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Abstract Artificial Neural Networks are well-known black-box classifiers that generally suffer from their
non-transparent structures, making it hard for data scientists to understand the mechanisms behind
a particular prediction. Such knowledge is necessary for many domains for trained models used for
forecasting. Rule extraction or variable importance are two main approaches allowing Neural Network
model interpretation, but both interpret on a general level. So far, there are no known methods for
interpreting artificial Neural Networks model prediction on an instance level. This paper is an attempt
to solve this problem. We propose a pedagogical approach (borrowed from rule extraction) to estimate
the influence between instance variables and the predicted outcome. We used the Feature Contributions
method calculated from the Random Forest model that was trained to mimic the Artificial Neural
Networks classification as close as possible. Feature contributions are numerical values that are further
interpreted by domain experts to reveal some phenomena about a particular instance or model behaviour.
We assume that we can trust the Feature Contributions results when both predictions are the same, i.e.
Neural Network and Feature Contributions give the same results. The experimental results show that
this highly depends on the level the Neural Network is trained because the error is then propagated
to the Random Forest model. For good trained ANNs we can trust interpretation based on Feature
Contributions on average in 80%.

Keywords Model interpretation · Artificial Neural Network · Feature Contributions

1 Introduction

Artificial Neural Networks, shortly ANNs, are widely accepted as machine learning tools to learn complex
relationships from data. Currently, they see the resurrection and general adoption for classification and
prediction problems in many data-rich areas. Their pattern-matching and learning capabilities allowed
them to address many problems that were difficult or impossible to solve by other computational methods.
Unfortunately, they lack transparency. The ANNs structure makes it impossible to predict or know the
exact flow of data. It is hard to see how the network arrives at a particular conclusion due to the
complexity of the network architecture. This is why ANN is often called a black-box model [21].

Interpretation of the ”black box” models has become a crucial element for many modellers. Scientists
who work with data want to benefit from applying non-linear models for a vast amount of data but also,
they would like to understand why model make a particular decision, what are key variables, what is their
correlation and whether they can explain the modelling outcome. External validation and estimation
of model applicability domain are not enough in areas such as biology, medicine or chemistry. The
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mechanistic interpretation of the model (why the model makes a particular decision) is very important
[31], but for non-linear models extraction of such knowledge is difficult to achieve. To interpret ANN
models two approaches are available: methods based on rule extraction and on variable importance.

Rule extraction methods that attempt to interpret trained Neural Networks, or opaque models, have
a long track record in machine learning and its applications. The definition of the problem can be found in
[14]. The taxonomy of rule extraction from Neural Networks distinguishes the following: decompositional
(local methods), pedagogical (global methods) [7] and eclectic methods. Local methods go deeply into a
Neural Network structure. They try to describe each neuron behaviour in the form of rule based on the
strengths of connection weights of the neuron. Then, a set of rules interpreting the whole Neural Network
is obtained by the concatenation of rules describing particular neurons [28]. The pedagogical approaches
treat the model as an oracle. Inputs and outputs are matched to each other, and rules are extracted
using machine learning approaches [6,12]. The eclectic methods are based on both decompositional and
pedagogical approaches [4,30]. The main disadvantage of this approach is a limited interpretation of a
model for data with a large number of variables. Models built for datasets that contain thousands of
variables (e.g., codes DNA, chemical compounds or binary data) are not readily interpretable by rules.

While extracted rules from trained ANNs allow a global description of model behaviour, estimation
of input variable importance for ANN models explains the relative contribution of each variable to
the prediction result. This importance also varies with the designed network architecture and with the
initial random weights used to train the ANN. In [23] authors presented the interquartile range (IQR)
method to rank variables based on their importance. This relative importance is defined as an average
of an interquartile range of each of the network weights from an input node to hidden nodes for all
hidden units for a given input node. This method was used to rank variables but does not explain
the influence of a variable on predicted value. Additionally, this method is general for the ANN model
and does not distinguish the variable importance between instances for which the model was applied.
There are some methods based on partial derivatives in ANN sensitivity analysis to calculate variable
contribution/importance [9,20]. The analysis is based on the joint contribution of every possible pairwise
combination of variables. In [21] the relative importance of variable, calculated using various existing
methods, was averaged to handle the instability problem of variable importance. The variable importance
is nicely applicable to datasets with a large number of input variables as quite often the importance factor
is used for feature selection. The variables with the most significant importance are further used to build
more accurate models [5,32].

There is a lack of similar methods that allow interpretation of Neural Networks on an instance level.
Assessment of input variable importance would be useful for researchers in biology, chemistry, medicine
and many other areas who work with ANN models already trained to their specific classification task. All
methods for extracting feature/variable contributions are on a model level which is not sufficient for more
detailed analysis. Unfortunately, the structure of the Neural Network does not allow extraction of such
information, because it is distributed in the network. An output of each artificial neuron is calculated by
a non-linear function of the sum of its inputs. The weight for a particular connection is adjusted with a
dependency to the other neurons in the network. Applying the pedagogical approach with rule extraction
to address this problem, we can extract a rule from a set of rules for which conditions are fulfilled for a
new instance. In such case, we may end up with complex relations of a large number of variables that
again would be difficult to interpret. Ideally, we would like to have numerical values for each variable
representing the influence on a prediction. Also, the rule extraction on a single instance level does not
distinguish between two instances that belong to the same class. In this case, they will share the same
conditions in a rule. As an example, let us consider two toxic chemicals with similar structures. We
would like to know which part of structures are the most toxic by extracting contributions of chemical
substructures toward the toxicity. The substructures are input variables into a model. Applying the
rules approach we could find that they share the same conditions that classify them toxic, but when
we look at variable contributions we may see differences in substructures toxicity. Another example of
need interpretation of model on instance levels comes from personalised healthcare. Let us consider a
case from the healthcare-prediction of risk that someone can get cancer. General model interpretation
can show all important features for a model but for specific two patients, there may be different factors
leading to getting cancer (each patient can have a different subset of variables that are important for a
model to make a decision). Having such knowledge can support medical decisions to provide different
treatment for these patients.

