Citation:

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/6277/

Document Version:
Conference or Workshop Item (Presentation)

Creative Commons: Attribution-Noncommercial 4.0

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been checked for copyright and the relevant embargo period has been applied by the Research Services team.

We operate on a standard take-down policy. If you are the author or publisher of an output and you would like it removed from the repository, please contact us and we will investigate on a case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party copyright. If you would like a thesis to be removed from the repository or believe there is an issue with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a case-by-case basis.
Pacing characteristics of whole and part-game players in professional rugby union

Dr. Jason Tee
@JasonCTee
JasonT@dut.ac.za
What is pacing?
What does pacing look like in team sports?

Fatigue in total and high-intensity running distance
(Waldron and Highton, 2014, Sports Med 44:12)

Distribution of energy resources

Macro-pacing (pre-match)
- hydration, fuel availability, motivation, temperature, opposition, whole-game/substitute

Meso-pacing (half time)
- homeostatic disturbance, opposition, scoreline

Micro-pacing (continuous)
- homeostatic disturbance, opposition, scoreline

Effect of bout duration

What does this look like in collision sport?
Methods

19 professional players

- **Backs**
 - 49 matches
 - Whole game 27 matches
 - Starters 19 matches
 - Finishers 3 matches

- **Forwards**
 - 51 matches
 - Whole game 19 matches
 - Starters 16 matches
 - Finishers 16 matches

Measurement
SPI Pro GPS unit (GPSPorts, Canberra)

Match demand metrics
- Total distance
- High speed distance (>4 m.s$^{-1}$)
- Acceleration count (>2.75 m.s$^{-2}$)
- Impact count (> 5G)

All normalized to playing time and divided into quartiles

Statistics
Linear mixed models & Magnitude based decisions

Twitter: @JasonCTee
Email: JasonT@dut.ac.za
Results – Bout duration effects

Table I. Comparison of locomotive match performance variables according to participation bout type (whole game, starters and finishers) for forward and back position groups

<table>
<thead>
<tr>
<th></th>
<th>Forwards (N=51)</th>
<th>Whole game (N=19)</th>
<th>Starter (N=16)</th>
<th>Finisher (N=16)</th>
<th>Whole game vs. Starter</th>
<th>Whole game vs. Finisher</th>
<th>Starter vs. Finisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time playing (mins)</td>
<td>96 ± 12*</td>
<td>61 ± 11*</td>
<td>30 ± 13**</td>
<td>Most likely very large</td>
<td>Most likely very large</td>
<td>Most likely very large</td>
<td></td>
</tr>
<tr>
<td>Relative distance (m·min⁻¹)</td>
<td>68 ± 6</td>
<td>66 ± 6</td>
<td>71 ± 9</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>High-speed distance (m·min⁻¹)</td>
<td>10 ± 4</td>
<td>12 ± 5</td>
<td>17 ± 9**</td>
<td>Very likely large</td>
<td>Very likely medium</td>
<td>Very likely large</td>
<td></td>
</tr>
<tr>
<td>Acceleration frequency (min per accel.)</td>
<td>11 ± 20</td>
<td>10 ± 21</td>
<td>6 ± 10**</td>
<td>Very likely large</td>
<td>Very likely large</td>
<td>Very likely large</td>
<td></td>
</tr>
<tr>
<td>Impact frequency (>5 G·min⁻¹)</td>
<td>8.3 ± 2.7</td>
<td>11.3 ± 2.5</td>
<td>12.8 ± 2.6</td>
<td>Unclear</td>
<td>Likely large</td>
<td>Likely small</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Backs (N=49)</th>
<th>Whole game (N=27)</th>
<th>Starter (N=19)</th>
<th>Finisher (N=3)</th>
<th>Whole game vs. Starter</th>
<th>Whole game vs. Finisher</th>
<th>Starter vs. Finisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time playing (mins)</td>
<td>96 ± 8*</td>
<td>61 ± 14*</td>
<td>24 ± 9**</td>
<td>Most likely very large</td>
<td>Most likely very large</td>
<td>Most likely very large</td>
<td></td>
</tr>
<tr>
<td>Relative distance (m·min⁻¹)</td>
<td>65 ± 4</td>
<td>71 ± 8</td>
<td>65 ± 15</td>
<td>Likely medium</td>
<td>Unclear</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>High-speed distance (m·min⁻¹)</td>
<td>12 ± 3</td>
<td>16 ± 5</td>
<td>16 ± 2</td>
<td>Likely medium</td>
<td>Unclear</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Acceleration frequency (min per accel.)</td>
<td>5 ± 10</td>
<td>5 ± 9</td>
<td>4 ± 6</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>Impact frequency (>5 G·min⁻¹)</td>
<td>9.5 ± 3.1</td>
<td>9.6 ± 3.1</td>
<td>9.1 ± 6.4</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Data presented as mean ± SD. Role indicates whether a player completed the whole game (whole), started the game and was substituted (starter) or did not start the game and came on as a substitute (finisher). Acceleration frequency indicates how regularly players exceeded the acceleration threshold of 2.75 m·s⁻¹⁻¹. Impact frequency indicates the number of time that player collisions-forces exceeded 5G. *,** indicate significant difference from whole game and starters respectively (P < 0.05). Paired comparisons are a statement of the likelihood and magnitude of effects (Effect size ± 95%CI). Likelihood for substantial effects are described as possibly (25–75%), likely (75–95%), very likely (95–99.5%) and most likely (>99.5%).

[Logo: Durban University of Technology]

@JasonCTee JasonT@dut.ac.za
Forwards showed significant and practically meaningful reductions in running distance, high speed running distance and acceleration frequency over time. Backs no change in playing intensity over time.

Forwards showed significant and practically meaningful reductions in running distance, high speed running distance and acceleration frequency over time. Backs no change in playing intensity over time.

DUT - DURBAN UNIVERSITY OF TECHNOLOGY

@JasonCTee JasonT@dut.ac.za
Results – Finishers vs Whole game players

For forwards there were significant and practically meaningful differences in all physical performance parameters vs. whole game players.

These differences diminished over time, but were still practically meaningful at the end of the game.
Practical implications

- Forwards reduce playing intensity of time, backs don’t.
- Load the bench with forwards!

- Plan the timing of substitutions carefully to maximise the bout effect.
- Players work harder if they know how long they will play for!

- Difference in playing intensity between whole game players and finishers is of concern.
- Investigate whether this is linked to injury risk!
Thanks for listening

European Journal of Sport Science, 2019
https://doi.org/10.1080/17461391.2019.1660410

ORIGINAL ARTICLE

Pacing characteristics of whole and part-game players in professional rugby union

JASON C. TEE, YOGA COOPOO, & MIKE LAMBERT

1Department of Sport Studies, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa; 2Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, UK; 3Department of Sport and Movement Studies, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa; 4Division of Exercise Science and Sports Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa