
Citation:
Gorbenko, A and Romanovsky, A and Tarasyuk, O (2019) Fault tolerant internet computing: Bench-
marking and modelling trade-offs between availability, latency and consistency. Journal of Network
and Computer Applications, 146. ISSN 1084-8045 DOI: https://doi.org/10.1016/j.jnca.2019.102412

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/6078/

Document Version:
Article (Accepted Version)

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/6078/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

1

Fault Tolerant Internet Computing: Benchmarking and Modelling

Trade-offs Between Availability, Latency and Consistency

Anatoliy Gorbenko1,3*, Alexander Romanovsky2, Olga Tarasyuk3

1Leeds Beckett University, Leeds, UK; 2Newcastle University, Newcastle-upon-Tyne, UK;
3National Aerospace University, Kharkiv, Ukraine

*Corresponding author. E-mail address: A.Gorbenko@leedsbeckett.ac.uk

Abstract—The paper discusses our practical experience and theoretical results of investigating the

impact of consistency on latency in distributed fault tolerant systems built over the Internet and

clouds. We introduce a time-probabilistic failure model of distributed systems that employ the

service-oriented paradigm for defining cooperation with clients over the Internet and clouds. The

trade-offs between consistency, availability and latency are examined, as well as the role of the

application timeout as the main determinant in the interplay between system availability and

responsiveness. The model introduced heavily relies on collecting and analysing a large amount of

data representing the probabilistic behaviour of such systems. The paper presents experimental

results of measuring the response time in a distributed service-oriented system whose replicas are

deployed at different Amazon EC2 location domains. These results clearly show that improvements

in system consistency increase system latency, which is in line with the qualitative implication of the

well-known CAP theorem. The paper proposes a set of novel mathematical models that are based on

statistical analysis of collected data and enable quantified response time prediction depending on the

timeout setup and on the level of consistency provided by the replicated system.

Keywords—service-oriented systems, internet computing, cloud computing, distributed

applications, fault tolerance, modelling techniques, trade-off, availability, latency, consistency

1. INTRODUCTION

Internet and cloud computing has become an industrial trend, indispensable in dealing with

enormous data growth. It is now widely used in different market niches, including critical

infrastructures and business-critical systems. Failures of such applications can affect people’s

lives and businesses. For example, Amazon’s S3 cloud storage widespread outage on February

28, 2017 knocked numerous web services offline and costed S&P 500 companies at least $150

million, and U.S. financial-service companies $160 million in lost revenue [1]. A spate of recent

service outages of the Amazon, Google, MS Azure, Dropbox and other cloud platforms1,2,3

highlights the risks involved when companies rely on Internet computing and cloud resources

in their mission-critical applications. Thus, ensuring dependability of Internet computing and

of the whole spectrum of related technologies (web services, SOA, clouds, Big Data, etc.) is a

must, as well as a challenge. The recent microservice architectural style [2] offers greater

interoperability and reduces the overall cost of system design and composition but introduces

additional operational complexity, increases system latency and its variation due to inter-service

1 https://www.analyticsindiamag.com/cloud-outages-that-shook-the-tech-world-2018/
2 https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2018
3 https://www.theregister.co.uk/2017/03/01/aws_s3_outage/

mailto:A.Gorbenko@leedsbeckett.ac.uk

2

rather than in-process calls and also presents reliability issues similar to SOA and web services

but on a larger scale.

Although the Internet and cloud computing technologies have been significantly improved

recently, we believe that they have not yet revealed their full potential. In particular, it is still in

its infancy when it comes to ensuring dependability of large-scale dynamically composed

service-oriented systems involving multiple independent services and providers. Dependability

enhancing technologies will thus be essential in supporting mission- and business-critical

applications intended for personal use or to be used by enterprises, governments or defence.

There is significant research devoted to dependability and performance of Internet

computing, clouds and SOA (e.g. [3, 4, 5]). Recent related works, such as [6, 7, 8, 9], have

introduced several approaches to incorporating fault tolerance techniques (including N-modular

redundancy, voting, backward and forward error recovery and replication techniques) into

clouds and web service architectures. Important research has been done in fault analysis,

evaluation and experimental measurements of dependability and performance of service-

oriented systems, e.g. [10, 11, 12]. However, coming from dispersed areas, this work addresses

individual issues but has not so far advanced them in combination or offered general solutions.

Often, researchers use simple and hence unrealistic failure models or fail to take into account

the interdependency between availability and performance that is in the very nature of such

distributed interacting systems. For instance, basic fault tolerance solutions such as N-modular,

hot- and cold-spare redundancy usually assume a synchronous communication between

replicas, which means that every message is delivered within a known fixed amount of time

[13]. This is a reasonable simplification for the local area systems whose components are

compactly located, for instance, within a single data centre. This assumption does not appear to

be relevant, however, for the wide area systems, in which replicas are deployed over the Internet

and their updates cannot be propagated immediately, making it difficult to guarantee

consistency.

To be more efficient, fault tolerance techniques incorporated into Internet and cloud

computing applications should distinguish between evident failures of different types, such as

application exceptions, communication errors and timeouts, and should be capable of

minimizing the probability of non-evident application errors. In addition, the Internet and, more

generally, the wide area networked systems are characterized by a high level of uncertainty,

which makes it hard to guarantee that a client will receive a response from the service within a

finite time. It has been previously shown that there is a significant uncertainty of response time

and other timeliness parameters in service-oriented systems invoked over the Internet [14, 15].

This uncertainty significantly affects QoS capability of distributed applications. Experimental

studies [15, 16] show that the response time of web services can very often be as high as 10 or

even 20 times the average value. Moreover, sometimes client applications wait for a response

from a service for hours instead of reporting an exception or resending a request. Therefore, the

right timeout setting is key to improving performance of many distributed systems, including web

services.

Besides, other research [17, 18] and our previous studies show that failures are a regular

occurrence on the Internet, in clouds and scale-out data centre networks. When developers

apply replication and other fault tolerance techniques in the Internet- and cloud-based systems,

they need to understand the time overheads and be concerned about delays and their uncertainty.

3

In this paper we put forward an advanced failure model for distributed systems and Internet

computing applications, taking into account the time-probabilistic relation between different

failure modes, and propose analytical models that assess the average servicing and waiting

times under certain timeout settings.

Secondly, we examine, both in experimental and theoretical terms, how different fault

tolerance solutions [19] implemented over the Internet affect system latency depending on the

replication factor and the level of consistency provided.

The paper applies the time-probabilistic failure model, proposed in our earlier work [20] to

the CAP conjecture. It discusses trade-offs between consistency, availability and latency taking

into account timeout settings. Although these relations have been identified by the CAP theorem

in qualitative terms [21, 22], it is still necessary to quantify how different fault tolerance

techniques affect system latency depending on the consistency level. Even when the response

times of replicas are known, it is not possible to accurately predict latency of the whole

replicated system. Hence, the ultimate goal of the paper is to provide developers of distributed

fault-tolerant systems with the mathematical models and practical guidance allowing them to

predict latency of such systems taking into account timeout settings and the required

consistency level. The proposed models will help them to trade-off between consistency,

availability and latency during system design and operation. In our work we combine

experimental measurement of replicas response time with the probabilistic theory and analytical

modelling of system latency which makes it possible to predict its dependability and

performance depending on the chosen consistency level and timeout setup.

The rest of the paper is organized as following. In Sections 2 and 3 we discuss the uncertainty

challenge inherent to distributed service-oriented systems and introduce a time-probabilistic

failure model which captures the interplay between system dependability and performance

characteristics. Section 4 discusses the impact of the CAP theorem on design principles of

modern distributed fault-tolerant systems and examines trade-offs between system consistency,

availability and latency. In Section 5 we summarise the results of experimental response time

measurements for a testbed fault-tolerant system supporting different consistency levels whose

replicas are distributed over clouds. The probabilistic models introduced in Section 6 define the

quantitative relation between the system response time and the required consistency level. In

Section 7 we evaluate the accuracy of the proposed analytical models by comparing their results

with our experimental data. Section 8 investigates how system response time changes with

increasing number of generic replicas. Finally, conclusions and practical lessons learnt are

summarised in Sections 9 and 10.

2 THE UNCERTAINTY CHALLENGE

Internet computing mainly relies on service oriented architectural model where web services

(WSs) play a role of major building blocks, often provided by third parties. By their very nature

such web services are black boxes, as neither their source code, nor their complete specification,

nor information about their deployment environments are available; the only known

information about them is their interfaces. Moreover, their dependability is not completely

known and they may not provide sufficient quality of service. As a result, it is often safe to treat

third party WSs as “dirty” boxes, assuming that they always have bugs, do not fit enough, have

poor specification and documentation. WSs are heterogeneous, as they might be developed

4

following different standards, fault assumptions, and different conventions and may use

different technologies.

Service-oriented systems are built as overlay networks over the Internet. As a result, their

dependable construction and composition are complicated by the fact that, due to a lack of

quality and predictability, the Internet is a poor communication medium. Service-oriented

systems can be vulnerable to internal faults from various sources and casual external problems

such as communication failures, routing errors and network traffic congestion. Therefore, the

performance of such systems is characterised by high instability, i.e. it can vary over a wide

range in a random and unpredictable manner [14].

The inability of the web services involved to guarantee a certain response time and

performance and the instability of the communication medium can cause timing failures, when

the response time or the timing of service delivery (i.e. the time during which information is

delivered over the network to the service interface) exceeds the time that would be required in

order for the system function to be executed. A timing failure may take the form of an early or

late response, depending on whether the service is delivered too early or too late [19].