Feature Contributions was proposed by Kuzmin et al. in 2011 [17]. It was designed to extract Feature
Contribution for Random Forest models for regression problems. Feature contributions were defined as
numerical values, computed separately for each instance/record. Kuzmin’s method has been extended to
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Random Forest classification models in [22]. This method was used further in work [18] where authors
compare the chemical interpretability of the predictions, using scoring schemes for assessing heat map
images of substructural contributions. Feature contributions allow us to extract a relationship between
a particular feature value and a model’s decision. For each instance, we calculate how much a given
variable/feature contributed towards the predicted outcome. We can see which features have a posi-
tive/negative impact on a predicted value, and which of them have a stronger influence. They also may
be normalised and transformed to represent a scale in a particular domain (e.g., the toxicity of chemi-
cals, the presence of mutated genes in DNA corresponding to particular cancer). As an example, in [17],
Feature Contributions were positively tested on a Quantitative Structure-Activity (QSAR) model for
chemical compounds. The results showed a relationship between the presence of the chemical structure
and toxicity, and they provided valuable information for the design of new compounds. In [18] authors
compare various models performance (Random Forest, support vector machines, support vector regres-
sion, and partial least squares) regarding their predictivity as well as the chemical interpretability of the
predictions, using novel scoring schemes for assessing heat map images of substructural contributions.
Authors extracted Feature Contributions for instances used to predict mutagenicity and applied the heat
map to colour chemical substructures according to the toxicity. Feature contributions have been also used
in [16] to interpret Random Forest model predicting element concentrations, loss of ignition and pH in
the soils of south-west England using high-resolution remote sensing and geophysical survey data. Also
in [33], authors used Feature Contributions to elucidate the contribution of individual molecular descrip-
tors to the predicted potency. Feature contributions provided easily interpretable suggestions of critical
structural properties for potent permeation enhancers such as segregation of hydrophilic and lipophilic
domains.

In this paper, we provide an attempt to the interpretation of a trained Neural Network model on
an instance level. To achieve a solution we propose the use of the Neural Network as an oracle within
a pedagogical approach [31] that is used for ANN rule extraction. This assumption means the Neural
Network produces the examples of inputs and corresponding outputs for training the Random Forest
(RF) model. The RF model as an ensemble of decision trees is more accurate than a single decision tree,
does not overfit and has a less redistributed error as shown in [3] and more recently in [1, 5, 24]. RF allows
calculating Feature Contributions (FC) using the method described in [22]. Feature Contributions show
what is the influence of a single input variable for a given instance on the final classification. Because
the FCs are acquired from RF that mimics the activity of ANN, we have to check whether we can trust
the result offered by FCs. We use Feature Contributions to build a classifier. If for a new input vector
the ANN responds with the same class as FCs, this is an indication that we can trust the interpretation
delivered by FCs. The side benefit of the RF model is that it enables easy rule extraction that describes
relationships between inputs and outputs of a trained Neural Network. It is worth to underline that
rules do not focus on a single instance. We also show in an Iris dataset case study how, using Feature
Contributions, one can verify the conditions in the premise part of extracted rules.

This paper is organised as follows. Section 2 describes the proposed method for the ANN model
interpretation. It provides the formal problem statement and includes the definition of a Random For-
est model, Feature Contributions, and their analysis. Section 3 describes the experimental study and
discusses the obtained results. Section 4 concludes our work.

2 Methodology

In this section, we recall the definition for Feature Contributions, and we describe how the Feature
Contributions can be used to interpret Neural Network.

2.1 Random Forest Feature Contributions

Firstly, we recall the definition of the Feature Contributions presented in [17,22]. Feature Contributions
calculated for a given instance represent the influence (negative or positive) of each feature (input vari-
able) on a predicted target. They are computed in two steps. Firstly, local increments are calculated for
each node in the forest’s trees using the trees training datasets:

LIfc =

Y c
mean − Y p

mean,
if the split in the parent is performed
over the feature f ,

0, otherwise,
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Fig. 1: A schema for the ANN model interpretation method via Random Forest model and Feature
Contributions

where Ymean is a fraction of the training instances in a given node c (c - is a child node and p - is a
parent node) belonging to a selected class (for details see [22]) or an average over the instances within
the node for regression models. A local increment for feature f represents the change of the probability
of being in a given class between the child node and its parent node in a tree.

Secondly, for any instance and a variable f these local increments are summarised on tree paths:

FCif =
1

ntree

ntree∑
k=1

knode∑
l=1

LIifkl
, (1)

where the value LIifkl
is a local increment for the instance i, feature f in k tree and its l node. The

values ntree and knode represent the number of trees in the forest and the number of nodes from the k
tree which split over a feature f , respectively. In other words the Feature Contributions vector FCi for
an instance xi represents the contribution of each feature towards/against the predicted outcome.

