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Abstract: In the fault-tolerant control theory based on model following control, 

the desired signal of the control system is the output of a reference system. This paper 

is concerned with the design of preview controller for a class of fault systems. A 

composite vector is introduced by including error vector, fault system state vector and 

reference system state vector. Then, we derived an augmented system from the known 

system equation, in which the reference input has equal status with the desired signal 

in the traditional preview control theory. Therefore, we can use the known theory to 

design the preview controller for augmented system, then the preview controller of 

the original fault system can be obtained by integration method. This paper strictly 

discusses the connection between stabilization and detectability of the augmented 

system and the corresponding characteristics of the original system. Finally, by 

applying this theory to a real steam generator water level control system, it is found 

that the actions of the reference input preview and the fault signal preview can 

effectively eliminate the effect of the fault signal on the water level of the steam 

generator. The simulation shows the effectiveness of the controller designed.  

Keywords: preview control; optimal control; model following control; fault-tolerant 

control  
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1. Introduction

Preview control is a control method to improve the transient response of systems, 

suppress external disturbance and improve tracking performance by using the future 

information of desired signal or disturbance signal. The preview control theory is 

applicable to the control system that is known for the future value of the desired 

signal or disturbance signal. After decades of development, the preview control has 

basically formed a complete theoretical system (Tsuchiya & Egami, 1994). By 

combining with other control methods, a variety of control theories have been 

generated: optimal preview control (Tomizuka & Rosenthal, 1979; Liao et al., 2011), 

robust preview control (Kojima & Ishijima, 2003; Li & Liao, 2016), sliding mode 

preview control (Nonami & Ikedo, 2004; Mizuno, Saka, & Katayama, 2016), fuzzy 

preview control (Yeh & Tsao, 1994; Liao, Huang, & Zeng, 2010) and so on. In 

addition to theoretical progress, preview control has been widely applied in practical 

engineering fields, such as vehicle lateral control system (Peng & Tomizuka, 1993), 

vehicle active suspension system (Youn et al., 2017), robot system (Wang, Liu, & 

Chen, 2016) and other issues. 

Model following control is one of the methods of active fault-tolerant control, 

this method does not require fault diagnosis and detection unit, when a fault occurs, 

the controller is designed to realize the trajectory tracking of the controlled system to 

the reference model with the ideal dynamic characteristics, thus obtaining the desired 

performance of the closed-loop system. In recent years, there are many achievements 

in the research of fault-tolerant control based on model following. Reference (Hu & 

Cheng, 1991) studies the fault-tolerant control of a class of discrete time stochastic 

systems and the results are applied to the aircraft model. In (Zhang & Jiang, 2002), a 

fault-tolerant controller with feed-forward gain is designed for the control system of a 

partial actuator failure. Reference (Wang et al., 2015) presents an optimal reference 

model based on linear quadratic optimal control method, through tracking the output 

of the optimal reference model, an active fault-tolerant control strategy is proposed 

for the control system of a large civil aircraft in the case of elevator failure. In 

(Bodson & Groszkiewicz, 1997; Tao, Joshi, & Ma, 2001; Zhao et al., 2014), the 
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design method of model reference adaptive fault-tolerant controller is given by 

combining model following control and adaptive control. 

In the fault-tolerant control problem based on model following, there is not only 

a fault system, but also a fault free reference model. The reference input of the fault 

free reference model is a known vector (it is not the desired signal, however the 

output of the fault free reference model is the desired signal of the fault system), 

which fully meets the requirements of the preview control theory. Therefore, the 

combination of preview control and model following control method can be applied to 

the fault-tolerant control problem, which is the main purpose of this paper. The basic 

idea is to construct a formal system, or we can say augmented system, which 

combines the fault system and the reference model. The problem investigated in this 

article is transformed into the standard optimal preview control problem, and then the 

preview controller of augmented system is obtained by using the existing results in 

the preview control theory. The fault-tolerant preview controller is obtained after 

returning to the original fault system. In this paper, the proposed fault-tolerant 

preview control method is applied to a class of steam generator water level control 

system, and the numerical simulation is carried out. 

