the associated matrices. As a result, the 

optimal preview controller is designed easily for each of the isolated augmented 

subsystems by using standard optimal preview control theory, these controllers also 

constitute the controller of the whole large-scale system. In addition, in order to ensure 

stability of the whole closed-loop large-scale system, Lyapunov stability theorem and 

M-matrix is employed to determine the norm bounds of associated matrices. Finally, a

numerical example is given to illustrate the effectiveness of the proposed design 

method. 

Notations. ( )A  and max ( )A donate the eigenvalue and the maximum 

eigenvalue of matrix A , respectively. 0Q   ( 0Q  ) donates that symmetric matrix 

Q is positive definite (positive semi-definite). nI denotes an n n identity matrix. 

2 System Description 

Consider linear continuous-time large-scale systems 
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,i iA B and iC are constant matrices with appropriate dimension. ijA is an 

associated matrix between the thj subsystem and the thi subsystem 

( ; , 1,2, , )i j i j s  . The output of large-scale systems (1) is

1

( ) ( )
s

i

i

y t y t


 (1b) 

Let ( ) pr t R be the reference signal. Firstly, some fundamental assumptions 

are needed. 



A1. Suppose ( , )i iA B  is stabilizable and matrix
0

i i

i

A B

C

 
 
 

is of full row rank 

( 1,2, ,i s ); 

A2. Suppose ( , )i iC A  is observable ( 1,2, ,i s ); 

A3. Suppose ( )r t  is a piecewise-continuously differentiable function satisfying 

lim ( )
t

r t r


 , lim ( ) 0
t

r t


 , 

where pr R  is a constant vector. Moreover, ( )r t  is previewable and the preview 

length is rl . In the sense that the future values ( )r  ( rt t l   ) are available at 

each instant of time t  and suppose ( ) ( )rr r t l    at the time rt l   . 

The tracking error is defined as follows: 

( ) ( ) ( )e t y t r t  . 

Our objective is to design a controller with preview compensation such that the 

output of systems (1) can track the reference signal asymptotically, i.e.,  

 lim ( ) lim ( ) ( ) 0
t t

e t y t r t
 

   . 

Owing to the fact that large-scale systems have such character with large scale, 

complex structure, numerous influencing factors and comprehensive functions, we 

need to solve a high-order algebraic Riccati equation. On the other hand, based on the 

formation of ( )y t , the tracking error ( )e t  can be written as following: 
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where 

( ) ( ) ( )i i ie t y t r t  (2) 

with i satisfying 0i  and 
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1
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i
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 . Here, we consider each ( )ir t as a 

virtual reference signal. 
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     On the basis of above considerations, we decompose large-scale systems into 

several isolated subsystems based on decomposition-aggregation method, and design 

controller for each isolated subsystem to build up the controller of the large-scale 

systems. Regarding the influence of correlation on stability of the close-loop system, 

this paper will give sufficient conditions to ensure that the output of large-scale 

systems (1) asymptotically tracks the reference signal ( )r t  by requiring that the total 

derivative of a positive definite Lyapunov function is negative. 



Briefly speaking, when the output ( )iy t of each subsystem can track ( )ir t

without static error, the output ( )y t  of system (1) can track the reference signal 

( )r t  accurately. 

3 Construction of the Augmented Large-scale Systems

In what follows, for a given virtual reference signal ( )ir t , we will consider the

optimal preview tracking problem of the following isolated subsystem 
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i i i i i

i i i
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y t C x t

 

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where tracking error is (2). 

To obtain the optimal preview controller of system (3), we introduce following 

quadratic performance index  

0
( ) ( ) ( ) ( )

ii i e i i i iJ e t Q e t u t Ru t dt


     , (4) 

where 0
ieQ  , 0iR  . 

Noting that corresponding performance index of system (3) contains the 

derivative of the input ( )iu t  rather than the input ( )iu t , we can introduce integral 

action into the final controller, which is good for eliminating steady-state error (Liao 

et al., 2003). 

According to preview control theory, in order to design preview controller, it is 



desirable to construct an augmented system for each isolated subsystem. To avoid 

repeating, we construct the augmented system for systems (1) and let all associated 

matrices be zeros to gain the desired result. 