In the case of complex workflows incorporating many different web services, some users

may be provided with a correct service, whereas others may have to deal with incorrect services

of various types due to timing errors. These errors may occur in any of a number of system

components depending on the relative position of a particular user and a particular web service

in the Internet, as well as on the instability points which emerge during the execution. Thus,

timing errors can become a major cause of inconsistent failures usually referred to, after [23],

as the Byzantine failures. Providing remote services, data storage and computing resources is

an important element of modern IT and Internet computing. However, significant uncertainty

exists regarding service-oriented systems invoked over the Internet [16]. In this work we use

the general synthetic term uncertainty to refer to the unknown, unstable, unpredictable,

changeable characteristics and behaviour of web services and SOA, exacerbated by running

these services over the Internet and clouds.

Understanding uncertainty arising in SOA is crucial for choosing the right recovery

techniques, setting timeouts, and adopting system architecture and its behaviour to a changing

environment such as the Internet and SOA. This uncertainty exhibits itself through

unpredictable worst-case response times, unknown service dependability, and the difficulty of

diagnosing the root cause of failures. Uncertainty is one of the main challenges to building

dependable distributed systems of Internet-scale. This uncertainty is a threat in much the same

way that faults, errors, and failures are [19]. Here, we examine that threat and discuss ways to

deal with it. We particularly focus on using timeouts as part of fault- and intrusion-tolerance

techniques.

Uncertainty has three important consequences. First, it makes it difficult to assess a service’s

availability and performance and hence to choose that service over others for its trustworthiness.

Second, it complicates the application of fault- and intrusion-tolerance techniques because too

much data is missing to make good decisions and exploit dependability mechanisms’ features.

Finally, it makes it difficult to predict the performance, cost, and other non-functional

characteristics when you apply such techniques over the Internet. Clearly, building fast,

dependable Internet applications on a large scale is impossible without addressing these issues.

5

Our recent studies and a series of experiments [14, 16] showed that the uncertainty in large-

scale distributed systems can be effectively mitigated by employing a probabilistic approach.

This work defines services response times using probability density functions (pdf) instead of

using their average values. The pdf specifies the relative likelihood for the response time to take

on a given value, that is much more informative than response time average or the worst case

value. It allows us to estimate a probability that the system response time is less than the

specified value or to define confidence intervals. The probability density function can be

chosen/estimated by statistical processing of response time measurement results. The

corresponding technique is described in [16].

3 TIME-PROBABILISTIC FAILURE MODEL

Web services and service-oriented systems as any other complex software may contain faults

which may manifest themselves in operation. To every request, the web service might return

either a correct response – that is, succeed – or an erroneous response or exception—that is,

fail. Web services failure behaviour is characterised by the probability of failure on demand

(pfd). This probability can be statistically measured by a client as a ratio between r failures

observed in n demands [24]. It can vary between the environments and the contexts (operational

profiles) in which a web service is used.

The various factors, which affect the pfd may be unknown with certainty, thus the value of

pfd may be uncertain as well. This uncertainty can be captured by a probability density series

or probability distribution, built by aggregating usage experience of different clients. A user-

collaborative mechanism, aggregating data from multiple clients, was proposed in [25].

Thus, the response returned to the client by a remote service may be of several types:

1. Correct result.

2. Evident error – an error that needs no special means to be detected. It concerns exception

messages of different types reported to the client and notifying about denial of the requested

service for some reason.

3. Non-evident (hidden) error – an error that can be detected only by using a multiversioning

at the application level (e.g. diversity of web services used).

However, the distributed nature of the service-oriented architectural model does not

guarantee that the client receives a response from the web service within the finite time. If this

happens we face so-called timing failures when the response is received too late or is not

received at all. Thus, the known dependability definition [19] should be extended for SOA as

the “ability to deliver service within the expected time that can justifiably be trusted”.

In the Figure 1 we adopt the failure model introduced by Avizienis, et al. in [19] to the

distributed nature of service-oriented systems and, more general, Internet computing. The

model distinguishes between the two main failure domains: (i) timing failures when the duration

of the response delivered to the client exceeds the specified waiting time – the application

timeout (i.e. the service is delivered too late), and (ii) content failures when the content (value)

of the response delivered to the client deviates from implementing the system function.

Probabilities pok, phe and pex are conditional probabilities. They are conditioned on the

arrival of some response within the timeout. Probabilities pex and phe refer to failure modes

6

that in the Avizienis’s classification

correspond to the detectability

viewpoint, where they are

classified as: signaled and

unsignaled failures, respectively.

In our failure model we use the

following assumptions:

– probabilities of all servicing

outcomes (pok, phe, pex, pto) form

a set of collectively exhaustive

events;

– system response time is a

random variable with the known

probability density function ft(t)

and certain parameters specified

based on the result of statistical analysis of measured results;

– time during which a client waits for the response is limited by the timeout parameter;

– probabilities of the correct, evident and non-evident incorrect servicing (pok, pex and phe)

do not depend on the time of the response delivery to the client.

The justification of the assumptions and a detailed discussion of model properties can be

found in [20].

The interdependency between probabilities of different servicing outcomes is shown in

Fig. 2. Changing of timeout value causes changing the probability of timeout and, hence

changing (redistribution) values of pok, phe, pex and pto as long as the sum of all probabilities

must be equal to one. Hence, they are functions of a timeout setting:

𝑝𝑜𝑘(timeout) = 𝑝𝑜𝑘∞ ∙ ∫ 𝑓𝑡(𝑡)𝑑𝑡
timeout

0

 (1)

𝑝ℎ𝑒(timeout) = 𝑝ℎ𝑒∞ ∙ ∫ 𝑓𝑡(𝑡)𝑑𝑡
time-ou𝑡

0

 (2)

𝑝𝑒𝑥(timeout) = 𝑝𝑒𝑥∞ ∙ ∫ 𝑓𝑡(𝑡)𝑑𝑡
timeout

0

 (3)

where pok, pex, phe are the ‘eventual’ probabilities of getting a correct, evident and non-evident

erroneous results assuming the infinite waiting time, i.e. when timeout .

The timeliness related unavailability of a system can be estimated as the probability of the

client receiving a response after the specified application timeout:

𝑝𝑡𝑜(timeout) = ∫ 𝑓𝑡(𝑡)𝑑𝑡
∞

timeout

 (4)

Fig. 1. Service failure modes

Timing
failure

Correct
timing

Correct
content

Content
failure

Unsignaled
failure

(hidden error)

Signaled
failure

(exception)

P
ok

P
he

P
ex

P
to

 the application timeout
after

 A service is delivered
 before

Probabilities of different servicing outcomes

Failure
domain
viewpoint

Failure
detectability
viewpoint

Simple
dependability
measures

7

Besides, we introduce the

following two measures

estimating system latency:

Tav_srv – the average

servicing time and Tav_wait –

the average waiting time. The

expectation of ft(t) truncated

from the right by a timeout is

the average response time of

those invocations in which the

client receives a response of

any type before the specified

timeout (i.e. the average

servicing time):

𝑇𝑎𝑣𝑔_𝑠𝑟𝑣(timeout) =
∫ 𝑡 ∙ 𝑓𝑡(𝑡)𝑑𝑡

timeout

0

𝐹𝑡(timeout)
 (5)

where 𝐹𝑡(timeout) = ∫ 𝑓𝑡(𝑡)𝑑𝑡
timeout

0
 is the cumulative distribution function of a response

time.

The average waiting time Tavg_wait estimated for all invocations, including those when a

timeout is triggered, is the sum of Tavg_srv under the specified timeout and a product of the

timeout value and the probability of timeout:

𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡(timeout) = ∫ 𝑡 ∙ 𝑓𝑡(𝑡)𝑑𝑡

timeout

0

+ timeout ∙ (1 − 𝐹𝑡(timeout)) (6)

It can be seen that Tav_srv and Tav_wait are becoming equal when the timeout increases to

infinity. But in all practical settings Tav_srv is less than Tav_wait. This is because the waiting

time for those invocations for which a timeout is triggered is equal to the timeout value. So, the

weight of a tail of ft(t) truncated by the timeout is concentrated at the truncation border which

increases the average waiting time Tav_wait.

Using these equations, systems engineers can trade-off between maximizing the service

availability and minimizing its latency. Besides, these equations can help to choose appropriate

application timeouts, which are the main error detection mechanism here. To be applicable in

practice the proposed models have to be concretized using the explicitly defined probability

density function. For instance, if system response time is approximated by the exponential

distribution 𝑓𝑡(t) = 𝜇 ∙ 𝑒−𝜇∙t (where µ is the rate parameter which is inversely proportional to

the mean), the trade-offs between latency, availability and timeout will be identified as

following:

Fig. 2. Time-probabilistic failure model: the trade-off between

availability and latency depending on timeout setup

p
ok

t, ms

Client’s
application timeout

p
he

p
ex

ft(t) – response time probability
 density function

p

pok – probability of correct servicing
pex – probability of signaled failure (exception)
phe – probability of unsignaled failure (hiden error)
pto – probability of time-out (system unavailability)

p
to

8

𝑝𝑡𝑜(timeout) = 𝑒−𝜇∙timeout => 𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝑝𝑡𝑜) = −
ln(𝑝𝑡𝑜)

𝜇
;

𝑇𝑎𝑣𝑔𝑠𝑟𝑣(timeout) = −
𝑒−𝜇∙timeout + 𝜇 ∙ timeout∙𝑒−𝜇∙timeout − 1

𝜇 ∙ (1 − 𝑒−𝜇∙timeout)
,

𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡(timeout) = −
𝑒−𝜇∙timeout−1

𝜇
 =>

=> 𝑇𝑎𝑣𝑔_𝑠𝑟𝑣(𝑝𝑡𝑜) = −
𝑝𝑡𝑜 ∙ ln(𝑝𝑡𝑜) − 𝑝𝑡𝑜 + 1

𝜇 ∙ (𝑝𝑡𝑜 − 1)
,

 𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡(𝑝𝑡𝑜) = −
𝑝𝑡𝑜 − 1

𝜇
,

𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡) = −
ln(1 − 𝜇 ∙ 𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡)

𝜇
,

𝑝𝑡𝑜(𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡) = 1 − 𝜇 ∙ 𝑇𝑎𝑣𝑔_𝑤𝑎𝑖𝑡.

