
Citation:
Glew, D and Johnston, D and Miles-Shenton, D and Thomas, F (2019) Retrofitting suspended timber
ground-floors; comparing aggregated and disaggregated evaluation methods. Building Research
and Information. ISSN 0961-3218 DOI: https://doi.org/10.1080/09613218.2019.1681927

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/6315/

Document Version:
Article (Accepted Version)

This is an Accepted Manuscript of an article published by Taylor & Fran-
cis in Building Research & Information on 29th October 2019, available online:
http://www.tandfonline.com/10.1080/09613218.2019.1681927.

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/6315/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk


For Peer Review Only
Retrofitting suspended timber ground-floors; comparing 

aggregated and disaggregated evaluation methods

Journal: Building Research & Information

Manuscript ID 19BR1783-RE.R4

Manuscript Type: Research Paper

Keywords: retrofit, building performance, thermal retrofits, building pathology

Other keywords: whole house heat loss, floor insulation, coheating

Abstract:

It is estimated that around 80% of UK dwellings have uninsulated 
ground floors, representing a significant heat loss mechanism in these 
buildings.  In this research an aggregated assessment of dwelling heat 
loss was made using the electric coheating test before and after a 
ground floor retrofit took place.   Heat loss was reduced by 24% (43 ± 
18 W/K) indicating that suspended timber ground floor retrofits could 
improve thermal comfort for occupants and contribute to government 
domestic energy efficiency policy targets. The findings indicate that 
disaggregated evaluation methods, such as spot heat flux density 
measurements, may over-estimate the benefits of fabric retrofits. 
 Aggregate methods may therefore be more appropriate tools with which 
to evaluate retrofits.  The U-value improvement resulting from the 
suspended timber ground floor insulation retrofit, derived via aggregate 
measurement, was 0.55 W/m²K.  Disaggregated spot heat flux density 
measurements indicated the improvement was 0.89 W/m2K. This 
research also indicates that Energy Performance Certificates, are unlikely 
to provide a reliable estimate of energy savings, because they rely on 
default assumptions for fabric U-Values and ventilation rates.  This has 
implications for policy evaluations as well as householders, who may be 
excluded from financial support for retrofits.
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Abstract

It is estimated that around 80% of UK dwellings have uninsulated ground floors, representing 

a significant heat loss mechanism in these buildings.  In this research an aggregated 

assessment of dwelling heat loss was made using the electric coheating test before and after 

a ground floor retrofit took place.   Heat loss was reduced by 24% (43 ± 18 W/K) indicating 

that suspended timber ground floor retrofits could improve thermal comfort for occupants and 

contribute to government domestic energy efficiency policy targets. The findings indicate that 

disaggregated evaluation methods, such as spot heat flux density measurements, may over-

estimate the benefits of fabric retrofits.  Aggregate methods may therefore be more 

appropriate tools with which to evaluate retrofits.  The U-value improvement resulting from the 

suspended timber ground floor insulation retrofit, derived via aggregate measurement, was 

0.55 W/m²K.  Disaggregated spot heat flux density measurements indicated the improvement 

was 0.89 W/m2K. This research also indicates that Energy Performance Certificates, are 
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unlikely to provide a reliable estimate of energy savings, because they rely on default 

assumptions for fabric U-Values and ventilation rates.  This has implications for policy 

evaluations as well as householders, who may be excluded from financial support for retrofits.

Keywords:  retrofit, building performance, thermal retrofits, building pathology, whole house 

heat loss, floor insulation, coheating

INTRODUCTION

The UK Government has committed to reduce greenhouse gas (GHG) emissions by 80% by 

2050 (Climate Change Act, 2008). Dwellings are responsible for around 25% of the UK’s GHG 

emissions (CCC, 2016) and space heating can account for over half of this (Palmer and 

Cooper, 2013). Consequently, considerable effort has been made to retrofit dwellings in the 

UK. However, the quality of the retrofits undertaken have often fallen short of the intended 

standards.  This has resulted in performance gaps and unintended consequences that have 

been the subject of much government and academic research (Elsharkawy and Rutherford, 