2.2 ANN Model Interpretation for a Single Instance

Let us assume that the ANN model trained for a specific classification problem is given. Our goal is to
develop a new method of interpreting the ANN model on a single instance level. Feature Contributions
offer such ability but they are calculated from the Random Forest model and we can not apply it
directly to the ANN model. Our idea is to train a Random Forest model to mimic the behaviour of
ANN (similarly to the solution applied in pedagogical approach in the rule extraction), then to calculate
Feature Contributions, thus giving an opportunity of ANN interpretation.

The workflow of the ANN model interpretation is presented in Figure 1. In step 1, we build the
Random Forest model using input data x and output y of the ANN model. In step 2, we extract Feature
Contributions from the Random Forest model using Kuzmin/Palczewska approach [17,22] for any record
from x or for any new record xnew for which model was used to predict an outcome. Large positive values
define stronger Feature Contribution for the predicted class whereas negative values define contributions
towards the other class or classes.

Once we have calculated Feature Contributions we need to assess the certainty of the ANN model
interpretation. In this case, we perform classification based on FCs representatives extracted from the
Random Forest training dataset, including records for which Random Forest agreed with Neural Network
on prediction and with the original output. The evaluation is positive if the class predicted by ANN and
by FCs are the same.
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Fig. 2: An example of Feature Contribution variations. Box plots of Feature Contributions for two classes
of IRIS dataset [1]. The axes x and y represent the IRIS features and values of their contributions,
respectively.

2.2.1 Classification by Feature Contributions

Firstly, we calculate FCs for RF training dataset. Then for each class, we select records for which
predictions from RF agree with predictions from ANN and their original output variable. In the next
step, we determine the FC representatives. As described in [22] we can consider two Feature Contribution
representative’s types: median and cluster centroids, computed for each class separately. Then:

– if there is no variation within Feature Contributions which means that all values are distributed
around the FC mean (see for example Figure 2a) then as Feature Contributions representative we
use a median. It is a better estimator than mean as mean can be biased by outliers.
To classify a new i-th instance xi

new based on its Feature Contributions, we calculate Feature Con-
tributions first. Then, the Euclidean distance dE is computed for all class representative’s medians,
and minimal distance is selected:

diE = min
l

√√√√nvar∑
f=1

(FCif −mfl)2, (2)

where FCif is calculated using Equation (1), nvar is a number of features (variables) in the input
vector and mfl is a Feature Contributions median (representative of a class) of f -th feature and
l-th class. The smallest distance indicates the class of the new data i predicted by the Feature
Contributions method.

– otherwise, there is a variation within Feature Contributions (see Figure 2b for V irginica class as
an example). A majority of instances have values close to FC mean, and there are few elements
with different values. These few elements can produce a small group with another pattern of Feature
Contributions different from these created by the majority group. The group with the minimum
variance is called a core cluster [22] and its centre is used as the class representative. If clusters have
the same variance (e.g equal to zero) we can have more then one representative for a class. For each
class, the optimum number of clusters is obtained using the elbow method [11,24]. Selected training
instances are assigned to these clusters. To classify a new instance xi

new, the Euclidean distance is
calculated to all cluster centres and the smallest distance is selected:

diE = min
l

√√√√nvar∑
f=1

(FCif − cfjl)
2 (3)

where cfjl is a centroid of a cluster j of class l, nvar is the number of variables f . The smallest distance
indicates which cluster a new data xi

new belongs to and defines a class for the new instance. It is
worth noticing that other distance metrics can also be considered, depending on the distributional
properties of data. We do not study this problem in the paper leaving it for the future research.
To illustrate how to use centroids as representatives, let us consider the example of Virginica class in
detail. Table 1 shows examples of patterns in Feature Contributions for the Virginica class from the
IRIS dataset. There were 42 elements in the training dataset for the Random Forest model that were
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Table 1: The number of instances in Feature Contributions groups for Virginica class of IRIS dataset

S.Length S.Width P.Length P.Width Count

0 0 1.26 0.65 25

0.18 0 0.9 0.83 9

-0.32 0 0.9 1.3 2
0 0 1.08 0.83 1

0.18 0.92 548 -0.74 1

0 -0.75 1.91 -0.25 1
0.18 0.25 1.55 -0.07 1

0 0.25 1.91 -0.25 1

0 0.3 -0.66 2.43 1

Algorithm 1 The method (in pseudocode) of ANN interpretation using Feature Contributions

Require: ANN, DRF ,YRF and DNew,YNew

1: Train a Random Forest model RF on DRF , YRF datasets
2: Calculate Feature Contributions FC from the trained RF model
3: Find the class representative FCc

rep for Feature Contributions (medians or cluster centres)

4: for each instance xi
new in DNew do

5: calculate Feature Contribution FCi for an instance xi
new

6: for each class c in datasets classes C do
7: Calculate Euclidean distance between Feature Contributions FCi for the instance xi

new and class representative:
dE(FCi, FCc

rep)
8: end for
9: Select the class c for which the distance is minimal.

10: if class c is equal to the predicted ANN model class yi for the instance xi
new then

11: pi = 1
12: else
13: pi = 0
14: end if
15: end for

correctly classified. We can notice that there are two main groups with cardinality 25 and 9 elements.
The clusters that have minimum variance become core clusters and core clusters are further used to
evaluate whether we can trust in the interpretation of ANN offered by FC.

2.3 The Method of ANN Interpretability in Detail

The idea of the method is focused on training the Random Forest on the data produced by the ANN
model (the ANN works as an oracle) and then, on the Feature Contributions extraction for the trained
Random Forest model.