2. Mathematical models and related assumptions

The state space equation of the fault model is considered in the theory of 

fault-tolerant control 

( ) ( ) ( ) ( )

( ) ( )

x t Ax t Bu t Wd t

y t Cx t

& = + +


=
(1) 

where ( ) nx t R  is the state vector, ( ) ru t R is the input vector, ( ) py t R= is the 

output vector, and ( ) sd t R is the known fault signal. , , ,A B W C are known 

constant matrices with appropriate dimensions, respectively. 

    The fault free reference model is described by 

( ) ( ) ( )

( ) ( )

= +


=

m m m m m

m m m

x t A x t B u t

y t C x t

&
(2) 

where ( ) mn
mx t R , ( ) mr

mu t R , ( ) = p
my t R . ( ) mr

mu t R is a bounded vector called 
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reference input. 

The basic problem of fault-tolerant control is to design a controller (called 

fault-tolerant controller) for the fault system (1) to eliminate the effects of the fault 

signal on the system output. In other words, the output ( )y t  of the closed loop 

system (1) can track the output ( )my t  of the fault free reference model (2) without 

any static error. It is noted that the dimensions of ( )mx t and ( )x t can be different, 

and the fault signals and the reference inputs are known. 

The tracking error vector is defined as the following 

( ) ( ) ( )me t y t y t= − (3) 

The objective of this paper is to design a fault-tolerant controller with preview 

compensation for the system (1), so that the output of system (1) can track the output 

of reference model (2) asymptotically, namely 

lim ( ) lim[ ( ) ( )] 0m
t t

e t y t y t
→ →

= − =

    We generalize the method of designing the preview controller directly for the 

desired signal into the control problem here. For this purpose, we construct the 

quadratic performance index function 

0
( ) ( ) ( ) ( )T T

eJ e t Q e t u t Ru t dt


 = +  & & (4) 

where eQ and R are positive definite matrices. 

    It is noted that introducing the input vector’s derivative ( )u t&  into the 

performance index function can make the closed loop system contain an integrator, 

which is helpful to eliminate static error (Liao et al., 2011). 

The following assumptions are basic to the system (1) and (2). 

A1: The coefficient matrix mA of the system (2) is stable, namely, the 

eigenvalues of the mA have negative real part. 

Remark 2.1: When A1 is established and ( )mu t is a bounded vector, 

after the work of the system (2), its output ( )my t (as the desired signal of the output 
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( )y t of the system (1)) is characterized by maintaining both the main characteristics 

(only to amplify or reduce its amplitude) of the ( )mu t  and the improvement of its

smoothness. This point is illustrated on the condition that ( )mx t and ( )mu t  are the

scalar, and ( )mu t  is a step signal and a periodic signal, respectively. Note that mA

and mC are also scalars at this time.

According to (2), we have 

 0
( ) [ ( ) (0)]m m

t
A t A s

m m m m my t C e e B u s ds x
−

= +

(ⅰ) ( )mu t  is a step signal, for instance, when

0, 0
( )

,
m

t T
u t

a t T

 
= 


, 

where a  is a constant, then we have 

(0), 0

( )
[ ] (0) ,

m

m m m m

A t

m m

m A t A t A T A t

m m m

m

C e x t T

y t a
C B e e e e x t T

A

− −

  


=     
− − +   

   

that is, 

(0), 0

( )
(0) ,

m

m m

A t

m m

m A t A T

m m m m

m m

C e x t T

y t a a
C B e B e x t T

A A

−

  


=   
− + +   

  

From this, ( )my t is continuous in t T= , and due to 0mA  , so when t is very 

large, ( ) m m
m

m

C aB
y t

A
 − . 