2018; Gupta, Gregg, Passmore, & Stevens, 2015; Hall, Casey, Loveday, & Gillott, 2013; 

Hamilton et al., 2016; Hong, Oreszczyn, & Ridley, 2006; Innovate UK, 2016; Ma, Cooper, Daly, 

& Ledo, 2012; Rodrigues, White, Gillott, Braham, & Ishaque, 2018).
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Various policies have been introduced by the UK Government to reduce domestic GHG 

emissions: the Community Energy Saving Programme (CESP); the Carbon Emissions 

Reduction Target (CERT); the Energy Company Obligation (ECO1 and 2); and, the Green 

Deal (OFGEM, 2013a, 2013b, 2015).  As shown in Figure 1, these policies have resulted in 

millions of dwellings being retrofitted. However, cavity wall insulation, loft insulation and new 

gas boilers dominate the retrofit market.  Increasing the variety of retrofit measures that take 

place across the building stock can be challenging, because dwellings can often become 

‘locked in’ to partial retrofits, reducing the likelihood of other retrofits taking place (Ürge-

Vorsatz and Tirado Herrero, 2012).  

Figure 1, Retrofit measures installed via Government Schemes (excluding low energy lighting and double 

glazing)

It is estimated that almost 11 million dwellings have uninsulated suspended timber ground 

floors in the UK (Shorrock, Henderson, & Utley, 2005). Despite this, suspended timber ground 

floor retrofits do not contribute in any meaningful way to current policy.  A major barrier to 

ground floor insulation is the fact that it is considered disruptive and are generally only cost-

effective if undertaken when refurbishing the existing ground floor (Roberts, 2008; Shorrock, 

et al., 2005). Furthermore, although ground floor insulation is now classified as an approved 

measure in ECO policy, meaning that it can be installed in homes as a single measure (BEIS, 
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2017a), it was previously classified as a ‘secondary measure’, and as such it could only be 

installed alongside a ‘primary measure’, e.g. loft or wall insulation, to qualify for funding 

(OFGEM, 2017).  Additionally, retrofits seldom included secondary measures (BEIS, 2017b), 

despite whole house retrofits being more effective at reducing fuel bills and improving 

occupant comfort (Innovate UK, 2016). Consequently, despite ground floor insulation being 

recommended in 200,000 Green Deal surveys, it was rarely installed and accounted for less 

than 0.5% of all of the measures undertaken via the ECO scheme (Pelsmakers, 2016).  

Suspended timber ground floor retrofits

The Energy Savings Trust (EST) have estimated that the costs of ground floor retrofits are 

between £24 to £55 per m² based on a standard 80m2 semi-detached home with a 40m2 

ground floor area (EST, 2017).  This cost depends upon the standards and materials used 

and does not include any potential remedial costs. In contrast, the Department for Business, 

Enterprise and Industrial Strategy (BEIS) have estimated that for the same size and form of 

dwelling, suspended timber ground floor retrofits could cost as much as £87 to £208 per m², 

although this would be lower if floorboards had already been lifted to undertake other 

renovation work, or if a suitable crawl space was available, meaning only some of the 

floorboards may need to be lifted (J. Palmer, Livingstone, & Adams, 2017). Despite these 

variations in cost, the estimates are significantly less than that associated with installing  other 
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retrofit measures, such as internal wall insulation or double glazing (SWEET, 2014).

In addition to cost, there are a number of other potential barriers to suspended timber ground 

floor insulation. For example, the lack of consumer awareness of retrofits (Blumstein, Krieg, 

Schipper, & York, 1980). However, the extent of unfamiliarity is difficult to generalise, because 

knowledge of retrofits varies greatly amongst stakeholders (Fylan et al., 2016). Disturbance to 

householders is also a barrier, particularly as traditional methods tend to require floors to be 

lifted, making parts of homes inaccessible during the retrofit (Gupta, et al., 2015).  