The numerical example of solving the trade-offs and estimating the probabilities of different

types of failures and system latency Tav_srv and Tav_wait depending on timeout settings can

be found in [20]. In our work timeout links system availability and latency. It can also be used

as part of failure recovery techniques to trigger the restart or retry in software systems [26].

4 TRADE-OFFS BETWEEN CONSISTENCY, AVAILABILITY AND LATENCY IN FAULT-

TOLERANT INTERNET COMPUTING

The CAP conjecture [21], which first appeared in 1998-1999, defines a trade-off between

system availability, consistency and partition tolerance, stating that only two of the three

properties can be preserved in distributed replicated systems at the same time. Gilbert and

Lynch [22] view the CAP theorem as a particular case of a more general trade-off between

consistency and availability in unreliable distributed systems which assume that updates are

eventually propagated. System partitioning, availability and latency are tightly connected. A

replicated fault-tolerant system becomes partitioned when one of its parts does not respond due

to arbitrary message loss, delay or replica failure, resulting in a timeout.

System availability can be interpreted as a probability that each client request eventually

receives a response. In many real systems, however, a response that is too late (i.e. beyond the

application timeout) is treated as a failure. High latency is an undesirable effect for many

interactive web applications. In [27] the authors showed that if a response time increases by as

little as 100 ms, it dramatically reduces the probability of the customer continuing to use the

system. Failure to receive responses from some of the replicas within the specified timeout causes

partitioning of the replicated system. Thus, partitioning can be considered as a bound on the

replica’s response time [28]. A slow network connection, a slow-responding replica or the wrong

timeout settings can lead to an erroneous decision that the system has become partitioned. When

the system detects a partition, it has to decide whether to return a possibly inconsistent response

to a client or to send an exception message in reply, which undermines system availability.

The designers of the distributed fault-tolerant systems cannot prevent partitions which

happen due to network failures, message losses, hacker attacks and components crashes and,

hence, have to choose between availability and consistency. One of these two properties has to

9

be sacrificed. If system developers decide to forfeit consistency they can also improve the

system response time by returning the fastest response to the client without waiting for other

replica responses until the timeout, though this would increase the probability of providing

inconsistent results. Besides, timeout settings are also important. If the timeout is lower than

the typical response time, a system is likely to enter the partition mode more often [20].

It is important to remember that none of these three properties is binary. For example, modern

distributed database systems, e.g. Cassandra [29], can provide a discrete set of different

consistency levels for each particular read or write request. The response time can theoretically

vary between zero and infinity, although in practice it ranges between a minimal affordable

time higher than zero and the application timeout. Availability varies between 0% and 100% as

usual.

The architects of modern distributed database management systems and large-scale web

applications such as Facebook, Twitter, etc. often decide to relax consistency requirements by

introducing asynchronous data updates in order to achieve higher system availability and allow

a quick response. Yet the most promising approach is to balance these properties. For instance,

the Cassandra NoSQL database introduces a tunable replication factor and an adjustable

consistency model so that a customer can choose a particular level of consistency to fit with the

desired system latency.

The CAP theorem helps the developers to understand the system trade-offs between

consistency and availability/latency [30]. Yet even though this theorem strongly suggests that

better consistency undermines system availability and latency, developers do not have

quantitative models to help them to estimate the system response time for the chosen

consistency level and to achieve a precise trade-off between them. Our interpretation of the

CAP theorem and the trade-offs resulting from the CAP is depicted in Fig. 3.

The application timeout can be considered as a bound between system availability and

performance (in term of latency or response time) [31]. Thus, system designers should be able

to set up timeouts according to the desired system response time, also keeping in mind the

choice between consistency and availability. We represent the response time as a random

variable which possible values and their associated probabilities can be described by a discrete

or continuous distribution function.

Knowing this function, the system

designer can predict the average system

latency or estimate a probability of

getting response by the specified

timeout. In turn, for the distributed

replicated system this function is

determined by distribution functions of

replicas response times and depends on

the total number of replicas and the

consistency level, provided by a system.

In the following sections we discuss our

practical experience in measuring

latency of fault-tolerant distributed

systems depending on the number of

Fig. 3. The CAP trade-offs model

 pdf

 pdf

C

+-

Tim
eo

ut

R
esponse tim

e

+
-

0

Consistency levels

“ONE” “ALL”

...
“QUORUM”

...A

P

8

Availability

Consistency

Partition

10

replicas and provided consistency level. We also introduce analytical models defining

distribution functions of system response time and predicting system latency.

5 EXPERIMENTAL INVESTIGATION OF THE CONSISTENCY IMPACT ON RESPONSE TIME

5.1 Testbed Fault-Tolerant Distributed System

To investigate the CAP impact on fault-tolerant distributed systems we developed a testbed

service-oriented system composed of a number of replicated web services. Modern distributed

systems and services like Amazon S3, Amazon EMR, Facebook Haystack, DynamoDB,

Apache Hadoop, etc. replicate data to at least three servers. The wide-area cooperative storage

file system analysed in [32] maintains 6 replicas for each file block. In [33] the authors

examined the replication degree customization for high availability when a number of replicas

ranges from 1 to 6. Thus, in our experiments we ranged a number of replicas from 1 to 7 to

cover the most common replication setups.

A testbed web service was

written in Java and its replicas

uploaded to Amazon Elastic

Beanstalk and were deployed

in the seven different location

domains: US West (Oregon),

South America (Sao Paulo),

Asia Pacific (Tokyo), EU

West (Ireland), Asia Pacific

(Singapore), US East

(Virginia) and US West (N.

California). Each WS replica

performs a heavy-

computational arithmetic algorithm implementing the Gregory–Leibniz series to calculate the

mathematical constant Pi and returns the result to the driver. The driver is responsible for

invoking each of the replicated web services, waiting for the web services to complete their

execution and return response, and, finally, applying a particular fault tolerance scheme with a

certain replication factor (see Fig. 4).

In our study we investigated the three basic fault tolerance patterns for web services [34]

corresponding to different consistency levels (ONE, ALL, QUORUM). When we refer to

consistency here we use the concept of tunable/eventual data consistency [30, 35] that has been

recently introduced in the NoSQL and Big Data technologies (e.g. MongoDB, Cassandra, etc.)

extending the standard consistency model and quorum-based protocols [36] traditionally

adopted in distributed systems. In all cases the driver simultaneously forwards client’s request

to all replicated web services. The consistency level determines the number of replicas which

must return a response to the driver before it sends an adjudicated result to the client application:

 ONE (hot-spare redundancy) – when the FASTEST response is received the driver

forwards it to the client. This is the weakest consistency level though it guarantees

the minimal latency;

 ALL (N-modular redundancy) – the driver must wait until ALL replicas return their

responses.

Fig. 4. 3-replicated fault-tolerant service-oriented system

Client Driver
WS

Replica_1

WS

Replica_2

WS

Replica_3

par

“ALL”

“QUORUM”

“ONE”

Invoke
web service

11

In this case the response time is constrained by the slowest replica though the

strongest consistency is provided;

 QUORUM – the driver must wait for the responses from a QUORUM of replica web

services. It provides a compromise between the ONE and ALL options trading off

latency versus consistency. The quorum is calculated as:

(amount_of_replicas / 2) + 1, rounded down to an integer value.

The driver also

implements a timeout

mechanism aimed to protect

clients from endless waiting

in case of network or web-

services failures or cloud

outages. The driver was

implemented as part of the

Java client software. The

client software was run at a

host in the Newcastle

University (UK) corporate

network. It invoked replica

web services several

thousand times in a loop

using the driver as a proxy.

5.2 Response Time Measurement

For the particular client’s request we measured the response time of the each web service replica

and also times when the driver produces responses corresponding to different consistency

levels. The delay induced by the driver itself was negligible in our experiments.

Tables 1 and 2 summarize basic statistical characteristics of the measured data. Fig. 5 clearly

confirms the general CAP implications that increasing consistency worsens system latency and

vice versa. In addition, increasing the replication factor decreases the latency of a system

providing the weakest consistency level ONE and worsens it if a system provides the strongest

consistency level ALL. Though, the particular latency losses or gains are quite irregular and

very much depend on response time of system replicas.

TABLE 1. REPLICA RESPONSE TIME STATISTICS

Replica

ID

Replica

Location

Response Time, ms

min. avg. max. std.dev.