For example, the reference input signal is selected as 

0, 0 10
( )

1, 10
m

t
u t

t

 
= 



and let 2mA = − , 1mB = , 1mC = , (0) 1mx = , then Figure 1 can be obtained. 
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Figure 1. The graph of ( )mu t  and ( )my t ( ( )mu t is a step signal)

(ⅱ) ( )mu t  is a periodic signal, for instance, when ( ) sinmu t t= , we have 

20

1
( ) [( cos sin ) 1]

1
m m

t
A s A t

m m

m

u s e ds t A t e
A

− −
= − − +

+

therefore, 

2 2
( ) ( cos sin ) (0)

1 1
mA tm m

m m m m

m m

B B
y t C t A t x e

A A

   
= − − + +  

+ +   

In the same way, because 0mA  , so mA t
e is small enough when t  is very large, 

then 

2 2
( ) ( cos sin ) sin( )

1 1

m m m m
m m

m m

C B C B
y t t A t t

A A
 − − = − +

+ +
, (where 

1
tan

mA
 = ) 

It is a periodic function of the same period with ( ) sinmu t t= , except that the 

amplitude and the argument are changed. Similarly, let 2mA = − , 1mB = , 1mC = , 

(0) 1mx = , Figure 2 can be obtained. 
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Figure 2. The graph of ( )mu t  and ( )my t  ( ( )mu t  is a periodic signal) 

A2: Suppose the matrices pair ( , )A B  is stabilizable, the matrices pair ( , )C A

is detectable, and the matrix 
0

A B

C

 
 
 

is of full row rank. 

Remark 2.2: A2 is the basic assumption in the theory of preview control (Katayama 

& Hirono, 1987).  

A3: Suppose the reference input signal ( )mu t  is a piecewise continuously 

differentiable function satisfying 

lim ( )m m
t

u t u
→

= , lim ( ) 0m
t

u t
→

=&  

where mu  is a constant vector. Moreover, ( )mu s ( rt s t l  + )  is previewable at 

each instant of time t , rl  is the preview length of ( )mu t . 

A4: Suppose the fault signal ( )d t  is a piecewise continuously differentiable 

function satisfying 

lim ( )
t

d t d
→

= , lim ( ) 0
t

d t
→

=&  

where d  is a constant vector. Moreover, ( )d s ( dt s t l  + ) is previewable at each 
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instant of time t , dl  is the preview length of ( )d t . 

Remark 2.3: Consider the rolling system (as an automatic control system). When the 

sensor detects a fault (for example, the distance between rolls deviates from the 

normal set value) on a roll ahead, the accumulation of the billet in the fault position 

can be prevented by adjusting the conveying speed of the billet in rolling (Tsuchiya & 

Egami, 1994; Huang et al., 2004). This can be regarded as a control system with 

previewable fault information, in which the fault information ahead detected by the 

sensor is the previewable fault information. 

Remark 2.4: A3-A4 are the basic assumptions in preview control theory (Katayama 

& Hirono, 1987; Liao et al., 2011).  

3. Design of fault-tolerant preview controller

In this section, we utilize the methods of preview control theory to construct an 

augmented system, which combines the error equation , the state equation of fault 

system and the state equation of reference model. 

By taking the derivative of both sides of (3), we get 

( ) ( ) ( ) (t) (t)m m me t y t y t Cx C x= − = −& & & & &                 (5) 

Derivating both sides of the state equation in (1) and (2) gives 

(t) (t) (t) (t)x Ax Bu Wd= + + &&& & & (6) 

(t) (t) (t)m m m m mx A x B u= +&& & & (7) 

Combining (5), (6), (7), and take ( )e t  as the output vector, we can obtain a 

form of control system (called augmented system) 

( ) ( ) ( ) ( ) ( )

( ) ( )

m mX t AX t Bu t B u t Wd t

e t CX t

 = + + +


=

&& % % % %& &

%
(8) 

where 

( )

( ) ( )

( )m

e t

X t x t

x t

 
 

=
 
  

&

&

, 

0

0 0

0 0

m

m

C C

A A

A

− 
 

=
 
  

% , 

0

0

B B

 
 

=
 
  

% , 

0

0m

m

B

B

 
 

=
 
  

% , 

0

0

W W

 
 

=
 
  

% , 

 0 0C I=%
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Remark 3.1: Note that the output of the system (1) is ( )y t , and the output of the 

system (2) is ( )my t , thus at the current time t , we can get ( ) ( ) ( )me t y t y t= − , it is 

reasonable to use it as the output of the augmented system. 