Consequently, it is thought that ground floors are only insulated when they are replaced as 

part of larger home improvement projects (Roberts, 2008).  In addition, there are also practical 

barriers to overcome. For instance, the underfloor void must be sufficiently large to enable the 

installation to take place and still ensure adequate ventilation to the underfloor area. 

A YouGov Omnibus survey (funded by insulation manufacturers) of home owners living in pre-

1919 properties found that there were three main barriers to adopting energy efficiency 

measures; i) cost, ii) lack of information and iii) disruption (Mott McDonald, 2013). However, 

research in New Zealand indicates that occupants prefer to have ground floor insulation over 

other measures (Phillips, 2012). The reasons for this may be linked to the physiological 

observation  and comfort condition that people prefer a cool head and warm feet (Cheng, Lin, 

& Fong, 2015).  One of the main occupant drivers to insulate homes is thought to be to reduce 
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draughts (Blumstein, et al., 1980), because draughts around feet have a disproportionate 

effect on perceptions of thermal comfort (Schiavon, Rim, Pasut, & Nazaroff, 2016). 

Furthermore, simulations have shown that, in addition to reducing heat loss, retrofitting ground 

floors results in increases in floor surface temperatures and occupant comfort (Hall, et al., 

2013).  

Measuring the impact of ground floor insulation

In 1985, the Building Regulations for England and Wales stipulated, for the first time, a 

maximum ground floor U-value of 0.45 W/m²K (Killip, 2005). For new build homes, the latest 

editions of Approved Document Part L1A sets the maximum allowable ground floor U-value at 

0.25 W/m²K (NBS, 2014).  Heat loss via ground floors in homes built prior to these dates is 

difficult to characterise, due to differences in their junction designs, floor coverings, the floor 

perimeter to area ratio, underfloor void ventilation rates, seasonal variations in ground 

temperature and the extent to which other building elements are insulated.  Estimates of the 

proportion of a dwelling's total heat loss that could be attributed to ground floors range vary 

and range from as low as 10% (NEF, Undated) and 25%  (Harris. D and Dudek. S, 1997), up 

to as much as 60% (EST, 2003).

A number of attempts have been made to empirically quantify the scale of the reduction in U-

Value that could be achieved by retrofitting a suspended timber ground floor using a series of 
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in situ point heat flux measurements (see Pelsmakers, 2016, Farmer et al., 2017). In one 

study, the reductions in U-value ranged from 65% to 92%, depending on the specification of 

the retrofit (Pelsmakers, 2016), whilst in another study a 79% reduction in U-value was 

achieved where 200 mm of mineral wool was installed (Farmer et al., 2017).  It has also been 

observed that the heat flow across the surface of suspended timber ground floors is 

heterogeneous (Pelsmakers et al., 2017) due to the turbulent movements of gas below and 

neighbouring the floor and range of conductivity within the floor and abutting elements . To 

account for this heterogeneity, a large number of spot heat flux density measurements may 

be needed to estimate the aggregate heat flow through the whole floor. Heterogeneous heat 

flow has also been observed in other building fabric elements, such as solid walls (BRE, 2014).  

However, installing large arrays of heat flux sensors on individual building elements in field 

tests is not always achievable or practical.  In order to overcome this, thermography is often 

used to select representative measurement locations for a much smaller number of spot heat 

flux measurements (BRE, 2016; Farmer, et al., 2017; Marshall et al., 2017).  

The performance of suspended timber ground floors is influenced by a number of factors, 

including: edge effects; (the extent of thermal bridging at the edges varies according to the 

floor perimeter); its design; the location, size and number of airbricks in the floor voids; and 

ventilation pathways around the floor junctions, which can result in complex heat loss paths 
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(Pelsmakers, et al., 2017).  Furthermore, increasing the ventilation rate in the underfloor void 

increases the rate of conductive heat loss through the floor, as colder air is introduced into the 

void (Harris. D and Dudek. S, 1997).  Heat flux density measurements cannot directly measure 

the full extent of thermal bridging particularly at corners and edges.  Thus, it is not clear 

whether either using intensive arrays of spot heat flux density measurements, nor using a 

fewer number of targeted heat flux density measurements at representative locations, can 

appropriately capture and account for all of the conductive heat losses associated with 

suspended timber ground floors. 