For a given ( 1,2, , )i i s , derivating both sides of (1) and (2) gives 
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They are ( ) ( )i ip n p n   , ( )i ip n m  , ( )ip n p  , ( )ip p n  and 

( ) ( )i ip n p n   matrices, respectively.

Write (7) as a compact form, i.e., 

( ) ( ) ( ) ( )z t Az t Bu t Dr t   (8) 

where 
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Then system (8) is the desired augmented system. 

Letting =0ijA ( ; , 1,2, ,i j i j s  ), then the thi isolated augmented subsystem 

is 

( ) ( ) ( ) ( )i i i i i iz t A z t B u t D r t   (9) 

With the related variables of (9), the performance index in (4) is modified into the 

following form 
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4 Main Results 

    In this section, we will apply the standard result of preview control theorem to 

design the optimal preview controller for large-scale systems (1). Meanwhile, by means 

of Lyapunov stability theorem and the property of M- matrix, we also provide sufficient 



conditions to guarantee the asymptotic stability of the closed-loop system of system (8). 

4.1 Design of Optimal Preview Controllers for the Isolated Augmented 

Subsystems 

The following lemma is obtained immediately by Liao et al. (2011). 

Lemma 1: If ( , )i iA B is stabilizable and 1 2( , )i iQ A is detectable, then the 

optimal control input of system (9) under performance index (10) is given by 

1 1( ) ( ) ( )i i i i i i i iu t R B Pz t R B g t      (11) 

where 
( ) ( )i in p n p

iP R
  

 is a symmetric positive semi-definite solution to the 

algebraic Riccati equation 
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( ) p

ig t R is the function satisfying 
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( ) exp( ) ( )

rl

i ci i ig t A PD r t d     (13) 

where 

1

ci i i i i iA A B R B P   . (14) 

Remark 1: According to optimal control theory, when 
1 2( , )i iQ A is observable, 

there is a unique symmetric positive definite matrix solution to the algebraic Riccati 

equation (12). In the followings, the result will be used to show the closed-loop 

stability of the augmented large-scale system (8). 



4.2 The Closed-loop Stability of the Augmented Large-scale Systems 

Based on the idea of decomposition-aggregation and the control inputs 

expressed by formula (11)，we introduce a vector 
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which happens to be the control input of system (8). 

Substitute formulas (11) and (15) into system (8), then a closed-loop system is 

obtained 
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Matrix ciA , the diagonal elements of matrix  , is given by formula (14). ( )i t  is

1( ) ( ) ( )i i i i i it B R B g t D r t     and ( )ig t is given by formula (13).

Upon the foundation of Lemma 1, the sufficient conditions for asymptotic 

stability of system (16) are obtained. 

Theorem 1: Suppose 



(1) ( , )i iA B is stabilizable and 1 2( , )i iQ A is observable;

(2) inequality
2
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l
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is stable, then the zero solution of system (16) is asymptotically stable, where i  is 

given by 1

max=i i i i i i iQ PB R B P        ( 1,2, ,i s ).

    Proof. the proof can be found in Appendix. 

Now the asymptotic stability of system (16) implies 

lim ( ) 0i
t

e t


 , 

thus 

lim ( ) 0
t

e t


 . 

Namely, under the conditions given by Theorem 2, system (1) can track the reference 

signal ( )r t  without static error. 

Remark 2: If 
ixQ is further required to be positive definite in the performance

index function (10), then iQ is also positive definite, and as a direct result, 

1 2( , )i iQ A is observable obviously. Due to 1

max max ( )i i i i i i iQ PB R B P Q        , a



straightforward consequence of Theorem 1 is that 

Corollary 1: Suppose 

(1) ( , )i iA B  is stabilizable and 0iQ  ; 

(2) inequality
2

ij

i ij

l
P A  ( 1,2, ,i s ) holds; 

(3) matrix D  is stable in (17),

then the zero solution of system (16) is asymptotically stable where 
min= ( )i iQ 

( 1,2, ,i s ). 

4.3 Discussion of Stabilizability and Observability 

In what follows, we need to discuss the conditions that can guarantee the 

stabilizability (controllability) of ( , )i iA B and the detectability (observability) of 

1 2( , )i iQ A . 

