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Abstract 

While the UK government withdrew from the zero carbon building agenda, the need to provide a high quality, controllable 

and comfortable internal environment remains.  Regardless of the shifting government sands, the thermal performance 

and energy efficiency of new buildings has improved, creating a gap between new and the 28 million existing properties in 

the UK. In Britain, many of the existing buildings are draughty and poorly insulated, making the buildings difficult to control 

and condition; positioning the UK housing stock amongst the most expensive to heat in Europe.  Uninsulated thermal 

elements, bypassing of the insulation layer, and excessive thermal bridging, are present in many of these properties. The 

resultant cold temperatures and risk of condensation and mould have an impact on the health and wellbeing of the 

occupants, contributing to excessive winter death rates.  To achieve thermal upgrade at scale, affordable and reliable ‘off-

the-shelf’ solutions are required. This research provides the results from a deep retrofit project, where off-the-shelf 

measures were introduced in stages, under controlled conditions, on a hard to treat property.  At each stage, significant 

reductions were achieved in the energy required to heat the property. The whole retrofit provided a more air-tight, 

thermally efficient fabric that brings many of the environmental benefits associated with new builds.  

Introduction 

The Paris Agreement (UNFCCC, 2016) reaffirms the position that reducing carbon emissions remains a global priority.  

Notwithstanding the recent departure of the USA (Merica, 2017), the position from the United Nations is clear, emissions 

must be significantly reduced to limit global warming and anthropogenic climate change (IPCC, 2014). However, the 

possible departure from the European Union and recent policy changes make UK’s commitments to a reduction in building 

emissions uncertain (Watson, 2017).   

Regardless of the changes, there are significant problems with the UK’s aging building stock.  While the sustainability 

arguments continue, the issues associated with current housing are acute.  Many of the properties tested are difficult to 

heat, with occupants experiencing draughty dwellings and problems of condensation (Fylan et al. 2016; Gorse et al. 2015).  

The fabric condition of the most existing houses are far from that regulated for new build. Some buildings are so cold and 

damp due to their fabric thermal performance that they represent a health risk to the occupant. In winter, a cold home 

impacts on a wide section of the community. Of the 40,000 excessive winter deaths in the UK, 9000 are associated with 

cold homes (ACE, 2015; NEA, 2016).  Over a five-year period (up to 2015) 46,716 deaths were attributed to cold dwellings, 

with the annual death rate similar to that caused by alcohol, and almost as high as breast cancer (ACE, 2015). Yet, mortality 

is a weak indicator of the impact of cold homes on the occupant; the years of healthy life lost and illnesses related to living 

in cold damp environments have much wider impact on society; ill health caused as a result of the living conditions costs 

the NHS £1.36 billion per year (NICE, 2015).  

The recent changes to legislation are also having an impact on UK markets, leading firms, - including Kingfisher, BAM and 

ARUP - have lobbied the UK Government to use its Clean Growth Plan to tackle emissions from buildings (refer to the letter 

to Greg Clark Secretary of State, WWF,2017). The Head of Energy and climate change at WWF, called for clarity to enable 

UK business to invest in appropriate technologies (Bairstow, 2017). 



As one third of anthropogenic greenhouse gas emissions world-wide are attributable to the built environment (UNEP, 

2012), it provides a significant opportunity to reduce emissions. For new build dwellings in the UK, the Building Regulations 

have been used as the main tool for reducing emissions. And, in a direct response to the UK climate conditions, emphasis is 

placed on a fabric first approach, reducing space heating energy needs. However, little is regulated with regard to fabric 

retrofits.  The Green Deal failed to incentivise the fabric retrofit market. The economic benefits and piecemeal voucher 

approach did not capture sufficient interest. The Energy Company Obligation scheme delivering carbon savings through 

cost effective measures, is in a period of transition and from 2018 the Minimum Energy Performance Standard (Private 

Rented Sector) will only require landlords to ensure rented properties achieve E or above. 

What is lacking is the potential to demonstrate what a fabric first approach can achieve in terms of comfort, wellbeing and 

energy related savings.  The research undertaken here sought to measure the improvement in thermal performance that 

could realistically be achieved using standard ‘off-the-shelf’ products to retrofit a solid wall terrace considered typical of 

the UK’s “Hard to Treat” (BRE, 2008) housing stock.   

Research method and experimental set up 

The Energy House, a full scale test facility at the University of Salford consisting of a replica pre-1919 solid-wall Victorian 

end-terrace house constructed inside an environmental chamber, was used to test the retrofit measures. The Salford 

Energy House test facility was selected as it provides a controlled environment in which a steady-state can be achieved and 

maintained and replication of test conditions. Such an environment enables any change in thermal performance resulting 

from retrofit to be measured with a higher degree of confidence than in the external environment. The test house was 

built using reclaimed materials and methods of the time. Table 1 provides the construction details of the test house prior 

to retrofit (baseline test stage). Figure 1 shows an image of the Salford Energy House. 