Additionally, suspended timber ground floor retrofits can reduce convective heat flow by 

reducing infiltration between and around the floor boards.  The effect of suspended timber 

ground floor retrofits on infiltration rates in dwellings has not been widely measured, though 

may be less predictable than conductive heat losses, as it is more context specific.  Thus, the 

impact of suspended timber ground floor insulation on airtightness is relatively uncertain; one 

study observed effectively no change following retrofit (Pelsmakers, 2016), while another 

reported an 8% reduction in infiltration rate (Farmer, et al., 2017).  Since infiltration can have 

an important impact on overall dwelling heat loss (Hens, Janssens, Depraetere, Carmeliet, & 

Lecompte, 2007), this is an area that requires further research.  

Techniques are available that are capable of measuring infiltration rates, using one of the most 
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commonly techniques, the blower door method.  However, this method is not capable of 

identifying the extent of changes in convective heat loss following retrofits (ATTMA, 2016).  

Since neither heat flux density nor infiltration measurements can account for all the 

complexities of heat loss in a dwelling (e.g. thermal bridging and convective heat loss), 

adopting an aggregate approach to evaluating the benefits of a retrofit, may be a more 

accurate approach to undertake, to determine the impact on the whole building

One such aggregate approach that was adopted by the UK Government for their Building 

Performance Evaluation Programme1, is the  electric coheating test (Johnston, Miles-Shenton, 

Farmer, Wingfield, & Bell, 2013). This is a quasi-steady state test that is capable of measuring 

the aggregate (fabric and infiltration) whole house Heat Transfer Coefficient (HTC) of a 

building in Watts per Kelvin (Bauwens and Roels, 2014; Bauwens, Standaert, & Delcuve, 

2012; Everett, 1985; Johnston, et al., 2013; Siviour, 1985; Sonderegger, Condon, & Modera, 

1980). The electric coheating test has become the standard test for evaluating the aggregate 

fabric thermal performance of buildings. In addition, when it is combined with spot in situ U-

value measurements, air pressurisation tests and thermography, an estimate of where the 

heat loss occurs within the building can also be made (Alexander and Jenkins, 2015; 

Bauwens, et al., 2012; Guerra-Santin, Tweed, Jenkins, & Jiang, 2013; Jack, Loveday, 

1 connect.innovateuk.org/web/building-performance-evaluation
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Allinson, & Lomas, 2018). Limitations associated with the electric coheating test include the 

length of the test duration (7 days or more), the requirement for the test dwelling to be 

unoccupied throughout the test period, the tests being undertaken only during the space 

heating season (October to March in the UK), the costs associated with undertaking the test 

and a lack of experienced testers.  

This paper investigates the impact of a suspended timber ground floor retrofit using two 

separate measurement approaches: an aggregate method involving the electric coheating 

test, and a disaggregate approach comprising heat flux density measurements and air 

pressurisation tests. A comparison is undertaken between the two measurement approaches 

to determine the most appropriate approach and accurate method to adopt when evaluating 

fabric insulation retrofits.

METHOD

The case study dwelling and retrofit

The test dwelling used in the research was a 1-bedroom bungalow (see Figure 2).  There are 

around 2 million bungalows in the UK (DCLG, 2016), of which around 12% are 1-bedroomed 

(VOA, 2014). Bungalows have a large floor area to heat loss area ratio, so may receive 

proportionally greater benefits from suspended timber ground floor insulation than other 
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dwelling forms.  Therefore, caution must be applied when attempting to extrapolate any 

potential benefits found in this study to the UK housing stock, especially as over half of existing 

dwellings either have solid ground floors or insulated suspended ground floors (Shorrock, et 

al., 2005).