Theorem 2: The sufficient and necessary conditions for the stabilizability 

(controllability) of ( , )i iA B  are that ( , )i iA B is stabilizable (controllable) and matrix
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Proof. Noting the structure of matrices 
iA and iB , the theorem is a direct 

conclusion of [5]. 

Theorem 3: If 0
ieQ  , then the sufficient and necessary condition for the 
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1/2 1/2

0 0

0 0

0 0

0 0
i i

i

i ii

ii

x x

C I

A I A IA I

I CQ

Q Q

 

   
   

            
 

   
      

. 

It is well known that elementary transformation does not change the rank of a matrix. 

Therefore, for any complex  , 
1 2

i

i

A I

Q

 
 
 

has full column rank if and only if 

1/2

i

i

i

x

A I

C

Q

 
 
 
 
 

has full column rank, which is exactly the conclusion of Theorem 3 based 

on PBH rank test. 

Two corollaries are obtained as follows. 



Corollary 2: Letting 0
ieQ  . If ( , )i iC A is observable, then 1 2( , )i iQ A is 

observable. In particular, if also 0
ixQ  under the foundation of 0

ieQ  , then the 

sufficient and necessary condition for the observability of matrix 1 2( , )i iQ A is that 

( , )i iC A  is observable. 

Corollary 3: If 0
ieQ  and 0

ixQ  , then 1 2( , )i iQ A is observable. 

4.4 The Preview Controller of the Large-scale Systems 

When the conditions of Theorem 1 hold, ( )u t  is derived from formula (15) and 

the controller of systems (1) is gained as well. Therefore, we get the main theorem in 

this paper. 

Theorem 4: Suppose 

(1) A1-A3 hold;

(2) 0, 0
ie iQ R  ( 1,2, ,i s ); 

(3) 
2

ij

i ij

l
P A  ( ; , 1,2, ,i j i j s  ); 

(4) matrix D  is stable in (17),

and let ( )=0ix t , ( )=0iu t , ( 1,2, ,i s ), ( ) 0r t   for 0t  , then the optimal 

preview tracking of large-scale systems (1) is achieved by the following controller 

1 2( ) ( ) ( ) ( )
T

T T T

su t u t u t u t    (19)



with 

0
( ) ( ) ( ) ( )

i i

t

i e i x i iu t K e d K x t f t    

where 1

i ie i i ieK R B P  , 1

i ix i i ixK R B P  and 
i ii ie ixP P P    , and the expression of

( ) p

if t R is given by 1

0
( ) exp( ) ( )

rl

i i i ci i if t R B A PD r t d      . In matrix D , 

1

maxi i i i i i iQ PB R B P       ( 1,2, ,i s ).

    Proof. It follows from conditions (1) - (4) that Theorem 1 holds, namely, the 

zero solution of closed-loop system (16) is asymptotically stable. Therefore, as a 

component of ( )iz t , ( )ie t will tend to zero as time goes to infinity and so will ( )e t

because of 
1

( ) ( )
s

i

i

e t e t


 . That is to say, the output of large-scale systems (1) 

achieves optimal tracking of reference signal ( )r t  under controller (11). In order to 

derive ( )iu t  from controller (11), we select an L  satisfying rL l . Then,

integrating (11) on interval [ , )L t  yields controller (19). 

Remark 3: As mentioned by Corollary 1, if 0iQ  , then i  of Theorem 4 can 

be change to 
min ( )iQ . 

5 Numerical Simulation 

Example 1. Consider large-scale systems containing two subsystems 



2

1

( ) ( ) ( ) ( )

( ) ( )

i i i ij j i i

j
j i

i i i

x t A x t A x t B u t

y t C x t





  







1, 2i 

and its coefficient matrixcs are respectively 

 

 

1 12 1 1

2 21 2 2

3 0 1 0 0.0001 1

0 1 1 , 0.0001 0.0001 , 1 , 1 1 0

2 0 2 0.0001 0.0002 1

1 0 0.0001 0.0002 0 1
, , , 0 1 .

1 2 0 0.0001 0.0001 1

A A B C

A A B C

     
     

      
     
           

     
        

      

，

By verifying, ( , )i iA B  is stabilizable, matrix
0

i i

i

A B

C

 
 
 

is of full row rank and 

( , )i iC A  is observable ( 1, 2)i  . Thus, the system satisfies the basic assumptions in this 

paper. 