The general description of the method is shown in Algorithm 1. Let us assume that a trained ANN
model and the input training datasets DRF for Random Forest are given. Based on the set DRF ANN
produces corresponding output dataset YRF for training RF model. In the algorithm, we assume to
process more than one new instance xnew for which we want to obtain the interpretability of a Neural
Network output. These new instances create a set called Dnew. The corresponding outputs are generated
by ANN. They create Ynew dataset.

Then (line 1), we train a Random Forest model. During training, the Random Forest learns to map
the input x into the output y. It approximates the Neural Network behaviour. Each tree is grown using
the classification and regression tree (CART) method [3].

Next (line 2) the FCs are calculated. They reflect the features influence on the ANN prediction.
Feature Contributions are further used to analyse input data to search for the most powerful features
within classes or among entire dataset.

Further (line 3), for each class the FC representatives are calculated. We use the centre of the FC
cluster or FC median for a given class as describe in Section 2.2.1. The representatives are determined
from the instances of the Random Forest training dataset for which the RF prediction agrees with the
ANN model prediction and the original value of the output variable.

Next, FC is calculated also for the new input xnew (line 4). Then, the smallest distance between FC
for the new input and the representative assigns the class for the new input data (lines 5-9). If the class
is the same as the class predicted by the ANN, we trust the FCs interpretation result (pi = 1), in another
case, it is not true (pi = 0) (lines 10-14).
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3 Experimental Study

In this section, we will test whether the Feature Contributions method can be used to interpret a trained
ANN model. We will use a selected number of datasets from UCI benchmarks datasets (described in
the next section) that were also used in papers regarding the development of ANN models and rule
extraction.

3.1 Datasets

In the experiments, we used eight datasets from the UCL Machine Learning Dataset Repository [1]. We
selected the datasets that were often used as benchmark sets in rule extractions for ANN models [15]:

1. Breast Cancer Wisconsin (Diagnostic) Dataset (BCWD). Features are computed from a digitized
image of a fine needle aspirate (FNA) of a breast mass. They describe the characteristics of the cell
nuclei present in the image.

2. COX2 [29]. A set of 467 cyclooxygenase-2 (COX-2) inhibitors have been assembled from the published
work of a single research group, within vitro activities against human recombinant enzyme expressed
as IC50 values ranging from 1 nM to > 100 uM. To classify the data, a cutoff of 22.5 was used to
determine activity.

3. German Credit Scoring. The dataset classifies people described by a set of attributes as good or
bad credit risks. This file has been edited, and several indicator variables added to make it suitable
for algorithms which cannot cope with categorical variables. Several attributes that are ordered
categorical (such as attribute 17) have been coded as an integer.

4. IRIS. The dataset contains three classes of 50 instances each, where each class refers to a type of iris
plant.

5. SEEDS. Measurements of geometrical properties of kernels belonging to three different varieties of
wheat. A soft X-ray technique and GRAINS package were used to construct all seven, real-valued
attributes.

6. Teaching Assistant Evaluation (TEACHING). The data consist of evaluations of teaching performance
over three regular semesters and two summer semesters of 151 teaching assistant (TA) assignments
at the Statistics Department of the University of Wisconsin-Madison. The scores were divided into 3
roughly equal-sized categories (”low”, ”medium”, and ”high”) to form the class variable.

7. WAVEFORM Database Generator (Version 1). CART book’s waveform domains.
8. WINE. Results of a chemical analysis of wines grown in the same region in Italy but derived from

three different cultivars. The analysis determined the quantities of 13 constituents found in each of
the three types of wines.

3.2 Experimental Procedure

To satisfy the assumption of the method, we trained the Neural Network first and then we generated the
dataset DRF that is used to train RF. In order to train the network, all files chosen for experiments were
divided into three files: training Dtrain, Ytrain, testing Dtest, Ytest and validating Dnew, Ynew datasets.
The network was trained using training dataset Dtrain, and it was tested on dataset Dtrain.

When the training the network was completed, we joined Dtrain ∪ Dtest. It creates DRF input dataset
that is further used for training Random Forest model. Next, we delivered instances from DRF to the
ANN and for each input vector x ∈ DRF the network produced a response that was included in YRF . In
the experiment, ANN interpretation is tested on instances from Dnew.

3.3 Training the Artificial Neural Network Model

For the ANN model, the multi-layer perceptron (MLP) network has been used. MLP is a fully connected
feed-forward network and the most common network architecture in use. Training is performed by the
backpropagation method [13]. In this study, we trained the MLP model using the MLP function from
the RSNNS package in R [27]. We used the default settings for the MLP model. We only set a parameter
size (describing the number of hidden neurons) to be equal to an average of sum of input and output
variables, learning coefficient - learnFuncParams equals 0.1 and the maximal number of iteration equals
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Table 2: Characteristics of datasets and average accuracy (ACC) of ANN over 50 runs of the of ANN
model development procedure. The columns represent: the number of instances in the dataset (Inst),
the number of instances for the training and testing dataset for the ANN model (#Dtrain, #Dtest), the
number of instances for a validating dataset (#Dnew), the number of dataset’s attributes and classes
(#Attr, #Class), an average accuracy for the training dataset (ACCtrain) and accuracy for the testing
dataset ACCtrain for the ANN model

.