The case study dwelling has a ground floor area of 44 m², and is a stepped and staggered 

end-terrace bungalow, which was built in the 1960s and is orientated East to West. The North 

side of the dwelling is sheltered by a separate group of stepped and staggered terraced 

bungalows. The external walls are of traditional brick and block cavity construction, wet 

plastered internally, with the 60 mm external wall cavity previously retro-filled with mineral fibre 

insulation. The dwelling has a cold pitched roof, with 200 mm mineral wool insulation located 

at ceiling level. It is double-glazed throughout and has an uninsulated suspended timber 

ground floor. A concrete stepped raft foundation is located beneath the floor, resulting in a 660 

mm crawl space. Floor joists run east to west and are supported on honeycomb brick sleeper 

walls (see Figure 2).  Five 229 x 76 mm (9” x 3”) airbricks are located on the east and west 

elevation (three on the east and two on the west), providing underfloor ventilation.  The cavity 

party wall is of block construction, wet plastered internally, and has a 60 mm unfilled cavity. 

Purpose provided ventilation is achieved via trickle vents on the window heads and intermittent 

extract fans in the kitchen and bathroom.  
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Figure 2, West-facing elevation of the case study dwelling (left) and honeycomb sleeper walls in the under floor void 

(right)

The retrofit consisted of a robotic device2 spraying closed cell polyurethane (PU) foam (BASF 

Elastospray) to the underside of the suspended timber floor (Holloway, 2016a, 2016b). To 

achieve a target U-Value of 0.2 W/m²K, 130 mm of insulation was applied between the joists, 

and 30 mm over the underside of the 100 mm deep joists, following the process outlined in 

the BBA Agrément Certificate 17/5440. Before and after laser scanning was used to validate 

that the installation thicknesses were achieved to ± 10mm.  The PU foam was designed to set 

in 60 seconds, and has a manufacturer stated aged thermal conductivity of between 0.025 

and 0.028 W/mK.  As part of the manufacturer’s installation instructions, additional spraying 

was also applied where any air leakage linking the main dwelling to the underfloor void was 

observed. For example, around the service penetrations located behind the kitchen sink unit.   

The BPE tests were undertaken on the case study dwelling between the 18th February and 

the 28th March, resulting in 23 days of pre- and 10 days of post-retrofit data, with 6 days for 

the retrofit and test set up. The following sections describe the individual tests that were 

undertaken.

2www.q-bot.co
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Air pressurisation tests and leakage detection 

A series of air pressurisation tests were performed according to ATTMA Technical Standard 

L1 testing protocol (ATTMA, 2016), which has an uncertainty factor due to environmental 

conditions of normally less than 10% (BSI, 2015).  The average of the pressurised and 

depressurised tests was calculated in accordance with CIBSE TM 23 (CIBSE, 2000).  During 

depressurisation, thermal imaging was used to identify air leakage points and pathways.

The measured mean air change rates obtained from the air pressurisation tests were used to 

approximate the natural annual average background ventilation by dividing the air change rate 

at 50 Pa (N50) by 20. This procedure is commonly known as Sherman’s ratio or the rule-of-20 

(Jones, Goodhew, & de Wilde, 2016; Sherman, 1987).  In the UK this is conventionally applied 

to air permeability (Q50/20), rather than air leakage (N50/20) to calculate an average annual 

infiltration rate for a dwelling, and is contained within the Government’s Standard Assessment 

Procedure (SAP) (BRE, 2012), which forms an integral part of Part L1A of the Building 

Regulations (NBS, 2014).

Heat flux density measurements

Hukseflux HFP01 sensors were used to measure heat flux density in W/m².  Representative 

locations for heat flux sensor placement were identified using thermography to ensure that 

thermal bridges or infiltration pathways were avoided. Heat flux density and the corresponding 
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internal and external air temperature measurements were used to calculate an in situ air-to-

air U-value for each HFP using the average method contained within BS ISO 9869-1: 2014. 