Let the reference signal be 

0 8

( ) 8, 8 9

1, 9

t

r t t t

t




   
 

，

. 

Moreover, put the weight matrices in performance index function (10) be 

1 1

50 0 0 0

0 0.005 0 0
=0.

0 0 0.005 0

0 0 0 0

Q R

 
 
 
 
 
 

， 1, 2 2

50 0 0

0 0.005 0 =0.

0 0 0

Q R

 
 


 
  

， 1. 

Then solving algebraic Riccati equations (12) by Matlab, we get the following 



positive definite solutions 

1

23.9120 4.0678 5.1047 1.1991

4.0678 0.9338 1.2041 0.3605

5.1047 1.2041 1.5701 0.4751

1.1991 0.3605 0.4751 0.1883

P

 
 
 
 
 
 

, 2

15.1280 0.1654 2.0707

0.1654 0.0257 0.0595

2.0707 0.0595 0.4318

P

 
 


 
  

, 

and the gain matrices in controller (19) are 

 
1 1

22.3607 , 6.3088 8.4108 3.0295e xK K      ,

 
2 2

22.3607 , 0.8521 4.9134e xK K  . 

    Let initial value be    1 2
(0) , (0)0 0 0 0 0

T T
x x  , and set 1 20.1, 0.9  

in formula (2). We perform simulations for three situations, that is, the preview lengths 

of the reference signals are 0( ), 0.01( ) 0.02( )r r rl s l s l s  ， , respectively. Figure 1 

shows the output response of systems (1) under control input (19). Figures 2-3 illustrate 

the output responses of subsystems 1 and 2, respectively. Figures 4-5 plot the optimal 

control inputs of subsystems 1 and 2, respectively. 



Figure 1. The output responses of the large-scale systems for different preview lengths 

It is observed from Figure 1 that the output of large-scale systems (1) can track the 

reference signal quickly with preview compensation. Within certain range, the longer 

the preview length is, the better the effect of tracking. 



Figure 2. The output responses of subsystem 1 for different preview lengths 

Figure 3. The output responses of subsystem 2 for different preview lengths 



Figure 4. The optimal control input of subsystem 1 under different preview lengths 

Figure 5. The optimal control input of subsystem 2 under different preview lengths 

From Figures 2 and 3, it can be found that the designed controller can make the 



output of subsystem track the given virtual reference signal asymptotically. As a result, 

the tracking errors 
1( )e t  and 2 ( )e t will tend to zero as time goes to infinity.

Combining with Figure 1 and formula (2), it indirectly proves the validity of the 

reduced-order design method proposed in this paper. Moreover, we can also find that the 

controller has the ability to accelerate the tracking speed. In addition, although the 

overshoot rises up gradually with moderate increase of the preview length, the tracking 

performance is improved and the settling time decreases as well. 

Example 2. To further illustrate the efficiency of the designed controller. We 

consider the optimal control problem that a large-scale system tracks a previewable 

step reference signal. The dynamics of the subsystems are described as follows 

2

1

( ) ( ) ( ) ( )

( ) ( )

i i i ij j i i

j
j i

i i i

x t A x t A x t B u t

y t C x t





  







,  1, 2i   (19) 

and the corresponding coefficient matrices are 

 1 12 1 1

2 21 2

1 1 1 0 0 0.01 0.01 1

0 1 1 , 0.01 0.01 0 0 , 1 , 0 0 0

1 0 0.5 0.01 0.02 0 0 0

3 1 0 0 0.01 0.02 0 1

2 2 0 0 0 0.01 0.01 1.6
, ,

0 0 1 2 0.01 0 0 1

3 5 0 2 0 0.01 0.02 0

A A B C

A A B

      
     

      
     
          

   
   

  
     
    
   
     

，

 2, 1 1 1 1.5 .C

 
 
   
 
 
 

Assume that the step reference signal has the following form 



0, 8
( )

1, 8

t
r t

t


 



and satisfies the assumption of preview in A1. That is to say, the value of ( )r   is 

available to large-scale systems (19) in interval  , rt t l at time t . 

Because of  1 0 0 0C  , the output of large-scale systems (19) is 2( ) ( )y t y t . 