Replica1: US West (Oregon) 2324 2428 2821 60

Replica2: South America (SaoPaulo) 2164 2434 3371 228

Replica3: Asia Pacific (Tokyo) 2344 2588 5573 522

Replica4: EU West (Ireland) 1513 2226 10831 1103

Replica5: Asia Pacific (Singapore) 2010 2189 5078 300

Replica6: US East (Virginia) 1816 2252 10931 1095

Replica7: US West (N. California) 2271 2415 5377 306

Fig. 5. The average response time of n-replicated fault-tolerant

service-oriented system

1800

2000

2200

2400

2600

2800

3000

3200

3 4 5 6 7

Replication factor n

Average Response Time, ms

ONE

QUORUM

ALL

12

TABLE 2. SYSTEM RESPONSE TIME STATISTICS

System replication

factor n

Consistency

Level

Response Time, ms

min. avg. max. std.dev

3 (Replicas 1-3) ONE 2164 2342 2509 80

QUORUM 2324 2449 2830 72

ALL 2386 2660 5573 529

4 (Replicas 1-4) ONE 1513 1993 2404 183

QUORUM 2324 2454 2830 74

ALL 2386 2878 10831 1079

5 (Replicas 1-5) ONE 1513 1970 2367 155

QUORUM 2164 2354 2509 77

ALL 2386 2904 10831 1100

6 (Replicas 1-6) ONE 1513 1917 2159 117

QUORUM 2164 2364 2520 80

ALL 2386 3113 10931 1422

7 (Replicas 1-7) ONE 1513 1917 2159 117

QUORUM 2164 2339 2509 66

ALL 2386 3140 10931 1438

In the rest of this Section we analyse in details the data related to the 3-replicated system

configuration. As we mentioned earlier, replication factor equal to 3 is the most typical setup

for many modern distributed computing systems and Internet services. For instance, Amazon

S3 by default replicates user data to three data centres, each separated by large distances across

an AWS Region [37]. This follows from the well-known 3-2-1 rule adopted for Cloud backup

[38].

The measurement results obtained for the first 100 invocations are presented in Figs. 6 and

7. Probability density series (pds) of system and replicas response times are depicted in Figs. 8

and 9. In Fig. 9 we also depict theoretically obtained pds of system response time as proposed

further in Section 6.2.

Fig. 6. Response time of different web service replicas for the 3-replicated system setup

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Response time, ms

Invocation No

Replica1 - US West (Oregon)

Replica2 - South America (SaoPaulo)

Replica3 - Asia Pacific (Tokyo)

13

Fig. 7. System response time corresponding to different consistency levels for

the 3-replicated system setup

Fig. 8. Probability histograms (pds) of

replicas response times.

Fig. 9. Probability histograms (pds) of system

response time for different consistency levels,

estimated experimentally and using models (9),

(10) and (11).

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Response time, ms

Invocation No

ONE

QUORUM

ALL

0 0 0 0.01

0.11

0.43

0.31

0.11

0.02 0 0 0 0 0.01 0 0 0 0 0 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
p(t)

Response Tme, ms

Replica1 (Oregon)

0.01

0.1
0.12

0.2

0.10.11

0.02

0.09

0.050.040.030.04
0.01 0

0.02
0 0.010.020.010.02

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
p(t)

Response Time, ms

Replica2 (Sao Paulo)

0 0 0 0
0.02

0.17

0.29

0.21

0.11

0.05
0.08

0.010.02
0 0.01 0 0 0 0

0.03

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
p(t)

Response Time, ms

Replica3 (Tokyo)

0.01

0.1

0.12

0.20

0.16

0.25

0.15

0.01

0 0 0 0 0 0 0 0 0 0 0 0
0.01

0.1

0.12

0.21
0.16

0.27

0.11

0.02

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
p(t)

Response Time, ms

Consistency level ONE

pds-experimental

pds-theoretical

0 0 0
0.01

0.07

0.35

0.29

0.17

0.07

0.00
0.03

0 0 0

0.01

0 0 0 0 00.004

0.07

0.37

0.31

0.16

0.05

0.02
0.02

0.00
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
p(t)

Response Time, ms

Consistency level QUORUM

pds experimental

pds theoretical

0 0 0 0 0

0.11

0.180.23

0.11

0.09
0.08

0.05

0.03

0.01

0.02

0
0.01

0.02
0.01

0.05

0.07

0.21

0.23

0.13

0.07
0.09

0.050.03

0.010.03 0.01
0.02

0.01

0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
p(t)

Response Time, ms

Consistency level ALL

pds experimental

pds theoretical

14

As expected, when the system is configured to provide consistency level ONE, its latency is

on average lower than the average response time of the fastest replica. When the system

provides consistency level ALL, the average system latency is larger than the average response

time of the slowest replica. System latency associated with consistency level QUORUM is in

the middle. However, our main observation is that it is hardly possible to make an accurate

prediction of the average system latency corresponding to a certain consistency level when only

the common statistical measures of replicas response time (i.e. the minimal, maximal and

average estimates and standard deviation) are known.

This finding resulting from the massive statistical data gathered during our current and

previous (e.g. [14, 16]) experiments is in line with the work of other researches [15, 39]. It

shows that it is extremely difficult to predict the timing characteristics of various types of wide-

area distributed systems, including fault-tolerant SOAs, distributed databases and file systems

(e.g. Cassandra, GFS, HDFS), parallel processing systems (e.g. Hadoop Map-Reduce).

The dynamic and changing nature of timing characteristics of such systems can be better

captured by employing probability density functions. In the next section we propose a

probabilistic modelling approach that addresses this problem. It relies on using continuous and

discrete probability density functions (pdf) of replica response times to predict system latency

at different consistency levels.

6 PROBABILISTIC MODELS OF SYSTEM RESPONSE TIME FOR DIFFERENT CONSISTENCY

LEVELS

6.1 Deduction of Probability Density Function of System Response Time

In the section we propose a set of probabilistic models that allow us to build a combined

probability density function of system response time by taking into account the required

consistency level and incorporating response time probability density functions for each replica.

Once we get the combined probability density function of system response time we can predict

system latency using (5) and (6).

When the system is configured to provide consistency level ALL, the probability of returning

response at time t is equal to the probability that one of the replicas returns its response exactly

at time t, i.e. g1(t) while two other replicas return their responses not later than t (by time t), i.e.

∫ 𝑔2(𝑡)
𝑡

0
= 𝐺2(𝑡) and ∫ 𝑔3(𝑡) = 𝐺3(𝑡)

𝑡

0
.

So far, as we have three replicas, all three possible combinations have to be accounted. As a

result, the probability density function of the system response time for consistency level ALL

can be defined as following:

𝑓𝐴𝐿𝐿(𝑡) = 𝑔1(𝑡)𝐺2(𝑡)𝐺3(𝑡) + 𝑔2(𝑡)𝐺1(𝑡)𝐺3(𝑡) + 𝑔3(𝑡)𝐺1(𝑡)𝐺2(𝑡) (7)

where g1(t), g2(t) and g3(t) – are response time probability density functions of the first,

second and third replicas respectively; G1(t), G2(t) and G3(t) – are response time cumulative

distribution functions of the first, second and third replicas respectively.

When the system is configured to provide consistency level ONE, the probability of returning

a response to the client at time t is equal to the probability that if only one of the replicas (e.g.

15

the first one) returns its response exactly at time t, i.e. g1(t), while two other replicas return their

responses at the same time or later on, i.e. ∫ 𝑔2(𝑡) = 1 −
∞

𝑡
𝐺2(𝑡) and ∫ 𝑔3(𝑡)

∞

𝑡
= 1 − 𝐺3(𝑡).

Keeping in mind three possible combinations we can deduce the probability density function

of the system response time for consistency level ALL as:

𝑓𝑂𝑁𝐸(𝑡) = 𝑔1(𝑡)(1 − 𝐺2(𝑡))(1 − 𝐺3(𝑡)) +

 + 𝑔2(𝑡)(1 − 𝐺1(𝑡))(1 − 𝐺3(𝑡)) +

 + 𝑔3(𝑡)(1 − 𝐺1(𝑡))(1 − 𝐺2(𝑡))

(8)

Deducing the response time probability density function for the QUORUM consistency level

is based on a combination of the previous two cases. The probability of returning response to

the client at time t is equal to the probability that one of the replicas returns its response exactly

at time t; one of the two remained replicas returns its response by time t and another one responds

at time t or later on. Taking into account all possible combinations the probability density function

of the system response time for consistency level QUORUM can be deduced as:

𝑓𝑄𝑈𝑂𝑅𝑈𝑀(𝑡) = (𝑔1(𝑡)𝐺2(𝑡) + 𝑔2(𝑡)𝐺1(𝑡))(1 − 𝐺3(𝑡)) +

 + (𝑔1(𝑡)𝐺3(𝑡) + 𝑔3(𝑡)𝐺1(𝑡))(1 − 𝐺2(𝑡)) +

 + (𝑔2(𝑡)𝐺3(𝑡) + 𝑔3(𝑡)𝐺2(𝑡))(1 − 𝐺1(𝑡))

(9)

Using similar reasoning it is possible to deduce response time probability density functions

of a system composed of n replicas:

𝑓𝐴𝐿𝐿
𝑛 (𝑡) = ∑ (

𝑔𝑖(𝑡)

𝐺𝑖(𝑡)
∙ ∏ 𝐺𝑗(𝑡)

𝑛

𝑗=1

)

𝑛

𝑖=1

 (10)

𝑓𝑂𝑁𝐸
𝑛 (𝑡) = ∑ (

𝑔𝑖(𝑡)

1 − 𝐺𝑖(𝑡)
∙ ∏ (1 − 𝐺𝑗(𝑡))

𝑛

𝑗=1

)

𝑛

𝑖=1

 (11)

It is difficult to build a general form of the probability density function of the system response

time for consistency level QUORUM. However, the general reasoning is as following. The

composed probability density function should be presented as a sum of m items, where m is a

number of k-combinations of n (k is a number of replicas constituting a quorum). Each of the

m items is a product of two factors. The first one defines the probability that a particular

combination of k replicas returns responses by time t. Another factor defines the probability

that the remaining (n–k) replicas return their responses after t.