When the performance index function (4) is expressed by the related variables in 

augmented system (8), the performance index function will be adjusted as 

0

( ) ( ) ( ) ( )T TJ X t QX t u t Ru t dt



 = +  & & (9) 

where, 0

0

eQ

Q

 
 

=
 
  

. 

It is known from the basic results of the optimal control theory and the structure 

of the performance index function (9) (that is, (4)) that the controller ( )u u t=  

designed by the minimum value of J  can make the output error ( )e t  of the closed 

loop system have the nature of the preceding description. Therefore, the problem is 

converted to the optimal regulation of the system (8) and the performance index 

function (9). Similar to the reference (Liao et al., 2011), we can obtain the following 

theorem. 

Theorem 1: Suppose )
~

,
~

( BA  is stabilizable and )
~

,( 2
1

AQ  is detectable. The 

optimal preview input of system (8) under the performance index function (9) can be 

expressed as 

1 1( ) ( ) ( )T Tu t R B PX t R B g t− −= − −% %&

where P  is a positive semi-definite matrix satisfying the algebraic Riccati equation 

0
~~~~ 1 =+−+ − QPBRBPAPPA TT

(10) 

and 

0 0
( ) exp( ) ( ) exp( ) ( )

d rl l
T T

c c m mg t A PWd t d A PB u t d&% % &        = + + +   

the matrix in this formula 

PBRBAA T

c

~~~ 1−−= (11)
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is stable. 

Because system (8) has the same form with system (3.4) in reference (Liao et al., 

2011), their performance index functions and assumptions about preview are also in 

the same form. There is no difference just from the mathematical angle, so the 

derivation is completely similar. It is omitted here.  

4. Conditions for the existence of the controller

Theorem 1 requires )
~

,
~

( BA is stabilizable and )
~

,( 2
1

AQ is detectable, we 

discuss the circumstances which original system (1) needs to satisfy so that the two 

conditions are established. Note that the reference model (2) is a given system, so that 

the A1 must be satisfied.  

Lemma 1:  Under the assumption of A1, )
~

,
~

( BA  is stabilizable if and only if 

( , )A B is stabilizable and the matrix 
0

A B

C

 
 
 

is of full row rank. 

Proof: According to the PBH criterion (Chen, 1999), )
~

,
~

( BA is stabilizable if 

and only if for any complex number s  satisfying Re( ) 0s  , the matrix 

0

0 0

0 0 0

m

c

m

sI C C

U A sI B

A sI

− − 
 

= −
 
 − 

is of full row rank. In the same way, use the PBH criterion, due to mA is stable we 

can infer that any complex number s  satisfying Re( ) 0s  , mA sI− is invertible. 

Therefore, when Re( ) 0s  , we have 

0
( ) ( ) rank

0

0
rank

0

c m

m

sI C
rank U rank A sI

A sI B

sI C
n

A sI B

− 
= − +  

− 

− 
= +  

− 

That is to say, matrix cU is of full row rank if and only if 
0

0

sI C

A sI B

− 
 

− 
is of 

full row rank. Two cases of this matrix are discussed. 
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(ⅰ) When 0s = , obviously 
0

0

sI C

A sI B

− 
 

− 
is of full row rank if and only if 

matrix 
0

A B

C

 
 
 

is of full row rank. 

(ⅱ) When Re(s) 0  and 0s  , sI  is reversible, thus 
0

0

sI C

A sI B

− 
 

− 
is 

of full row rank if and only if matrix  sI A B−  is of full row rank.

Note that, from the discussion of 0s =  is known that   0ssI A B =− is also 

of full row rank, therefore, we get the conclusions to be proved by combining these 

discussions. This accomplishes the proof of the Lemma 1. 

Lemma 2: Under the assumption of A1, )
~

,( 2
1

AQ is detectable if and only if 

( , )C A is detectable. 