Therefore, the optimal preview tracking problem of large-scale systems (19) can be 

decomposed into an optimal regulation problem of subsystem 1 and an optimal preview 

tracking problem of subsystem 2. 

Select the weight matrices associated with the performance index function (10) as 

1 1

0.4 0 0

0 0.4 0 =0.4

0 0 0.4

xQ R

 
 


 
  

， , 
2

2

2 2

60 0 0 0 0

0 15 0 0 00
=0.30 0 3 0 0

0
0 0 0 9 0

0 0 0 0 6

e

x

Q
Q R

Q

 
 
  
   
   
 
  

，

By applying PBH rank test, it can be calculated that ( , )i iA B is stabilizable, 

1, 2i  , 2 2( , )C A is observable. Moreover, routine calculation gives that matrix 

2 2

2 0

A B

C

 
 
 

is of full row rank. Noting that 
1xQ and 

2eQ are positive definite matrices.

Then, according to the conclusions of Lemma1, Theorem 2, and Corollaries 2-3, we 

know that the following algebraic Riccati equations have positive definite solutions: 

1

1

1 1 1 1 1 1 1 1 1 0xA P PA PB R B P Q     



1

2 2 2 2 2 2 2 2 2 2 0A P P A P B R B P Q     

Solving the above equations by Matlab gives 

1

0.21764 0.01695 0.08644

0.01695 0.17222 0.07279

0.08644 0.07279 0.37225

P

 
 

 
 
  

, 

2

16.98680 1.25749 1.74038 0.20054 2.32069

1.25749 6.39163 4.04398 0.27471 0.79782

1.74038 4.04398 4.14416 0.90008 1.14899

0.20054 0.27471 0.90008 2.35239 0.46133

2.32069 0.79782 1.14899 0.46133 1.82212

P

 
 


 
   
 
 
   

, 

the control gain matrices in (18) are 

 
1

0.58649 0.47293 0.03411xK  ,

   
2 2

14.14214 , 0.65325 5.62197 3.95656 5.00629e xK K   . 

We take 
2

2 i ijij
PAl  , then 

12 1 12 2
2 =0.0189l PA

21 2 21 2
2 =0.2620l P A

In addition, 

1

1

1 max 1 1 1 1 1( ) 0.4000T

xQ PB R B P       

1

2 max 2 2 2 2 2 2( ) 3.5864TQ P B R B P       

By calculation, the eigenvalues of 
0.4000 0.0189

0.2620 3.5864
D

 
  

 
are 0.3984  and 



3.5880 , which indicate that D  is stable. That is to say, the conditions (3) and (4) of 

Theorem 4 hold. Hence, the optimal preview tracking of large-scale systems (19) can be 

achieved by controller (18).  

Let initial value be    1 2
(0) 0 0 0 , (0) 0 0 0 0

T T
x x  . The simulation will 

be carried out for three situations, that is, the preview lengths of the reference signal are 

0( ), 0.08( ) 0.15( )r r rl s l s l s  ， , respectively. 

 

Figure 6. The output responses of the large-scale systems for different preview lengths 



Figure 7. The optimal control input of subsystem 2 under different preview lengths 

Figure 6 shows the output responses of large-scale systems (19) under control input 

(18). Figure 7 shows the optimal control input of subsystem 2. It is seen from Figure 6 

that ( )y t  can track the reference signal accurately whether preview information exists 

or not. Furthermore, compared with the case that 0( )rl s , it can be also observed 

from figures 6 and 7 that the controller with preview compensation can improve the 

dynamic performance effectively, such as accelerating transient response, reducing 

tracking error. 

Remark 4: In Example 1, although iQ is a positive semi-definite matrix, the 



observability of the matrix ( , )i iC A  can ensure that 1 2( , )i iQ A is observable. And i  

should be 1

maxi i i i i i iQ PB R B P       .