6.2 Using Discrete Form of Probability Density Functions

Probability density function is a useful means of probabilistic uncertainty representation. Its

continuous form allows calculating the probability of getting response from a system by any

given time, as it was demonstrated in the previous work [40].

16

Though, finding theoretical distributions of replicas and system response times, as described

in [16], includes non trivial statistical checks and mathematical transformations. Existing

mathematical tools (e.g. Matlab, R, MathCAD, etc.) help to simplify this calculation even

though they are costly and too ‘heavy’ to be used for run-time optimization. Besides, sometimes

known theoretical distributions cannot approximate measured data with an adequate accuracy.

Replacing continuous probability density function with its discrete form (i.e. the probability

density series, pds) is important for practical application of the proposed models. The

probability distribution series of response time is a list of probabilities associated with each of

the defined time intervals. The more time intervals are defined and the narrower they are, the

closer approximation is provided.

Using reasoning similar to that in Section 6.1, we can define the discrete probability density

functions of the response time for the three-replicated system depending on the chosen

consistency level – see (12), (13) and (14).

1. 𝑃𝐴𝐿𝐿[𝑖] = 𝑝1[𝑖] ∑ 𝑝2[𝑗]𝑖
𝑗=1 ∑ 𝑝3[𝑗]𝑖

𝑗=1 + 𝑝2[𝑖] ∑ 𝑝1[𝑘]𝑖−1
𝑘=0 ∑ 𝑝3[𝑗]𝑖

𝑗=1 +

𝑝3[𝑖] ∑ 𝑝1[𝑘]𝑖−1
𝑘=0 ∑ 𝑝2[𝑘]𝑖−1

𝑘=0 ,
(12)

2. 𝑃𝑂𝑁𝐸[𝑖] = 𝑝1[𝑖] ∙ ∑ 𝑝2[𝑗] ∙𝑛+1
𝑗=𝑖 ∑ 𝑝3[𝑗]𝑛+1

𝑗=𝑖 + 𝑝2[𝑖] ∑ 𝑝1[𝑘]𝑛+1
𝑘=𝑖+1 ∑ 𝑝3[𝑗]𝑛+1

𝑗=𝑖 +

𝑝3[𝑖] ∑ 𝑝1[𝑘]𝑛+1
𝑘=𝑖+1 ∑ 𝑝2[𝑘]𝑛+1

𝑘=𝑖+1 ,
(13)

3. 𝑃𝑄𝑈𝑂𝑅𝑈𝑀[𝑖] = ((𝑝1[𝑖] ∙ ∑ 𝑝2[𝑗]𝑖−1
𝑗=0 + 𝑝2[𝑖] ∙ ∑ 𝑝1[𝑗]𝑖−1

𝑗=0) ∙ ∑ 𝑝3[𝑗]𝑛+1
𝑘=𝑖+1 + 𝑝1[𝑖]𝑝2[𝑖]) +

4. + ((𝑝1[𝑖] ∙ ∑ 𝑝3[𝑗]𝑖−1
𝑗=0 + 𝑝3[𝑖] ∙ ∑ 𝑝1[𝑗]𝑖−1

𝑗=0) ∙ ∑ 𝑝2[𝑗]𝑛+1
𝑘=𝑖+1 + 𝑝1[𝑖]𝑝3[𝑖]) +

5. + ((𝑝2[𝑖] ∙ ∑ 𝑝3[𝑗]𝑖−1
𝑗=0 + 𝑝3[𝑖] ∙ ∑ 𝑝2[𝑗]𝑖−1

𝑗=0) ∙ ∑ 𝑝1[𝑗]𝑛+1
𝑘=𝑖+1 + 𝑝2[𝑖]𝑝3[𝑖]) −

 − 2𝑝1[𝑖]𝑝2[𝑖]𝑝3[𝑖], 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 1. . 𝑛; 𝑝𝑥[0] = 0; 𝑝𝑥[𝑛 + 1] = 0

(14)

Fig. 9 shows a significant

closeness between experimentally

measured pds and theoretical pds

obtained with the help of the

proposed models.

Probability density series can be

directly estimated from the

experimentally measured response

time [41]. A possible Java

implementation of finding replicas

pds at run time is shown in Fig. 10.

There we define such variables:

rt – is the measured replica

response time for the current

invocation [ms];

n – is the total number of the

defined time intervals;

rt = getReplicaResponseTime();

m++;

if (rt < leftbound) {

 // rt is in interval [0..leftbound]

 num[1]++;

} else if (rt>rightbound) {

 // rt is in interval [rightbound..infinity]

 num[n]++;

} else {

 i = rt / delta – leftbound / delta + 2;

 num[i]++;

}

// estimation of discrete pdf of response time

for (i=1; i<=n; i++) {

 p[i] = num[i]/m;

}

Fig. 10. Practical estimation of replica response time pds

using run-time measures

17

leftbound, rightbound – are boundaries, defining the first time interval [0..leftbound] and the

last one [rightbound..];

num[i] – is the number of rt measures fallen in ith time interval, i1..n;

p[i] – is the estimated probability of rt being in ith time interval, i1..n;

delta – is the interval width [ms];

m – is the total number of rt measures.

7 MODELS VERIFICATION

In this section we check the validity and accuracy of the proposed models by comparing their

prediction with the experimental data presented in Section 5. This check includes the following

four steps:

 finding out theoretical distributions that accurately approximate the measured replica

response times;

 applying the proposed mathematical models (7), (8) and (9) to deduce probability

density functions of the system response time for different consistency levels;

 estimating the average replica and system response times using the theoretical

probability density functions;

 comparing the theoretical and experimental values of the average replica and system

response times.

7.1 Finding Theoretical Distribution Laws of Replica Response Times

The accuracy of theoretical modelling depends a lot on the adequacy of the distribution

functions selected to approximate replicas response time. A guidance of finding theoretical

distribution laws approximating replica response times can be found in [16]. It is based on

performing a series of hypotheses checks [42]. The techniques of hypothesis testing consist of

the two basic procedures. First, the values of distribution parameters are estimated by analysing

an experimental sample. Second, the null hypothesis that experimental data has a particular

distribution with certain parameters should be tested.

To perform hypothesis testing itself we used the kstest function:

[h,p]=kstest(t,cdf), conducting the Kolmogorov-Smirnov test to compare the

distribution of t with the hypothesized distribution defined by cdf. The null hypothesis for the

Kolmogorov-Smirnov test is that t has a distribution defined by cdf. The alternative hypothesis

is that x does not have that distribution. Result h is equal to ‘1’ if we can reject the hypothesis,

or ‘0’ if we cannot. The function also returns the p-value which is the probability that x does not

contradict the null hypothesis. We reject the hypothesis if the test is significant at the 5% level (if

p-value is less than 0.05).

The p-value returned by kstest was used to estimate the goodness-of-fit of the hypothesis.

As a result of hypothesis testing we found out that the Weibull distribution fits well the response

time of the first (Oregon) and the third (Tokyo) replicas. The response time of the second replica

(Sao Paulo) can be accurately approximated by the Gamma distribution.When the commonly

used probability density functions like Weibull or Gamma are not able to approximate the

experimental data with the sufficient accuracy, the distribution fitting for heavy-tailed delays

in the Internet can be done using more sophisticated Phase-type distribution [43].

18

7.2 Deducing Probability Density Functions of System Response Time

MathCAD has been used to deduce theoretical distributions of system response times for

different consistency levels. It also allows to estimate the average system latency and to plot

probability density functions. The MathCAD worksheet is shown in Fig. 11. It includes seven

modelling steps.

At the 1st step we define abscissa axis t and its dimension in milliseconds. Secondly, we set

up parameters of replicas response time distribution functions estimated in Matlab and also their

shifts on the abscissa axis (i.e. minimal response time values).

At the 3rd and 4th steps the replica response time probability density functions g1(t), g2(t),

g3(t) and the corresponding cumulative distribution functions G1(t), G2(t), G3(t) are defined

using MathCAD library functions dweibull and dgamma.

At the 5th step we define probability density functions of the system response time

corresponding to different consistency levels by combining replicas probability density

functions pdf and cumulative distribution functions cdf according to (7), (8) and (9). Probability

density functions of replicas and system response times are shown in Figs. 12 and 13. The bulk of

the values of probability density function fALL(t) is shifted to the right on the abscissa axis as it was

expected. The shapes of the fONE(t) and fQUORUM(t) probability density functions are also in line with

the reasonable expectations and experimentally obtained probability density series (see Fig. 9). It is

worth noting that the fONE(t) showed ’camel’ humped because of a considerably high influence of

the second (the fastest) replica which pdf g2(t) is shifted significantly to the left on the time axis as

compared to g1(t) and g3(t).