Proof: According to the PBH criterion, )
~

,( 2
1

AQ is detectable if and only if for 

any complex number s  satisfying Re( ) 0s  , the matrix
1 2o

A sI
U

Q

 −
=  
 

%
is of full 

column rank. Note that 

1 2

0 0

0 0

0 0

0 0 0

0 0 0

m

m

o

e

sI C C

A sI

A sI
U

Q

− − 
 

−
 
 −

=  
 
 
 
 

let s  is a complex number and satisfying Re( ) 0s  , from the structure of matrix 

oU and the invertibility of matrix mA sI− and 
1 2

eQ , we have 
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1 2

1 2

1 2

0 0
( )

0 0

0 0

( ) 0

0

( ) ( )

m

o

m

e

m

e

m

e m

m

sI C C

A sI
rank U rank

A sI

Q

C C

rank Q rank A sI

A sI

A sI
rank Q rank A sI rank

C

A sI
p n rank

C

− − 
 

−
 =
 −
 
 

− 
 

= + −
 
 − 

− 
= + − +  

 

− 
= + +  

 

From this, and citing the PBH criterion again, it can be proved that Lemma 2 is 

established.  

Theorem 1 is the result of using optimal control theory for augmented system. 

Lemma 1 and Lemma 2 show the relationship between the stabilization and 

detectability of augmented system and the corresponding characteristics of the 

original system. Now we need to go back to the original system to get the controller 

we required. Using the Lemmas 1 and 2 in Theorem 1 and solving the ( )u t , we get 

the final result of this paper.  

Theorem 2: If A1, A2, A3 and A4 hold, eQ and R are positive definite 

matrices, then, the Riccati equation (10) has a unique symmetric positive 

semi-definite solution, and the optimal preview input of system (1) under the 

performance index function (4) can be expressed as 

1 2
0

( ) (0) ( ) [ ( ) (0)] [ ( ) (0)] ( ) ( )
m

t

e x x m mu t u K e d K x t x K x t x f t f t = − − − − − + +    (12) 

where 1( )f t , 2 ( )f t , eK , xK and 
mxK are 

 1

1
0

( ) exp( ) ( ) ( )
dlT T

cf t R B A PW d t d d   −= − + −% %

 1

2
0

( ) exp( ) ( ) ( )
rlT T

c m m mf t R B A PB u t u d   −= − + −% %

1

m

T

e x xK R B P K K K−  = =  
% (13) 

stability matrix cA is shown as (11). (0)u , (0)x  and (0)mx are the initial values 
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that can be arbitrarily taken. 

    Proof: It can be obtained by utilizing (13) 

1( ) ( ) ( ) ( ) ( )
m

T

e x x mu t K e t K x t K x t R B g t−= − − − − %& & &

integrating on [0, ]t  in both sides, we get 

1

0 0
( ) (0) ( ) [ ( ) (0)] [ ( ) (0)] ( )

m

t t
T

e x x m mu t u K e d K x t x K x t x R B g s ds  −= − − − − − − % (14) 

Due to calculation 

 

0 0 0 0 0

0 0 0 0

0

( ) exp( ) ( ) exp( ) ( )

exp( ) ( ) exp( ) ( )

exp( ) ( ) ( ) exp( )

d r

d r

d

t t l t l
T T

c c m m

l t l t
T T

c c m m

l
T T

c c

g s ds A PWd s d ds A PB u s d ds

A PW d s ds d A PB u s ds d

A PW d t d d A PB

     

     

    

   = + + +  

   = + + +
      

= + − +

    

   



&% % &

&% % &

% %  
0

( ) ( )
rl

m m mu t u d  + −

substituting this equation into (14) yields the conclusion to be proved. 

Notice that the control effect can be improved by selecting the initial values 

(0)x , (0)mx and (0)u . 

Remark 4.1: In (12), 
0

( ) − 
t

eK e d is the integral of the output tracking error, that 

is, the integrator; ( )xK x t− is the state feedback of the fault model (1); ( )
mx mK x t− is 

the effect of the fault free reference model (2) on the closed loop system; 1( )f t and 

2 ( )f t are the preview compensation of the fault signal and reference input signal, 

respectively. 

The controller given by (12) is called fault-tolerant preview controller. 