Name #Inst #Dtrain #Dtest #Dnew #Attr #Class ACCtrain ACCtest

BCWD 683 409 137 137 9 2 0.981 0.966
COX2 190 114 38 38 255 2 1.000 0.677

German CS 1000 600 200 200 20 2 0.878 0.737
IRIS 150 90 30 30 4 3 0.958 0.941

SEEDS 210 126 42 42 7 3 0.953 0.916
TEACHING 151 90 30 31 5 3 0.576 0.491
WAVEFORM 5000 2998 1000 1002 21 3 0.904 0.856

WINE 178 105 36 37 13 3 1.000 0.980

Table 3: Average AUC for the ANN model for all datasets.

Data Set IRIS BCWD German CS COX2 WINE TEACHING SEEDS WAVEFORM
Dtrain 0.977 0.984 0.846 0.999 1 0.745 0.955 0.899
Dtest 0.983 0.962 0.691 0.705 0.9755 0.677 0.875 0.883
Dnew 0.987 0.963 0.662 0.666 0.989 0.644 0.849 0.841

50. The ANN model had only one hidden layer. The number of ANN’s output neurons was equal to the
number of classes in a given dataset because we used 1 of n encoding for the output layer. We did not
focus on the MLP model accuracy, so we did not optimize the model parameters to get the most accurate
model (the model accuracy was not the subject of this study).

Table 2 presents the averaged results from building the MLP model. First four columns show the
cardinality of each dataset and the split for training (Dtrain), testing (Dtest) and validating (Dnew)
datasets. Testing Dtest and Dnew datasets were randomly selected taking 20% of data for both datasets.
To have an equally represented set of elements in each class this selection was conducted for each class
separately. The fifth and sixth columns in the table represent the number of attributes and classes for each
dataset, respectively. The last two columns show the averaged accuracies for the MLP model for training
and testing datasets obtained from the repeated approach of the model development process. This means
that for each dataset we repeated the procedure fifty times by splitting the dataset and generating the
ANN model. Figures 3a and 3b present boxplots for all generated models for each dataset-case for training
and testing datasets.

One can see that the MLP model gives good results for BCWD, IRIS, SEEDS, WAVEFORM and
WINE with averaged accuracies around 0.9. Surprisingly, the model has high accuracy for the COX2
training dataset 1, but much worse results for testing dataset 0.7. This result may suggest that mlp
model was overtrained for this dataset. The TEACHING dataset got the worst results. It resulted from
the way of features encoding for ANN. All attributes in this dataset are categorical, and we use their
numeric representation without conversion to binary sub-vectors. A similar situation is with German
Credit Scoring dataset. In this case, the results show the higher accuracy of a model, but still lower
in comparison to other datasets. An explanation for this regards to how Neural Networks work. ANNs
process numbers, sum up weighting signals expressed as numbers and then calculate the value of the
activation function. Therefore it is not a good idea to encode categorical variable on one neuron. Between
categorical values, there is no order between numbers. This is why we need as many neurons as many
values have a categorical variable to encode such variables. Each neuron can take only 0 or 1 representing
the given value. We did not encode the input variable into vectors as we wanted to generate some various
“good” and “bad” models to demonstrate their interpretability.

To evaluate the ANN classification quality, we calculated the Area Under ROC Curve (AUC) for ball
datasets. They are presented in Table 3. In literature [2], the model with the AUC measure greater than
0.7 is considered to be a good model. A multi-class AUC is computed as an average AUC as defined by
[10] and implemented in the multiROC package in R [19]. The AUC values for all datasets show that
predictivity of the ANN model for GERMAN, COX2 and TEACHING dataset is worse than for the
other datasets but yet still good enough to consider the ANN model suitable for all datasets.
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Fig. 3: The box plot shows accuracies of fifty ANN models for all selected datasets for a) training dataset
Dtrain and b) testing dataset Dtest, separately.

Table 4: Average accuracy for ANN (ANNnew) and RF (RFnew) models for validation dataset Dnew

and for RF training DRF dataset (RFtrain column)

Name #Dnew ANNnew RFtrain RFnew

BCWD 137 0.970 0.996 0.976
COX2 38 0.676 0.947 0.766

German CS 200 0.736 0.965 0.814
IRIS 30 0.946 0.996 0.967

SEEDS 42 0.932 0.986 0.922
TEACHING 31 0.533 0.980 0.934
WAVEFORM 1002 0.859 0.973 0.841

WINE 37 0.982 0.990 0.941

3.4 Training Random Forest Model and Calculating Feature Contributions

Random Forest model was trained on a combined dataset Dtrain and Dtest called DRF and YRF - an
output of ANN for DRF as described in Section 2.3. We used randomForest [25] package in R. The
number of trees was set to the number of input variable for each dataset separately. The reason lies in
avoiding the overfitting for datasets like IRIS with a small number of variables. We used default settings
for this method. We set the parameter replace=False to avoid selection with a replacement for training
trees. We also keep information on records which were used to train a tree in a forest by setting the
parameter keep.inbag=True. This is needed to calculate Feature Contributions.

Table 4 shows the averaged results for Random Forest model and for the MLP model. Column #Dnew

informs how many instances contains the Dnew dataset. The averaged accuracy of MLP model for Dnew

is included in the column (ANNnew). The column RFnew describes average accuracy for the Random
Forest model. The table shows also the average accuracy of the Random Forest model for training data
(column RFtrain achieved on the DRF dataset. Models do not predict well for COX2 and TEACHING
datasets. The averaged accuracy of the Random Forest model for COX2 is the lowest among all datasets,
whereas for the other datasets is in the range of 0.95 which means that RF model mimics well the ANN
model’s behaviour. Figures 4a and 4b show the summary of accuracies for Random Forest models in the
repeated runs of the algorithm for each dataset.