Table 1. Baseline test house construction details 

Thermal element Construction assembly and components 

External walls 222.5 mm brick arranged in English bond with 9mm lime mortar and 10.5 mm British Gypsum 

Thistle hardwall plaster with a 2mm Thistle Multi-Finish final coat.  

Roof Purlin and rafter cold roof structure. 100 mm existing mineral wool insulation (λ 0.044 W/mK) 

between 100x50 mm ceiling joists running parallel to the gable wall at 400 mm centres above 

lath (6 mm) and plaster (17 mm) ceiling. 3 uninsulated timber loft hatches. 

Floors Suspended timber ground floor, with underfloor vented void. 22 mm floor boards fixed to 200 x 

50 mm floor joists at 400 mm centres. Ground and intermediate floor joists run between the 

gable and party wall with joists ends built into masonry walls.   

Windows Double glazed in PVCu frames with trickle vents. Typical 1980’s replacement double glazing 

(single glazed timber sash windows) 

Doors UPVC, typical of a 1980’s replacement (uninsulated timber doors units with single glazing) 

Party wall Solid wall construction, unplastered on the Guard House side. 

 



 

Figure 1. The Salford Energy House 

The retrofit process involved thermally upgrading either one, or a combination, of its thermal elements. Table 2 presents 

the configuration of the test house at each stage of the experiment. 

Table 2. Test construction at each test stage of the experiment 

Test stage Construction of element at each test stage (shading denotes intervention & upgrade) 

External wall Roof Glazing Floor 

1 Full retrofit 
Hybrid solid wall 

insulation system 

90 mm EPS EWI to 

gable and rear walls 

80 mm PIR IWI to 

front wall 

270 mm mineral 

wool 

A+++ glazing, argon 

fill, low e 

200 mm mineral 

wool + membrane 

2 Full retrofit with 

original floor 

Uninsulated 

suspended timber 

(original 

construction) 

3 Solid wall retrofit 
100 mm mineral 

wool (original 

construction) 

1980s style double 

glazing units 

(original 

construction) 

4 Glazing retrofit 

Uninsulated solid 

wall - (original 

construction) 

A+++ glazing, argon 

fill, low e 

5 Loft retrofit 
270 mm mineral 

wool 
1980s style double 

glazing units 

(original 

construction) 
6 (Baseline) 

100 mm mineral 

wool (original 

construction) 

 

At each stage of the experiment the following measurements of thermal performance were obtained:  

• Heat loss coefficient (HLC) – The HTC (also referred to as the heat transfer coefficient) is the “heat flow rate 

divided by temperature difference between two environments” (BSI, 2007). It represents the steady-state 

aggregate for the total fabric and background ventilation heat loss across the entire thermal envelope of a 



building in Watts, per kelvin of temperature difference between the internal and external environments, 

expressed in W/K. The HLC was measured using an electric coheating test (Johnston et al., 2013). 

• In situ U-values - The thermal transmittance of a building element (U-value) is the “Heat flow rate in the steady 

state divided by area and by the temperature difference between the surroundings on both sides of a flat 

uniform system” (BSI 2017; ISO 7345:1987), expressed in W/m2K. In situ, U-value measurements were 

undertaken in accordance with ISO 9869:1994 (BSI, 2014). 

• Air permeability - Blower door tests in accordance with Technical Standard L1 (ATTMA, 2010) were performed to 

measure the air permeability (q50) of the test house, expressed in m3/(h.m2) @ 50 Pa. 

The thermal performance attributable to a retrofit thermal upgrade was calculated as the measured change from the 

baseline value. Figure 2 shows an image of the experiment set-up in the test house.  

 

Figure 2. Typical experimental set up in the test house (red disks show in situ U-value measurement locations) 

A mean internal air temperature of 20 °C was maintained during each test stage, which represents the average central 

heating thermostat set-point for homes in England was set (Shipworth et al., 2010). The chamber (external) air 

temperature was held at 5 °C. This setting was considered optimum for the chamber HVAC system while close to the mean 

external air temperature (6.6 °C) for North West England during the October to May heating season (Standard Assessment 

Procedure, BRE, 2012).  

Results 

The full retrofit resulted in reduction of 63% heat loss through the fabric (Figure 3). Solid wall insulation was the thermal 

upgrade measure which resulted in the largest reduction (46%) from the baseline (Figure 4) representing 72% of the total 

heat loss reduction in the retrofitted house. 