Finally, at steps 6 and 7 we estimate the average system and replicas response time by

integrating their theoretical probability density functions.

Fig. 11. The MathCAD worksheet

t 2000 2010 3000

a1 113.3578 a2 1.5952 a3 176.8796

b1 2.3041 b2 164.1599 b3 1.7467

min1 2324 min2 2164 min3 2344

g1 t()
1

a1
dweibull

t min1()

a1
b1








 g2 t()
1

b2
dgamma

t min2()

b2
a2








 g3 t()
1

a3
dweibull

t min3()

a3
b3










G1 t()
0

t

tg1 t()




d G2 t()
0

t

tg2 t()




d G3 t()
0

t

tg3 t()




d

fALL t() g1 t() G2 t() G3 t() g2 t() G1t() G3 t() g3 t() G1 t() G2 t()

fONE t() g1 t() 1 G2 t()() 1 G3 t()() g2 t() 1 G1 t()() 1 G3 t()() g3 t() 1 G1 t()() 1 G2 t()()

fQUORUM t() g1 t() G2 t() g2 t() G1 t()() 1 G3 t()() g1 t() G3 t() g3 t() G1t()() 1 G2 t()() g2 t() G3 t() g3 t() G2 t()() 1 G1 t()()

0

10000

tt g1 t()




d 2.424 10
3


0

10000

tt g2 t()




d 2.426 10
3


0

10000

tt g3 t()




d 2.502 10
3



0

10000

tt fALL t()




d 2.567 10
3



0

10000

tt fONE t()




d 2.341 10
3



0

10000

tt fQUORUM t()




d 2.444 10
3



1

2

3

4

5

6

7   

19

Fig. 12. Probability density functions of replicas

response times

Fig. 13. Probability density functions of system

response time for different consistency levels

7.3 Accuracy of Mathematical Modelling

Table 3 shows the deviation between the average values of 3-replicated system and replicas

response time calculated for real data (see Tables 1 and 2) and by means of the obtained

probability density functions. These results suggest that the proposed modelling techniques of

timing characteristics are sound. To be certain that not only the average value can be accurately

predicted we compare theoretical system probability density functions (see Fig. 13) and

practically obtained probability density series (Fig. 9).

With this purpose we estimated experimental and theoretical probabilities that system latency

at different consistency levels is less than the specified time. The results of this comparison,

presented in [40] (see Table 3), show a close approximation of the experimental data by the

proposed analytical models, especially for consistency levels ONE and QUORUM. The

probabilistic model of the system response time for consistency level ALL gives slightly

optimistic prediction, though the average deviation from the experimental data is only 2.7% in

case of using pds and 3.5% if pdf is used which is considerably low.

TABLE 3. ACCURACY OF MATHEMATICAL MODELLING
Replica1

(Oregon)

Replica2

(Sao Paulo)

Replica3

(Tokyo)

System consistency

ONE QUORUM ALL

Approximating theoretical distributions and their parameters
Weibull Gamma Weibull

alpha 113.3578 1.5952 176.8796

beta 2.3041 164.1599 1.7467

x-shift 2324 2164 2344

Average response time estimation, ms

Measured 2428 2434 2588 2342 2449 2660

Modelled with pdf 2424 2426 2502 2341 2444 2567

 deviation 0.18% 0.34% 3.32% 0.03% 0.19% 3.51%

Modelled with pds 2427 2430 2517 2339 2446 2589

 deviation 0.06% 0.17% 2.76% 0.03% 0.12% 2.69%

time, ms
2 10

3
 2.2 10

3
 2.4 10

3
 2.6 10

3
 2.8 10

3
 3 10

3


0

2 10
3



4 10
3



6 10
3



8 10
3



0.01

g1(t)

g2(t)

g3(t)

g1 t()

g2 t()

g3 t()

t

2 10
3

 2.2 10
3

 2.4 10
3

 2.6 10
3

 2.8 10
3

 3 10
3



0

2 10
3



4 10
3



6 10
3



8 10
3



0.01

fALL(t)

fONE(t)

fQUORUM(t)

fALL t()

fONE t()

fQUORUM t()

ttime, ms

20

8 MODELLING SYSTEMS WITH MULTIPLE REPLICAS

Sometimes, different replicas can have similar timing characteristics so that their response times

can be approximated by the same distribution function. This can happen, for instance, if

multiple replicas are deployed in the same public or private data centre and run on similar

hardware with the standard operating environment. For these generic replicas equations (10) and

(11) can be simplified as following:

𝑓𝐴𝐿𝐿
𝑛 (𝑡) = 𝑛 ∙ 𝑔(𝑡) ∙ 𝐺(𝑡)𝑛−1, (15)

𝑓𝑂𝑁𝐸
𝑛 (𝑡) = 𝑛 ∙ 𝑔(𝑡) ∙ (1 − 𝐺(𝑡))

𝑛−1
. (16)

Besides, it becomes possible to define a probability density function of the system response

time for consistency level QUORUM:

𝑓𝑄𝑈𝑅𝑈𝑀
𝑛 (𝑡) = 𝑘 ∙ 𝐶𝑛

𝑛−𝑘 ∙ 𝑔(𝑡) ∙ 𝐺(𝑡)𝑘−1 ∙ (1 − 𝐺(𝑡))
𝑛−𝑘

, where 𝑘 = ⌊
𝑛

2
+ 1⌋. (17)

The results of this comparison (see Table 4) show a close approximation of the experimental

data by the proposed analytical models, especially for the consistency levels ONE and

QUORUM. In turn, the cumulative distribution functions of system response time for different

consistency levels can be explicitly defined as:

𝐹𝐴𝐿𝐿
𝑛 (𝑡) = 𝐺(𝑡)𝑛, (18)

𝐹𝑂𝑁𝐸
𝑛 (𝑡) = (1 − (1 − 𝐺(𝑡))

𝑛
), (19)

𝐹𝑄𝑈𝑂𝑅𝑈𝑀
𝑛 (𝑡) = ∑ 𝐺(𝑡)𝑘 ∙ (1 − 𝐺(𝑡))

𝑛−𝑘
𝑛

𝑘=⌊
𝑛
2

+1⌋

. (20)

Note that the derived models for system response time are similar to those estimating

reliability of series, parallel and majority voting systems [44]. In the rest of this Section we

demonstrate the applicability of the proposed models for predicting latency of systems with

multiple replicas and estimating the optimal replication factor. As a generic replica for our

simulation, we selected Replica2 deployed in South America (Sao Paulo), whose response time

is characterised by the largest uncertainty of the three investigated in Section 7. It was shown

that the response time of Replica2 can be approximated by the Gamma distribution:

𝑔𝑅𝑒𝑝𝑙𝑖𝑐𝑎2 (𝑡) =
1

164.1599
∙ 𝑑𝑔𝑎𝑚𝑚𝑎 (

𝑡−2164

64.1599
, 1.5952). (21)

Using MathCAD to substitute (21) into (15)–(17) we are able to derive system response time

pdf for different consistency levels depending on the number of replicas.

Table 4 presents estimated values of system average response time and its standard deviation.

As shown in Fig. 14, the QUORUM setup demonstrates convergent oscillations of the average

21

system response time around the average replica response time. At the same time the average

system response time increases considerably if a system is configured to provide the strongest

consistency.

The standard deviation of system response time gradually decreases for the ONE and

QUORUM consistency levels. For the ALL consistency level, the standard deviation increases

at the beginning and reaches its maximal value when the replication factor becomes equal 10.

After that its value gradually decreases.

TABLE 4. AVERAGE SYSTEM RESPONSE TIME

Replication

factor

Average response time, ms Standard deviation, ms

ALL ONE QUORUM ALL ONE QUORUM

1 2425.87 2425.87 2425.87 207.34 207.34 207.34

2 2534.21 2317.56 2534.21 221.45 116.13 221.45

3 2602.62 2277.70 2397.35 226.09 83.88 129.71

4 2652.48 2256.49 2452.76 228.13 66.99 135.51

5 2692.06 2242.70 2388.89 229.22 56.45 101.41

6 2723.40 2233.22 2426.17 229.83 49.19 104.71

7 2752.03 2226.19 2384.74 230.14 43.83 85.90

8 2776.04 2220.72 2412.95 230.33 39.72 88.10

9 2797.33 2216.45 2382.50 230.43 36.43 75.81

10 2816.40 2212.94 2405.04 230.48 33.74 77.42

11 2833.71 2209.95 2380.78 230.48 31.49 68.58

12 2849.56 2207.42 2399.77 230.47 29.58 69.83

13 2864.15 2205.15 2379.01 230.42 27.94 63.10

14 2877.67 2203.14 2395.84 230.40 26.50 64.09

15 2890.46 2201.49 2378.60 230.33 25.24 58.76

16 2902.07 2200.16 2392.83 230.26 24.12 59.55

17 2913.18 2198.97 2377.91 230.23 23.12 55.17

18 2923.68 2197.85 2390.74 230.16 22.22 55.86

19 2932.72 2196.98 2378.02 230.09 21.42 52.18

20 2942.71 2196.07 2388.80 230.05 20.69 52.77

Taking into account the Central

Limit Theorem we can assume that

if there is a further increase in the

number of replicas, the average

response time of the system which

provides the strongest consistency

becomes normally distributed

regardless of the replicas

distributions (see Fig. 15). At the

same time, if a system is

configured to provide the weakest

consistency, its response time

demonstrates a tendency to

become a deterministic variable

that approaches the minimal observed value of replicas response time (see Fig. 16).