To test how well the Random Forest model mimics the ANN model, we calculated the average Area
Under Curve for each RF model. Table 5 presents AUC for each dataset. The higher AUC value closed to
one, the less noise/error was introduced by the Random Forest model, and the better interpretability of
the ANN model we can expect. As the ground truth, the instances from YRF and Ynew were considered,
respectively.

It can be noticed that the AUC values for the Random Forest model are in some cases higher than
ANN’s AUC values (see Table 3) but RF model was trained with a greater number of instances - DRF

is a combination of Dtrain and Dtest used for the ANN model. Similarly to ANN also for RF, the AUC
values were calculated using multiROC package [19] in R, where the AUC for multiclass is calculated as
an average of the pairwise AUCs.
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(b) Validation dataset Dnew

Fig. 4: Box plots for RF models for all datasets for a) RF training dataset DRF and b) validation dataset
Dnew. The y axis represents the Random Forest model accuracies.

Table 5: Average AUC for the RF model calculated for each dataset

IRIS BCWD German CS COX2 WINE TEACHING SEEDS WAVEFORM
DRF 0.995 0.996 0.846 0.938 0.987 0.976 0.985 0.970
Dnew 0.956 0.976 0.719 0.743 0.953 0.903 0.909 0.836

3.5 Certainty Assessment of ANN Interpretation

Feature Contributions calculated for the instance xnew give information about the relation between
predicted class and input features for an RF model. Because the RF model only mimics the ANN model
we are interested in evaluating how much we can rely on this interpretation. In other words, we would
like to assess the certainty of obtained interpretation. To decide if the extracted Feature Contributions
for an instance xnew give certain interpretation we test them against ANN model prediction for this
instance. The verification of the ANN model prediction is based on the comparison of the classification
of xnew data made with the ANN model and the class found by the Feature Contribution analysis. If the
prediction from FC agrees with the prediction from ANN for an instance xnew, we say that interpretation
is certain for this instance. If the predicted class from ANN agrees with FC prediction and with the
original class for this instance, we say that prediction is correct.

Following the Algorithm 1 we calculated Feature Contributions for instances from the Random Forest
training dataset DRF and the validation dataset Dnew. We used the rfFC R package [26]. We selected
these instances from DRF for which predictions from RF and ANN models agree with the original value of
the output variable. Then for each class, we calculated Feature Contributions medians. In the second step,
we applied k-means to cluster Feature Contributions within each class. For each Feature Contribution
subset with non zero variance, the number of clusters was assessed using the MClust R package. This
method uses the Bayesian Information Criterion (BIC) - a model selection criterion to search for the
best number of clusters [8]. The number of clusters was selected based on the optimal number of clusters
between 1 and 10. Finally, we extract the Feature Contributions representatives for each class. In Figure
5 we present medians representatives of Feature Contributions for a few datasets and all classes (for
each dataset). Contributions can be positive as well as negative values and representatives differ between
classes.

Next, Feature Contributions for each xnew instance from Dnew were calculated. Then, we calculate
distances between representatives and Feature Contributions for instances from Dnew using equations
(2) and (3). In following subsections, we demonstrate how the method works for a few instances from
the Iris dataset and we present the aggregated results for repeated runs of the algorithm.

3.5.1 Iris Dataset Example

As an example, let us consider a few instances xnew for a single method run from Iris dataset. Table
6 shows the original data for Iris instances and prediction from the ANN model. The ANN model’s
accuracy was 0.93. Three exemplary instances were selected from the Dnew dataset. There are two
instances from the Virginica class (second and third). The ANN model classified the third instance as
Versicolor. The Random Forest model accuracy was 0.997 for Dnew. Feature contributions were extracted
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(a) Feature contributions medians for SEED dataset. The
variable numbers represent: area, perimeter, compactness,
length of kernel, width of kernel, asymmetry coefficient
and length of kernel groove, respectively.
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(b) Feature contributions medians for TEACHING
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(c) Feature contributions medians for BCWD. The vari-
able numbers represent: Clum Thickness, Uniformity of
Cell Size, Uniformity of Cell Shape, Marginal Adhesion,
Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin,
Normal Nucleoli, Mitoses, respectively.
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(d) Feature contributions medians for WINE. The vari-
able numbers represent: Alcohol, Malicacid, Ash, Alcalin-
ityofash, Magnesium, Totalphenols, Flavanoids, Nonfla-
vanoidphenols, Proanthocyanins, Colorintensity, Hue, Di-
luted Wines, Proline, respectively.

Fig. 5: Example of Feature Contributions median for selected datasets

from the RF model for each of these instances (see the bottom part of the Table 6). One can notice that
in the first instance the fourth variable is the most important for predicting this instance with Setosa
class. The second instance has the third variable as the most important and also the first and the forth
variables contribute to predicting class Versicolor. The third instance originally being in the same class
as the second instance, has the forth variable the most significant and also the second one. But for this
instance, the ANN predicts wrongly.

Table 6: Instances (Data) from Dnew Iris dataset, their ANN prediction and Feature Contributions (FC)
calculated for each instance.

No Sepal.Length Sepal.Width Petal.Length Petal.Width Class ANNPrediction
1 4.6 3.4 1.4 0.3 Setosa Setosa

Data 2 7.2 3.6 6.1 2.5 Virginica Virginica
3 6.3 2.8 5.1 1.5 Virginica Versicolor
1 0 0 0.2193 0.4386

FC 2 0.04318 0 0.3243 0.2816
3 -0.0256 0.11 -0.1278 0.4031

As the model representative for Feature Contributions, we have taken median calculated on the base
of DRF training dataset for each class. In the next step, we calculate distances between each instance and
the class representatives. The representatives for each class are shown in Table 7. For Setosa class, the
third and the forth variables are the most significant and the fourth one has much stronger contributions.
For Versicolor class, the third variable contributes the most but also the second and the forth features
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are important. Similarly, for Virginica class the third variable contributes the most and also the first and
the third are important - having values greater than zero.