 
Figure 3. Measured HLC of the test house at each test stage (blue bars represent the test house heat loss following a single 

thermal upgrade measure, green bars represent thermal upgrade measures in combination) 



 

 
Figure 4. Contribution of each thermal upgrade to the reduction in whole house heat loss of the fully retrofitted test house 

Based on the assumptions provided in Table 3, a notional dwelling of similar heat loss characteristics, subject to a similar 

thermal upgrade programme, could reduce annual space heating costs from £554 (no thermal upgrade) to £206 (full 

retrofit) with annual CO2e emissions associated with space heating reducing from 2.31 tonnes (no thermal upgrade) to 0.86 

tonnes (full retrofit).  

Table 3. Impact of thermal upgrades on a similar house in the external environment located in Manchester, UK (annual 

space heating demand and cost, and CO2 equivalent emission reductions)1 

Thermal upgrade 

measure 

HLC (W/K) Reduction on 

baseline (W/K) 

Annual space 

heating energy 

reduction 

(kWh) 

Annual space 

heating cost 

reduction (£) 

Annual space 

heating CO2e 

reduction (kg) 

Full retrofit 69.7 117.8 6497 348 1449 

Full retrofit 

(original floor) 
82.7 104.8 5777 310 1289 

Solid wall insulation 101.2 86.4 4761 255 1062 

Replacement glazing 174.2 13.4 737 39 164 

Loft insulation 180.5 7.1 390 21 87 

No thermal upgrade 187.5 n/a n/a n/a n/a 

Floor upgrade n/a 13.1 720 39 161 

 
Results from the in situ U-value and air permeability measurements provide greater insight as to how the reductions in HLC 

were achieved. 

Figure 5 illustrates the reductions in heat loss from each thermal element following retrofit. The greatest reductions were 

measured from the hybrid solid wall insulation system which involved the application of internal wall insulation (IWI) to the 

front external wall and external wall insulation (EWI) to the rear and gable external walls. The relatively modest reduction 

in heat loss from the roof can be explained by the pre-existing insulation contained within the loft of the baseline house 

reducing its potential for improvement.  

 
1 All values calculated for reduction in annual heat demand are based on the 5 years prior to the experiment (2008 – 2012) mean annual 
heating degree day value of 2297 measured at Manchester Airport (base temperature 15.5oC). Assumes average UK condensing gas boiler 
efficiency of 82.5% (EST, 2009). Cost based upon average gas price for Manchester during 2012 of 4.42p per kWh (data sourced from 
DECC, 2013). Based upon June 2013 value for natural gas of 0.18404 kgCO2e per kWh (data sourced from the Carbon Trust, 2013).  



The only retrofit measure where there was a significant difference between the calculated improvement in thermal 

performance and that measured was the EWI. However, the underperformance was the result of the temporary nature of 

the installation meaning an adhesive coat could not be applied to the EWI, this allowed air movement between the EWI 

and outer leaf of the gable wall, and bypassing of the insulation layer. 

 

 
Figure 5. Summary of the in situ baseline and upgrade U-value measurements. Upgrade U-value measurements are 

compared to those predicted by U-value calculations 

Table 4 shows that all the retrofitted thermal elements performed within the in-use factor applied by UK Government 

funded retrofit schemes to account for underperformance.  

Table 4. Measured in situ U-value performance vs. in-use factors 

Thermal 

upgrade 

Calculated upgrade U-

value (W/m2K) 

Measured upgrade in 

situ U-value (W/m2K) 

Discrepancy from 

calculated upgrade U-

value (%) 

In-use factor (DECC 

2012) (%) 

Roof 0.15 0.16 (± 0.02) + 7 35 

Floor 0.12 0.13 (± 0.03) + 7 15 

EWI 0.29 0.32 (± 0.01) +10 33 

IWI 0.23 0.22 (± 0.01) - 4 33 

Glazing 1.33 1.34 (± 0.05) + 1 15 

The full retrofit of the test house resulted in a 50% reduction in air permeability from its original condition. From Figure 6 it 

can be seen that the upgrade measures to the floor provided the greatest increase in airtightness, a reduction of 42% from 

the baseline value. The increase performance can be primarily attributed to the airtightness membrane. 

 



 
Figure 6. Air permeability value of the test house in each condition (Blue bars represent the test house following a single 

thermal upgrade measure, green bars represent thermal upgrade measures in combination 

Conclusion 

The research presented in this paper has demonstrated that dwellings of this type, which represent a significant proportion 

of the UK’s hard to treat housing stock, have the potential to be retrofitted using off-the-shelf thermal upgrade measures 

to a standard which can significantly reduce their requirement for space heating and currently associated CO2 emissions.  
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