5. Numerical simulation

Example: The dynamic equation of a real steam generator water level control 

system (Irving, Miossec, & Tassart, 1980) is 

( ) ( ) 31 2

2 2 2 1 2

2 1 1

(s) (s) (s) (s) (s) (s)
1 4 2   − − −

= − − − +
+ + + +

e v e v e

G sG G
y q q q q q

s s T s s

The corresponding state space equation can be descripted by (1), where 
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22

43 44

0 0 0 0

0 0 0

0 0 0 1

0 0

a
A

a a

 
 
 =
 
 
 

, 

1

2

0

1

b

b
B

 
 
 =
 
 
 

,

1

2

0

0

w

w
W

 
 
 =
 
 
 

,  31 1 0C G= , 

1 2 2 2 1

22 2 43 1 44 1

1

1 1 2 2 2

1

1 1 2 2 2

,  ( 4 ),  2

,   

,   

a a T a

b G b G

w G w G

   





− − − −

−

−

 = − = − + = −


= = −


= − =

. 

By selecting a set of parameters with a power of 5%, the coefficient matrices in (15) 

is obtained 

0 0 0 0

0 0.02066 0 0

0 0 0 1

0 0 0.00333 0.04773

A

 
 

−
 =
 
 

− − 

, 

0.058

0.19897

0

1

B

 
 
−
 =
 
 
 

, 

0.058

0.19897

0

0

W

− 
 
 =
 
 
 

, 

 1 1 0 0.181C = . 

   In this system, the input vector ( )u t  is the feedwater flow of the steam generator, 

and the disturbance vector ( )d t  is a known fault signal. The purpose of water level 

control is to eliminate the effects of fault signal ( )d t  on the water level ( )y t  of the 

steam generator by adjusting the flow rate of feedwater ( )u t . In other words, when 

the fault occurs, the water level ( )y t  of the steam generator can be kept at the ideal 

water level by the design of the controller ( )u t . 

Suppose in the reference model (2) 

2 0.2

0 0.7
mA

− 
=  

− 
, 

1

0

 
=  
 

mB , [1 1]mC =

and the reference input is a step signal 

0, 0 75
(t)

10, 75
m

t
u

t

 
= 



Note that the output vector ( )my t of (2) is the ideal water level of the steam 

generator. 

Then, suppose the fault signal is 
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0, 0 350
( )

2, 350

t
d t

t

 
= 



    The weight matrices of the performance index function (4) are taken as 

0.009eQ = , 5000R = . 

It is easy to verify that the conditions of theorem 2 are all satisfied. The solution 

of the Riccati equation and the gain matrix in the fault-tolerant preview controller (12) 

are  

3.170643 558.4987 131.4901 0.55135 0.477859 1.58307 4.96159

558.4987 128707 25654.74 101.53 2.77573 279.248 877.611

131.4901 25654.74 5810.079 23.8474 6.491519 65.7439 206.598

0.55135 101.53 23.8474 0.100913 0.P

− − −

− − −

− − −

−= − − − 04224 0.275675 0.866385

0.477859 2.77573 6.491519 0.04224 0.926958 0.23873 0.74585

1.58307 279.248 65.7439 0.275675 0.23873 0.790973 2.479922

4.96159 877.611 206.598 0.866385 0.74585 2.479922 7.780668

 











− − −

− − − −

− − − −












0.0013416eK = , 

 0.47265 0.067687 0.00023721 0.000040733xK = − − , 

 0.00067081 0.0021081
mxK = − − , 

where P  is positive definite. 

The initial conditions are as follows: 

( )0 0.1u = , ( )

0.75

0
0

0.75

0.3

x

 
 
 =
 −
 
 

, 
0

(0)
0

mx
 

=  
 

. 

Figure 3 shows the output response of the water level control system when the 

preview length of the fault signal ( )d t  is 0dl = (i.e., without fault signal preview). 