Based upon the quadrature sum of the individual errors, this results in a total uncertainty of 

14% (BSI, 2014). The voltage induced by the HFPs was recorded at ten-minute intervals using 

an Eltek Squirrel 801/851 data logger.

Thermography was used to aid the positioning of the HFPs, resulting in informed indicative 

point U-values being measured for each thermal element (external wall, external windows, 

external door, ceiling, party wall and ground floor). This approach was undertaken to enable 

a pre- and post-retrofit comparison of the indicative U-values to be undertaken, so that any 

change in the measured HTC could be attributed to the application of the retrofit floor 

insulation, rather than changes to the performance of other elements of the building fabric. 

Selecting locations for the indicative measurements was limited by obstructions, including 

fenestrations and built-in cupboards. Despite this, four representative locations were identified 

for the external wall, which were sufficiently far away from the edges of the wall to ensure that 

the influence of thermal bridging would be minimised.  This resulted in two HFPs being placed 

on the North wall in the kitchen, two being located on the West wall, one in the kitchen and 

the other in the bedroom.  The party wall had no obstructions, so three HFPs were located in 

representative locations in each of the lounge and bedroom walls. However, due to access 

Page 14 of 51

URL: https://mc.manuscriptcentral.com/rbri  Email: RBRI-peerreview@journals.tandf.co.uk

Paper submitted to Building Research & Information

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

15

restrictions, it was not possible to measure the internal temperatures experienced in the 

adjacent dwelling, either pre- or post-retrofit. Consequently, it was not possible to calculate an 

indicative in situ U-value for the party wall during the test period.

Centre pane heat flux measurements were also undertaken for each of the kitchen door, 

lounge and bedroom windows.  However, thermography revealed that the ceiling had two 

distinct heat flow patterns, resulting from missing insulation around its perimeter.  Thus, heat 

flux was recorded at representative locations on the insulated and uninsulated ceiling in the 

bedroom and lounge.   

Ground floor heat flux measurements were also undertaken for indicative purposes, and again, 

thermography was used to select locations on the ground floor where heat flow was not being 

influenced by any unusual airflow or unusual areas of thermal bridging. In total, nine HFPs 

were placed on the ground floor as per Figure 3; four were positioned close to the geometric 

centre of the lounge and bedroom, two above the joist (HFP2 & HFP7) and two in-between 

the joists (HFP1 & HFP6). The two sensors located in the kitchen were installed between the 

joists, one placed on the existing floor covering (HFP8) and the other onto the exposed 

floorboards (HFP9). Three sensors in the lounge (HFP3, HFP4 & HFP5) were positioned 250 

mm, 750 mm and 1250 mm from the external wall in line with the airbrick on the East elevation, 

to ascertain whether proximity to the airbrick influenced the measurements. Sleeper walls in 
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the ground floor void separated the measurement areas and each cluster of HFPs (HFP3, 

HFP4 & HFP5), were all located in the same void section. However, the sleeper walls were of 

an open honeycomb construction, as shown in Figure 2, so airflow between the void sections 

was not restricted and was not expected to substantially influence the measured heat flux 

density.  

Figure 3, Ground floor plan illustrating the location of the floor HFPs

HFPs were affixed to the ground floor, windows, external door and kitchen external walls using 

adhesive tape.  To minimise the risk of damage to the wall and ceiling surfaces, the remaining 

HFPs were attached using a telescopic prop fitted with a spring loaded HFP holder, to ensure 

that the HFPs were in constant contact with the surface behind. For all HFPs, excluding those 

installed on the ground floor, a layer of thermal contact paste (Dow Corning 340 Heat Sink 

Compound) and cling film was installed between the HFP and the contact surface to minimise 

damage to the surfaces.

Electric coheating test 

The electric coheating tests were undertaken in accordance with the Leeds Beckett Whole 

House Heat Loss Test Method (Johnston, et al., 2013). It has been estimated that the 

uncertainty associated with the coheating test method is between ± 8-10% (Jack, et al., 2018); 

an error of 8% can be used in this research since the tests were undertaken under similar 
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environmental and experimental conditions.