6 Conclusion 

The optimal preview control problem for a class of linear continuous-time 

large-scale systems has been settled in this paper. Owing to the integral in the 

expression of control input (11), this paper has not constructed the Lyapunov function 

for the closed-loop large-scale systems directly, but for its corresponding homogeneous 

linear systems. Based on the stable conditions of the homogeneous linear systems and 

assumption A3, the sufficient conditions have been given to guarantee the global 

asymptotic stability of the closed-loop large-scale systems. The simulation example has 

illustrated the effectiveness of the designed controller. How to extend the current 

conclusions to the discrete-time large-scale systems setting is a future topic worthy of 

further investigation. 
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Appendix (Proof of Theorem 1) 

Proof. We first prove the asymptotic stability of the zero solution of system 

( ) ( )z t z t  (A1)

which is the homogenous linear system of system (16). When assumptions 1-3 hold, 

it follows from optimal control theory that the solution iP of algebraic Riccati 

equation is positive definite if 1 2( , )i iQ A  is observable. Using iP  to construct a 

function  i i i i iV z z Pz , then iV is a positive definite quadratic form with respect to 

iz . Taking the total derivative of function iV regarding t along the trajectory of 

system (18) gives 

(18)i i i i i i iV z Pz z Pz  
1

( ) 2
s

T

i i ci ci i i i i ij j

j
j i

z PA A P z z PA z 




    . 

According to the expression of matrix 
ciA , we get 

1 1( )T

i ci ci i i i i i i i i i i i i i i iPA A P PA A P PB R B P PB R B P         . 

Because iP is the solution of algebraic Riccati equation (12), the formula 

1

i i i i i i i i i iPA A P PB R B P Q      holds. Hence 

1

max max( )T

i ci ci i i i i i i i iPA A P Q PB R B P           ,



and thereby an estimation of 
(18)iV is 

2

(18)
1

2
s

i i i i ij i j

j
j i

V z PA z z



   
1

s

i i i ij j

j
j i

z z l z



 
   
 
 
 

 , ( 1,2, , )i s . 

Furthermore, 

1 (18)
1 1

2 2 2(18)

(18)

s s
s

V
z z

V z z
D

z z
V

 
    
    
     
    
    
       

 

. 

Now we turn to the key part of the proof. Noting that matrix D  is a stable 

Metzler matrix, thus there exists a diagonal matrix 1 2( , , , )sK diag k k k , where 

0ik  holds for any 1,2, ,i s , such that matrix KD D K is negative definite 

(Liao, 1985). Using the elements of matrix K , we construct a quadratic function 

 

1

2

1 2

1

, , ,
s

i i s

i

s

V

V
V k V k k k

V



 
 
  
 
 
 

 , 

then V  is a positive definite quadratic form relating to vector 1 2

T
T T T

sz z z   . 

Consider V  as a Lyapunov function of system (18), clearly, it is positive definite. 

Moreover, it has an infinitesimal upper bound as well as a radially unbounded 

property. Calculating the time derivative of V  along the trajectory of system (18) 



and estimating its upper bound yields  

   

1 (18)
1 1

2 2 2(18)
1 2 1 2(18)

(18)

, , , , , ,s s

s s
s

V
z z

V z z
V k k k k k k D

z z
V

 
    
    
     
    
    
       

 

 

1

2

1 2, , ,
2

s

s

z

zKD D K
z z z

z



 
 

           
 
  

. 

Because matrix KD D K  is negative definite, then 
(18)

V  is negative definite. 

According to Lyapunov stability theorem, the zero solution of system (18) is 

(globally) asymptotically stable. 

Next, we need to prove lim ( ) 0
t

t


 . Noting that ( )r t  will tend to zero as time 

goes to infinity (assumption A3), then based on the relationship between ( )i t  and 

( )ig t , it suffices to prove lim ( ) 0i
t

g t


  ( 1,2, ,i s ). Due to the stability of matrix 

ciA , there exist constant scalars 0   and 0M   such that exp( )ciA Me    . 

Moreover, it follows from formula (14) that the inequality 

0 0 0
( ) exp( ) ( ) ( ) ( )

r r rl l l

i ci i i i i i ig t A PD r t d Me PD r t d M PD r t d                

holds, which, together with lim ( ) 0
t

r t


 , leads to lim ( ) 0i
t

g t


 ( 1,2, ,i s ) 

immediately. 



Since the zero solution of system (18) is asymptotically stable and lim ( ) 0
t

t


 , 

the zero solution of system (16) is asymptotically stable (Chen, 2003). This completes 

the proof of Theorem 2. 
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