Figure 4 and Figure5 show the corresponding tracking error and input signal, 

respectively. 
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Figure 3. The output response of the water level control system without fault signal 

preview  
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Figure 4. The output error of the water level control system without fault signal 

preview 
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Figure 5. The input of the water level control system without fault signal preview 

From Figure 3 and Figure 4, it can be seen that the existence of the preview 

compensation accelerates the response speed of the system back to the ideal value. In 

fact, after calculation, we can know that beginning around 450t = , the tracking error 

is largest when 0rl = , the tracking error is smaller when 9rl = , and it is smallest 

when 30rl = which indicates the effect of the effect about ( )mu t  preview. In the

same way, Figure 3 and Figure 4 show that the increase of the preview length of 

( )mu t may increase the overshoot in short time when the fault signal is added. These 

characteristics need to be paid attention to when they are applied, and a proper 

preview length should be taken. Figure 5 illustrates that once the system overcomes 

the effects of the fault signal back to the ideal value, the input vector is basically 

maintained, which is exactly the same as the actual situation. 

Figures 6, 7 and 8 reveal the output response, the corresponding tracking error 

and input signal of the water level control system when the preview length of the 

reference input signal ( )mu t  is 0rl =  (i.e., reference input signal preview), 

respectively. It can also be noticed that the preview compensation of the fault signal 

has an effect on the ideal value of the water level recovery. The addition of preview 
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reduces the adverse effects caused by the fault signal, improves the accuracy of the 

water level tracking ideal value, and the longer the preview length is, the more 

obvious the effect is. In particular, it is evident from Figure 6 and Figure 7 that the 

effect of the fault on the change of the water level is effectively suppressed because of 

the addition of the fault signal preview. Moreover, when the preview length of the 

fault signal is increased, the adjustment time of the system can be shortened and the 

overshoot is reduced.  
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Figure 6. The output response of the water level control system without reference 

input signal preview 
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Figure 7. The output error of the water level control system without reference 

input signal preview 
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Figure 8. The input of the water level control system without reference input 

signal preview 

Figures 9, 10 and 11 demonstrate the output response, the corresponding tracking 

error and input signal of the water level control system with the preview of the 

reference input signal and fault signal, respectively. Similarly, the longer the preview 



20 

length is, the faster the system will overcome the fault and return to the ideal value. 
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Figure 9. The output response of the water level control system with the preview of 

the reference input signal and fault signal 
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Figure 10. The output error of the water level control system with the preview of 

the reference input signal and fault signal 
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Figure 11. The input of the water level control system with the preview of the 

reference input signal and fault signal 

It should be pointed out that if the fault signal is 0  (i.e., there is no fault signal), 

the controller designed here is still valid. Figures 12, 13 and 14 show the output 

response, the corresponding tracking error, and input signal of the water level control 

system in such condition, respectively. The simulation results show that the effect of 

water level recovery is noticeable under the reference input preview compensation.  
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Figure 12. The output response of the water level control system without fault signal 
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Figure 13. The output error of the water level control system without fault signal 
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Figure 14. The input of the water level control system without fault signal 

Remark 5.1: The controller designed in this paper has two main advantages: firstly, 

the existence of the preview compensation accelerates the response speed of the 

system; secondly, the designed control contains integrator, which can eliminate static 

error(Liao et al. , 2003). 
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6. Conclusion

In this paper, the theory of the preview control is developed by combining with 

model-following control, and which is successfully applied to the fault-tolerant 

problem. The fault-tolerant preview controller for a class of fault systems is designed. 

Apart from the disturbance preview, it is different from the traditional preview control 

that the desired signal of the system is the output of the reference model and the 

previewable signal is the input of the reference model. By constructing augmented 

system, the problem is transformed into the preview controller design problem of 

augmented system. Then, the preview controller of the augmented system is obtained 

by using the similar research method in the preview control problem, from which it 

can be gained the required fault-tolerant preview controller. Finally, the results are 

applied to a steam generator water level control system, and the numerical simulation 

is carried out to illustrate the effectiveness of the proposed method. 

In future, one of the important research topics is to extend the present result to 

the continuous time linear descriptor systems, which is more challenging due to the 

special structure of descriptor systems. And the issue of the fault-tolerant preview 

control based on the techniques of sliding mode will be interesting and of great 

significance. 
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