During the coheating tests, Eltek GC10 sensors (accuracy of ± 0.4°C) monitored internal air 

temperature and proportional, integral, derivative (PID) temperature controllers ensured that 

the electric resistance heaters maintained the internal temperature at ~22°C. Air circulation 

fans ensured an even temperature distribution throughout the dwelling, thus minimising any 

thermal stratification. Electrical power input was measured using Elster A100C kWh meters 

(accuracy of ± 1%). A Vaisala WXT520 weather station installed on the gable wall collected 

external air temperature (accuracy of ± 0.3°C) and wind speed data (accuracy of ± 3% at 

10ms-1). Solar insolation was also measured using a south facing vertically orientated Kipp 

and Zonen CMP 3 pyranometer (typical accuracy of ± 5%). Energy introduced via solar gains 

were incorporated into the electric coheating analysis using linear regression, as described in 

the coheating test protocol (Johnston, et al., 2013). Measurements were logged at ten-minute 

intervals using an Eltek Squirrel RX250AL data logger.  

Modelling thermal performance

Stroma’s RSAP+ software was used to generate before and after EPCs for the case study 

dwelling and is an approved tool to deliver the Government’s Reduced Standard Assessment 

Procedure (RdSAP) energy calculations.  Two scenarios investigate how variations in the 

modelling inputs affect the model predictions. Scenario 1 applied default RdSAP assumptions 
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to fabric U-values and thermal bridging. Scenario 2 was as Scenario 1, but with fabric U-values 

estimated by the BRE U-value calculator3 and thermal bridging values taken from Table K1 of 

the SAP manual (BRE, 2012).  The HTC for both scenarios was then compared to the HTC 

measured in situ during the electric coheating test.

RESULTS AND DISCUSSION 

Airtightness and leakage identification

For the pre-retrofit test, an Energy Conservatory Duct Blaster and a DG700 pressure / flow 

gauge were used to measure the airtightness of the case study dwelling. However, due to the 

poor air tightness of the dwelling it was only possible to achieve a maximum pressure 

difference of 40 Pa using this equipment.  Given this, an alternative blower door, an Energy 

Conservatory Model 3 Blower Door with a DG700 pressure / flow gauge, was used for the 

post-retrofit test. However, both are calculated to a 50Pa pressure differential the only 

difference being the size of the fan and the flow rates that can be achieved with the fan. The 

pressure and flow gauge and door fabric are identical and the same number of pressure and 

flow measurements were undertaken during both tests, under both pressurisation and 

3 http://projects.bre.co.uk/uvalues/
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depressurisation.  The only difference between the tests is the range of pressures under which 

the tests were undertaken. By only undertaking the pre-retrofit pressurisation tests with a 

maximum pressure differential of 40Pa, as opposed to greater than 50Pa, this should have 

minimal impact on the test results and any potential difference would be less than the level of 

uncertainty associated with the test method.  The reason for undertaking the pre retrofits at 

lower pressure was because at higher pressures the increased inductive load required for the 

fan was enough to trip the circuit breaker on the domestic consumer unit. 

The results of the air pressurisation tests are summarised in Table 1 and indicate that in the 

pre-retrofit dwelling, uncontrolled air leakage was twice that of the average UK dwelling, 

obtaining a mean air change rate of 27.1 h-1 @ 50Pa. This is also twice the average for 

dwellings in England of the same age as the case study dwelling, at around 13 h-1 @ 50Pa 

(Stephen R K, 1998, 2000). The natural average annual infiltration rate was approximated to 

be 1.15 h-1 pre- and 0.70 h-1 post-retrofit (using Sherman’s ratio and based upon two sides of 

the dwelling being classed as sheltered).