Table 7: Median representatives for RF model’s training dataset DRF for IRIS dataset.

Class Sepal.Length Sepal.Width Petal.Length Petal.Width
Setosa 0 0 0.2193 0.4386
Versicolor 0 0.02667 0.4132 0.2531
Virginica 0.04318 0 0.3243 0.2816

To verify the certainty of the ANN interpretation we calculate distances between Feature Contribu-
tions of each instance and all class representatives (see Formula 2). The distances are presented in Table
8. The minimum distance defines the class for a considered instance. The first two instances have Feature
Contributions equal to their class representatives. This is possible when many elements follow the same
path in the forest’s trees. In this case, the class assigned based on a distance agrees with the ANN model
predictions. In the case of the third instance, the distances to all class representatives are big. Following
the algorithm, the class assigned by using Feature Contributions is Setosa which differs from the ANN
prediction. In this case, we do not trust the ANN interpretation.

Table 8: Distances to the median representatives calculated for instances from Table 6.

Nr Setosa Versicolor Virginica FC Class Response p
1 0 0.2697 0.1937 Setosa 1
2 0.1937 0.1063 0 Virginica 1
3 0.3667 0.5681 0.4858 Setosa 0

The procedure to calculate distances to the cluster representatives is similar, so we do not present it
in this section. The only difference is that we can have more than one representatives for a class. It is
related to the core clusters as it was described in Section 2.1. In the next section, we will evaluate the
ANN interpretation method for all datasets.

3.5.2 Interpretability Method Evaluation for all Datasets

In this section, we repeat the procedure described in Algorithm 1 for all eight chosen datasets. Table 9
shows averaged results from repeated runs of the method for each dataset. The values were rounded to
the nearest integer. The first column in this table shows the number of elements in the new dataset Dnew.
The second (Med Certain) column shows the number of instances that were marked certain with the
median approach. The third (Med Correct) column shows how many instances were correctly classified
by the median approach concerning the original class value. The last two columns show the number
of interpretations that were marked as certain based on the clustering approach (Clust Certain) and
the number of correctly classified instances in respect to the original class (Clust Correct). Also, Table
10 presents detailed results from the certainty assessment of interpretability method. For each dataset,
columns represent a number of instances for which ANN interpretation was marked as certain and
uncertain for both median and clustering methods. In rows, we have ANN prediction expressed by a
number of instances that were classified wrongly by the ANN model.

The aggregated results confirm that the presented method is suitable to interpret ANN model for
new data. For ANN models with good predictive accuracy such as for IRIS, BCWD, WINE, SEEDS, the
certainty of ANN interpretation is greater than 80%. This means that Feature Contributions represents
the true importance for the ANN model. For bad bad models (see TEACHING and German CS datasets),
the certainty is greater than 60%. It is worth noticing that models for these two datasets had a low
predictive accuracy (see Figure 3). This demonstrates that the proposed approach of assessment of the
ANN model interpretability can filter instances with correct ANN prediction and with certain Feature
Contribution values. Also, the results show that the use of clustering seems to work better than the use
of the median approach.
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Table 9: Number of elements from the Dnew dataset marked as a correctly predicted by ANN model via
median and clustering methods in respect to their original class label

Name #Dnew Med Certain Med Correct vs Orig Clust Certain Clust Correct
BCWD 137 130 (94,8%) 127 133 (97%) 130
COX2 38 28 (73,6%) 21 29 (76,3%) 23

German CS 200 161 (80,5%) 127 180 (90%) 145
IRIS 30 27 (90%) 26 28 (93,3%) 27

SEEDS 42 35 (83,3%) 33 39 (92,8%) 37
TEACHING 31 22 (70,0%) 19 27 (87%) 22
WAVEFORM 1002 674 (67,2%) 585 745 (74,3%) 663

WINE 37 31 (83,7,4%) 29 34 (91,8%) 33

Table 10: Certain/Uncertain vs correct/non correct prediction for elements of Dnew dataset.

Name #Valid ANN Pred Median Cluster
Certain Uncertain Certain Uncertain

BCWD 137 correct 127 2 130 1
non correct 3 5 3 3

COX2 38 correct 21 3 23 3
non correct 7 7 6 6

German CS 200 correct 127 32 145 19
non correct 34 7 35 1

IRIS 30 correct 26 2 27 2
non correct 1 1 1 0

SEEDS 42 correct 33 4 37 2
non correct 2 3 2 1

TEACHING 31 correct 19 1 22 0
non correct 3 8 5 4

WAVEFORM 1002 correct 585 107 663 98
non correct 89 221 82 159

WINE 37 correct 29 4 33 2
non correct 2 2 1 2

3.6 Rule Extraction vs Feature Contributions

In this section, we illustrate the IRIS dataset case study how Feature Contributions can support interpre-
tation offered by rules extracted from the Random Forest model. The rules give us a general description of
the model decision-making process. Table 11 presents rules extracted from the forest with three trees for
IRIS dataset. Rules 1− 5, 6− 11 and 12− 16 are extracted from the first, the second and the third tree
respectively. Variables 1, 2, 3, 4 correspond to Sepal.length, Sepal.width, Petal.length and Petal.width.
After pruning the number of rules decreased (see Table 12), still some of them may partially overlap,
but we are not investigating such a case in this paper.