Fig. 14. Response time dependency on a number

of generic replicas

2100.00

2200.00

2300.00

2400.00

2500.00

2600.00

2700.00

2800.00

2900.00

3000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of replicas

Average Response Time, ms

ALL

ONE

QUORUM

22

Probabilistic models can help in estimating the optimal replication factor in distributed

systems. If a system has to provide strong consistency, the maximal acceptable number of

replicas which still guarantees that the system response time does not exceed a certain value

with the required probability Preq can be calculated using (18) as follows:

𝑛𝐴𝐿𝐿 = ⌊log𝐺(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑡𝑖𝑚𝑒) 𝑃𝑟𝑒𝑞⌋. (22)

For systems that do not have consistency constraints, the minimal number of replicas required

to reduce the response time to a certain value with the required probability Preq can be derived

from (19):

𝑛𝑂𝑁𝐸 = ⌈log1−𝐺(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑡𝑖𝑚𝑒)(1 − 𝑃𝑟𝑒𝑞)⌉. (23)

To apply these techniques the system engineer should first define the desired system response

time and the required probability of getting the response by this time Preq. Secondly, the

probability that a generic replica returns the response by that time, i.e. G(response_time), has

to be estimated using known pdf or cdf. Finally, after applying the corresponding equation, the

obtained value (e.g. number of replicas) has to be rounded up to the integer value for the

consistency level ONE or down for the consistency level ALL.

Fig. 15. Probability density functions of system

response time for consistency level ALL and

different replication factors (3, 5, 7)

Fig. 16. Probability density functions of system

response time for consistency level ONE and

different replication factors (3, 5, 7)

9 PRACTICAL APPLICATION OF THE PROPOSED THEORIES

A set of the proposed time-probabilistic models provides a crucial support for predicting

dependability and timing characteristics of globally-distributed fault-tolerant systems. The

process of predicting system availability and timing characteristics includes four steps:

Monitoring the response time of system replicas.

2 10
3

 2.5 10
3

 3 10
3

 3.5 10
3



0

1 10
3



2 10
3



3 10
3



g(t)

fALL3(t)

fALL5(t)

fALL7(t)

g t()

fALL3 t()

fALL5 t()

fALL7 t()

t
time, ms 2 10

3
 2.5 10

3
 3 10

3
 3.5 10

3


0

2 10
3



4 10
3



6 10
3



8 10
3



0.01

g(t)

fONE3(t)

fONE5(t)

fONE7(t)

g t()

fONE3 t()

fONE5 t()

fONE7 t()

t

time, ms

23

1. Finding the continuous theoretical distributions of replica response times using either the

technique, proposed in [16], or a practical estimation of response time probability density

series (see Fig. 10) which is a discrete form of pdf.

2. Deducing the probability density function/series of the system response time by using the

analytical models proposed in Section 6. At this step users and system providers are able

to trade-off system latency versus consistency by making use of models (7)–(14).

3. Estimating system availability (probability of getting response from a system until the

specified timeout) and timing characteristics by making use of the deduced pdf/pds of

the system response time and models (5) and (6). The proposed models allow users and

system providers to trade-off system availability versus latency by the optimal timeout

setup.

The uniqueness of the proposed approach is that it allows predicting system latency,

availability and consistency during system design and trading-off these characteristics at run-

time. Besides, models (22) and (23) will help to calculate the optimal number of replicas to

meet timing constraints.

10 CONCLUSION AND DISCUSSION

When employing fault-tolerance techniques over the Internet and clouds, engineers need to deal

with delays, their uncertainty, timeouts, adjudication of asynchronous replies from replicas, and

other issues specific to global distributed systems. The overall aim of this work is to introduce

a time-probabilistic failure model and to study the impact of consistency on system latency in

fault tolerant Internet computing. The proposed failure model and mathematical equations can

help in choosing the right application timeouts which are the fundamental part of all distributed

fault tolerance mechanisms working over the Internet and used as the main error detection

mechanism here. With the help of the proposed models software developers can solve a trade-

off problem between maximizing the probability of a correct servicing and minimizing the

latency of a distributed system.

Our experimental results clearly show that improving system consistency makes system

latency worse. This finding confirms one of the generally accepted qualitative implications of

the CAP theorem [21, 22]. However, so far system developers have not had any mathematical

tools to help them to accurately predict the response time of large-scale replicated systems.

While estimating the system worst-case execution time remains common practice for many

applications (e.g. embedded computer systems, server fault-tolerance solutions, like

STRATUS, etc.), this is no longer a viable solution for the wide-area service-oriented systems

in which components can be distributed all over the Internet.

In our previous works [14, 16] we demonstrated that extreme unpredictable delays exceeding

the value of ten average response times can happen in such systems quite often. In this paper

we have proposed a set of novel analytical models providing a quantitative basis for the system

response time prediction depending on the timeout settings and the consistency level provided

for (or requested by) clients. The models allow us to derive the probability density function of

the system response time which corresponds to a particular consistency level by incorporating

the probability density functions of the replica response times. The validity of the proposed

models has been verified against the experimental data reported in Section 7. It has been

demonstrated that the proposed models ensure a significant level of accuracy in the system

24

average response time prediction, especially in case of ONE and QUORUM consistency levels.

The proposed models provide a mathematical basis for predicting latency of distributed fault and

intrusion tolerance techniques operating over the Internet and clouds. The models take into

account the probabilistic uncertainty of replicas’ response time and the required consistency level.

The practical application of our work is in allowing practitioners to predict performance of

service-oriented systems, and in offering them a crucial support in setting up the optimal

timeout and replication factor and in understanding the trade-off between system consistency

and latency. Trading off system latency against availability and consistency requires the

knowledge of probability density functions that accurately approximate replicas’ response time.

These probabilistic characteristics, which can be obtained by testing or during the trial, will

need to be corrected at run-time or at tune-time to improve prediction accuracy.

We have demonstrated that it is possible to use both continuous and discrete forms of

response time probability density functions to accurately predict system latency (i.e. average

response time). Although a continuous pdf allows calculating a confidence probability of

getting response from a system by any given time, using discrete probability density series is

easier in practice. It does not require complex calculations or the use of the third party tools like

Matlab and MathCAD, which is important for run-time optimisation.

The proposed models could be also applied in the context of edge and fog computing [45]

where the client interacts over time with multiple replicas located in different data centers,

either as a result of application partitioning, or client mobility. Besides, they will help

developers of distributed data storages to quantify how different consistency settings affect the

system latency. Understanding this trade-off is also a key for the effective usage of modern

NoSQL solutions [35].

Large-scale distributed systems composed out of a significant number of Internet services

and their replicas (‘particles’ of this ‘infinite’ Internet ‘universe’) has strong resemblance with

the theoretical Quantum Physics fundamentals of the atomic-level universe, including the

Heisenberg uncertainty principle [46]. Introduced in 1927 the principle states that the more

precisely the position of a particle is determined, the less precisely its momentum can be known,

and vice versa.

The analogy between the latency/consistency probabilistic space of replicated distributed

services and the atomic particle position/momentum continuum, includes a similar calculus of

response times (vs electron position/momentum) based on temporal probability distributions

and a similar view on the intrinsic uncertainty between the latency of client requests and

distributed system consistency (vs the known Heisenberg's uncertainty principle).

This paper discusses a framework which shows that systems’ latency and consistency cannot

be simultaneously and accurately determined due to the uncertainty of highly distributed

replicated systems. Table 2 reports our experimental results which show that the weakest

consistency setting ONE causes the lowest response time on average which is characterised by

low uncertainty (i.e. a standard deviation of the response time). Vice versa, the strongest

consistency setting ALL causes the highest latency and the largest uncertainty. This relation

becomes stronger with the increase of a number of replicas used.

Thus, by following the above analogy, our experimental and theoretical results demonstrate

that the more certain data are (i.e. the higher level of consistency is chosen which reduces the

25

probability of reading stale data), the less certain the latency of a replicated system is (i.e. the

higher its variance is) and vice versa.

Ultimately, we believe this work could pave a way to studying the similarities between the

intrinsic processes happening in ubiquitous massive-scale Internet computing systems and the

Nuclear Physics, where a large number of experiments is typically necessary to uncover new

phenomena and to understand the foundational theories.

ACKNOWLEDGMENTS

We would like to thank the editor of the journal and the reviewers for their helpful comments

and feedbacks. We are grateful to our students Yuhui Chen, Batyrkhan Omarov, Vitaliy Ruban,

and Seyran Mamutov for help with running some of the experiments.

REFERENCES

[1] J. Condliffe, “Amazon’s $150 Million Typo Is a Lightning Rod for a Big Cloud Problem,” 3 March

2017. [Online]. Available: https://www.technologyreview.com/s/603784/amazons-150-million-

typo-is-a-lightning-rod-for-a-big-cloud-problem/.

[2] L. Chen, “Microservices: Architecting for Continuous Delivery and DevOps,” in The IEEE

International Conference on Software Architecture (ICSA'2018), Seattle, USA, 2018.

[3] Y. Chawathe and E. Brewer, “System support for scalable and fault tolerant Internet services,”

Distributed Systems Engineering, vol. 6, no. 1, pp. 23-33, 1999.