The other question we raised in this paper is whether Feature Contributions can support or strengthen
the general description of a model behaviour included in the set of rules. Feature contributions present
relationships between single instance variables and their model prediction. The generalisation of Feature
Contributions may be useful to visualise which variable conditions are the strongest in the rule if we want
to apply rule pruning. The bars in Figure 6. present the median of Feature Contributions, calculated for
the Random Forest training dataset DRF , for each class for the IRIS dataset. Petal.width and Petal.length
are significant variables for all classes. For the Setosa class, the Petal.length has the biggest contribution.
Let us look at the rules presented in Table 12. We can see that rule 12 has Petal.length in its premise
to classify instances in the Setosa class. For the other two classes the Petal.width variable is the most
significant. We can also find that Versicolor is also described by Sepal.length at rule 2. The median
plot supports this showing the small contribution for this variable. The similar situation exists with
Virginica class. Petal.Width is the most important feature and its premise is present in all rules for this
class. Petal.Length as the second important feature for this class is present in rules 11 and 14. Finally,
Sepal.Width variable is present only in rule 14 and there is a small contribution for this feature for class
Virginica. The drawback of this approach is that the relation between rules and Feature Contributions
representatives is easily visible only if there is a small number of rules after pruning.
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Table 11: Extracted rules for IRIS dataset.

1 Petal.width <= 1.75 & Petal.width <= 0.8 Setosa

2 Sepal.length <= 6.65 & Petal.width <= 1.75 & Petal.width > 0.8 Versicolor

3 Sepal.length > 6.65 & Petal.length <= 4.95 & Petal.width <= 1.75 & Petal.width > 0.8 Versicolor

4 Sepal.length > 6.65 & Petal.length > 4.95 & Petal.width <= 1.75 & Petal.width > 0.8 Virginica

5 Petal.width > 1.75 Virginica

6 Petal.length <= 2.6 Setosa

7 Sepal.width <= 2.75 & Petal.length > 2.6 & Petal.length <= 4.95 Versicolor

8 Sepal.width > 2.75 & Petal.length > 2.6 & Petal.length <= 4.95 &Petal.width <= 1.7 Versicolor

9 Sepal.width > 2.75 & Petal.length > 2.6 & Petal.length <= 4.95 & Petal.width > 1.7 Virginica

10 Petal.length > 2.6 & Petal.length > 4.95 & Petal.width <= 1.55 Versicolor

11 Petal.length > 2.6 & Petal.length > 4.95 & Petal.width > 1.55 Virginica

12 Petal.length <= 2.45 Setosa

13 Petal.length > 2.45 & Petal.width <= 1.55 Versicolor

14 Sepal.width <= 3.35 & Petal.length > 2.45 & Petal.width > 1.55 Virginica

15 Sepal.width > 3.35 & Petal.length > 2.45 & Petal.length <= 4.95 & Petal.width > 1.55 Versicolor

16 Sepal.width > 3.35 & Petal.length > 2.45 & Petal.length > 4.95 & Petal.width > 1.55 Virginica

Table 12: Rules after pruning using cross-frequency table.

2 Sepal.length <= 6.65 & Petal.width <= 1.75 & Petal.width > 0.8 Versicolor
5 Petal.width > 1.75 Virginica
11 Petal.length > 2.6 & Petal.length > 4.95 & Petal.width > 1.55 Virginica
12 Petal.length <= 2.45 Setosa
13 Petal.length > 2.45 & Petal.width <= 1.55 Versicolor
14 Sepal.width <= 3.35 & Petal.length > 2.45 & Petal.width > 1.55 Virginica
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Fig. 6: Medians of Feature Contribution for each class of IRIS dataset

4 Conclusions

In this paper, we showed that Feature Contributions could be used to interpret an ANN model for a
before unseen data (instance) to find relationships between instance variables and the predicted outcome.
We used ANN models as the example of a non-transparent model which does not allow easy analysis
of the network structure and its averaging functions of internal neurons. We built a forest of trees that
with high accuracy emulates the behaviour of the ANN model.
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Features contributions are numerical values, and their interpretation depends on the problem domain.
In the paper, we cited real known problems where Feature Contributions were used for Random Forest
models. We also applied Feature Contribution to interpret ANN models via pedagogical approach. To
test the certainty of Feature Contribution for the ANN model interpretation, we proposed the procedure
of identifying correctly predicted instances. The aggregated results showed that the interpretation of a
classification model by the proposed approach is possible once we have good quality data and a highly
accurate ANN model. Using a distance measure to representatives of known Feature Contributions for
training instances we can decide when to trust the interpretation of ANN model. The representatives in
this work were defined by a median or by cluster centres. The averaged results showed that for the best
ANN models in 80% of new instances we were able to tell whether the interpretation was certain. The
experiment was carried on eight datasets from the UCI Machine Learning repository.

A study on the threshold level for the Euclidean distances used in median and clustering methods and
its influence on the ability of ANN interpretation is the next step of our research in this area. Further
research, focusing on the distance metrics choice will be an essential enhancement of the study presented
here. We also plan to examine a dataset with hundreds of features as in real problems solved by chemists
or biologists and conduct further experiments to fully evaluate the proposed method. Investigations of
other Feature Contributions analysis methods that can lead to the reduction of false negatives can be
interesting research challenges. Another interesting study can be related to the error propagation from
ANN to Random Forest models.
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