[4] V. Cardellini, E. Casalicchio, K. Branco, J. Estrella and F. Monaco, Performance and

Dependability in Service Computing: Concepts, Techniques and Research Directions, Hershey,

Pennsylvania, USA: IGI Global, 2012.

[5] Z. Amin, N. Sethi and H. Singh, “Review on Fault Tolerance Techniques in Cloud Computing,”

Int. Journal of Computer Applications, vol. 116, no. 18, pp. 11-17, 2015.

[6] Y. Izrailevsky and C. Bell, “Cloud Reliability,” IEEE Cloud Computing, vol. 5, no. 3, pp. 39-44,

2018.

[7] S. Gill and R. Buyya, “Failure Management for Reliable Cloud Computing: A Taxonomy, Model

and Future Directions,” Computing in Science & Engineering, no. Early Access, pp. 1-10, 2018.

[8] M. Alshayeji, M. Al-Rousan, E. Yossef and H. Ellethy, “A Study on Fault Tolerance Mechanisms

in Cloud Computing,” International Journal of Computer Electrical Engineering, vol. 10, no. 1,

pp. 62-71, 2018.

[9] P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu, R. Buyya and R. Ranjan, “Emergent

Failures: Rethinking Cloud Reliability at Scale,” IEEE Cloud Computing, vol. 5, no. 5, pp. 12-21,

2018.

[10] F. Alturkistani and S. Alaboodi, “An Analytical Model for Availability Evaluation of Cloud

Service Provisioning System,” International Journal of Advanced Computer Science and

Applications, vol. 8, no. 6, pp. 240-247, 2017.

[11] M. Vargas-Santiago, S. Pomares-Hernandez, L. Morales Rosales and H. Hadj-Kacem, “Survey on

Web Services Fault Tolerance Approaches Based on Checkpointing Mechanisms,” Journal of

Software, vol. 12, no. 7, pp. 507-525, 2017.

26

[12] R. Behera and K. H. K. Reddy, “Modeling and assessing reliability of service-oriented internet of

things,” International Journal of Computers and Applications, vol. 41, no. 3, pp. 195-206, 2019.

[13] P. Lee and T. Anderson, Fault Tolerance. Principles and Practice, Wien - New-York: Springer-

Verlag, 1990, p. 320.

[14] A. Gorbenko, A. Romanovsky, O. Tarasyuk, V. Kharchenko and S. Mamutov, “Exploring

Uncertainty of Delays as a Factor in End-to-End Cloud Response Time,” in 9th European

Dependable Computing Conference (EDCC’2012), Sibiu, Romania, 2012.

[15] O. Bakr and I. Keidar, “Evaluating the running time of a communication round over the Internet,”

in 21th Annual ACM Symposium on Principles of Distributed Computing (PODS'2002), Monterey,

California, 2002.

[16] Y. Chen, A. Gorbenko, A. Romanovsky and V. Kharchenko, “Measuring and Dealing with the

Uncertainty of the SOA Solutions,” in Performance and Dependability in Service Computing:

Concepts, Techniques and Research Directions, V. Cardellini, Ed., Hershey, USA, IGI Global,

2011, p. 265–294.

[17] P. Reinecke, A. van Moorsel and K. Wolter, “Experimental Analysis of the Correlation of HTTP

GET invocations,” in European Performance Engineering Workshop (EPEW’2006), Budapest,

Hungary, 2006.

[18] R. Potharaju and N. Jain, “When the Network Crumbles: An Empirical Study of Cloud Network

Failures and their Impact on Services,” in 4th ACM Symposium on Cloud Computing

(SOCC'2013), Santa Clara, CA, 2013.

[19] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, “Basic concepts and taxonomy of

dependable and secure computing,” IEEE Transactions on Dependable and Secure Computing,

vol. 1, no. 1, pp. 11-33, 2004.

[20] A. Gorbenko, A. Romanovsky, O. Tarasyuk and V. Kharchenko, “Dependability of Service-

Oriented Computing: Time-Probabilistic Failure Modelling,” in Software Engineering for

Resilient Systems: Lecture Notes in Computer Science (LNCS), vol. 7527, P. Avgeriou, Ed., Berlin,

Springer, 2012, pp. 121-133.

[21] E. Brewer, “Towards Robust Distributed Systems,” in 19th Annual ACM Symposium on Principles

of Distributed Computing, Portland, USA, 2000.

[22] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of Consistent, Available,

Partition-Tolerant Web Services,” ACM SIGACT News, vol. 33, no. 2, pp. 51-59, 2002.

[23] L. Lamport, R. Shostak and M. Pease, “Byzantine Generals Problem,” ACM Transactions on

Programming Languages and Systems, vol. 4, no. 3, pp. 382-401, 1982.

[24] D. Smith and K. Simpson, Safety Critical SystemsHandbook: A Straightforward Guide to

Functional Safety, IEC 61508 and Related Standards, Oxford: Butterworth-Heinemann, 2016, p.

288.

[25] Z. Zheng, H. Ma, M. Lyu and I. King, “WSrec: A collaborative filtering based web service

recommender system,” in IEEE 7th International Conference on Web Services (ICWS’2009), Los

Angeles, CA, 2009.

[26] A. Van Moorsel and K. Wolter, “Analysis of Restart Mechanisms in Software Systems,” IEEE

Transactions on Software Engineering, vol. 32, no. 8, pp. 547-558, 2006.

[27] J. Brutlag, “Speed Matters for Google Web Search,” Google, Inc., 22 June 2009. [Online].

Available: http://services.google.com/fh/files/blogs/google_delayexp.pdf. [Accessed 01 07 2019].

27

[28] E. Brewer, “CAP twelve years later: How the "rules" have changed,” Computer, vol. 45, no. 2, pp.

23-29, 2012.

[29] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,” ACM SIGOPS

Operating Systems Review, vol. 44, no. 2, pp. 35-40, 2010.

[30] D. Abadi, “Consistency Tradeoffs in Modern Distributed Database System Design,” IEEE

Computer, vol. 45, no. 2, pp. 37-42, 2012.

[31] A. Gorbenko and A. Romanovsky, “Time-Outing Internet Services,” IEEE Security & Privacy,

vol. 11, no. 2, pp. 68-71, 2013.

[32] F. Dabek, M. Kaashoek, D. Karger, R. Morris and I. Stoica, “Wide-area cooperative storage with

CFS,” ACM SIGOPS Operating Systems Review, vol. 35, no. 5, pp. 202-215, 2001.

[33] Z. M., K. Shen and J. Seiferas, “Replication Degree Customization for High Availability,” ACM

SIGOPS Operating Systems Review, vol. 42, no. 4, pp. 55-68, 2008.

[34] A. Gorbenko, V. Kharchenko and A. Romanovsky, “Using Inherent Service Redundancy and

Diversity to Ensure Web Services Dependability,” in Methods, Models and Tools for Fault

Tolerance, Lecture Notes in Computer Science (LNCS), vol. 5454, M. Butler, C. Jones, A.

Romanovsky and E. Troubitsyna, Eds., Berlin, Springer, 2009, pp. 324-341.

[35] Y. Mansouri, A. Toosi and R. Buyya, “Data Storage Management in Cloud Environments:

Taxonomy, Survey, and Future Directions,” ACM Computing Surveys, vol. 50, no. 6, pp. 91:1-

91:51, 2018.

[36] A. Tanenbaum and M. Van Steen, Distributed systems: Principles and Paradigms, Pearson

Prentice Hall, 2006, p. 704.

[37] Amazon Web Services, “MongoDB on AWS: Guidelines and Best Practices,” April 2016.

[Online]. Available: https://aws.amazon.com/s3/faqs/. [Accessed 01 07 2019].

[38] T. Baker, “The 3-2-1 Rule for Cloud Backup,” 31 October 2018. [Online]. Available:

https://www.keepitsafe.com/blog/post/3-2-1-rule-for-cloud-backup/. [Accessed 01 July 2019].

[39] J. Rao, E. Shekita and S. Tata, “Using Paxos to Build a Scalable, Consistent, and Highly Available

Datastore,” Proceedings of the VLDB Endowment, vol. 4, no. 4, pp. 243-254, 2011.

[40] O. Tarasyuk, A. Gorbenko and A. Romanovsky, “The Impact of Consistency on System Latency

in Fault Tolerant Internet Computing,” in Distributed Applications and Interoperable Systems,

Lecture Notes in Computer Science (LNCS), vol. 9038, Berlin, Springer, 2015, pp. 179-192.

[41] R. Walpole, R. Myers, S. Myers and K. Ye, Probability and Statistics for Engineers and Scientists,

Pearson, 2010, p. 816.

[42] G. Privitera, Statistics for the Behavioral Sciences, SAGE Publications, 2015, p. 736.

[43] P. Reinecke and K. Wolter, “Phase-Type Approximations for Message Transmission Times in

Web Services Reliable Messaging,” in Performance Evaluation: Metrics, Models and

Benchmarks. Lecture Notes in Computer Science (LNCS), vol. 5119, 2008, pp. 191-207.

[44] E. Elsayed, Reliability Engineering, Wiley, 2012, p. 792.

[45] P. Varshney and Y. Simmhan, “Demystifying Fog Computing: Characterizing Architectures,

Applications and Abstractions,” in IEEE 1st International Conference on Fog and Edge

Computing (ICFEC'2017), Madrid, Spain, 2017.

[46] W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und

Mechanik,” Zeitschrift für Physik, vol. 43, no. 3-4, p. 172–198, 1927.