Table 1, Pressurisation test results

Thermal imaging surveys were conducted prior to the pressurisation tests under natural 

conditions, and under a period of depressurisation.  It was therefore possible to distinguish 

infiltration under an induced negative pressure differential from issues caused by other 
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anomalies, such as thermal bridging, transient effects or other surface effects.  Pre-retrofit air 

leakage identification, using thermography, revealed substantial air leakage around the floor 

perimeter, through floorboard joints, around trickle vents and at service penetrations through 

the external wall. A number of these areas of air leakage are illustrated in the thermographs 

contained within Figures 4, 5 and 6 respectively. 

Figure 4, Infiltration around service penetrations through the ground floor

Figure 5, Infiltration through the ground floor

Figure 6, Exfiltration through unsealed electricity meter open to interior of dwelling

Post-retrofit air leakage reduced by just over 10 h-1 @ 50 Pa, from 27.1 h-1 @ 50 Pa to 16.6 

h-1 @ 50 Pa, representing a reduction of almost 40%. The order of magnitude of the savings 

observed are well in excess of the measurement uncertainty associated with undertaking 

pressurisation tests, or any additional uncertainty associated with using different 

measurement equipment between the tests and measuring the pre-retrofit airtightness at a 

maximum differential pressure of 40 Pa.  

Despite observing reduction in infiltration through the ground floor (see Figure 7), poor air 

tightness was still observed around trickle vents and also at external wall penetrations.  It is 

not possible to identify how much of the observed reduction in infiltration could be attributed 

to the ground floor insulation compared to the ancillary sealing around service penetrations, 

since both were conducted in one staged retrofit, as in accordance with the product 
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specification. However, only a marginal change in the airflow exponent was observed pre- and 

post-retrofit, indicating that the nature of the air leakage has not changed substantially 

between the tests. 

Figure 7, Infiltration through hallway floor pre-retrofit (top) and post-retrofit (bottom)

It is important to note that the floor covering had already been removed for both the pre- and 

post-retrofit tests. Consequently, the air leakage reductions recorded are likely to be greater 

than that achieved in dwellings with existing floor coverings. It is also not possible to 

extrapolate these airtightness findings to the broader housing stock, which generally has lower 

levels of air infiltration (Stephen R K, 1998, 2000).  Work undertaken by Stephen (1998) 

revealed that the proportion of whole dwelling air leakage attributable to suspended timber 

ground floors and additional sealing around ground floor service penetrations with no floor 

covering could be significant; ranging from 3.5% to 25.4%, with a mean of 11.5%.  

The results indicate that in dwellings with poor airtightness, additional heat loss savings may 

be achieved by retrofitting suspended timber ground floor insulation, particularly if it is 

combined with ancillary sealing around ground floor service penetrations.

Heat flux measurements pre- and post-retrofit

The range of in situ U-values observed for all the other building elements are shown in Table 
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2. Values with an “n/a” indicate that the analysed data does not comply with the average 

method contained within ISO 9869-1:2014.  These measurements confirm there was no 

substantial change (all differences are within margin the experimental error) in any of the 

building elements. In addition, no significant change was observed in the heat flux measured 

through the party walls pre- and post-retrofit. This is especially important, as there was no 

control over the conditions in the neighbouring property. These findings indicate that any 

changes measured in the HTC pre- and post-retrofit can be attributed to the application of the 

suspended timber ground floor insulation.  

Table 2, Building Elemental point U-value measurements pre and post-retrofit

Also shown in Table 2 are the assumed U-values of the building fabric according to RdSAP 

and the BRE U-value calculator.  While the external wall, party wall, windows and door 

appeared to be similar, the predicted U-values for the suspended timber ground floor and 

ceiling varied. Additionally, the predicted U-values for all the elements differed from the 

measured in situ U-values.  This prediction modelling gap (Marshall, et al., 2017) has 

implications for suspended timber ground floor retrofits and is discussed later.

Suspended timber ground floor in situ U-values were derived from heat flux measurements 

(HFPs 1-9) to identify the change following the retrofit. It also enabled a comparison to be 

made between the U-values specified by the insulation manufacturer, those contained within 
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RdSAP and the measured in situ U-values. A summary of the average in situ U-value 

measurements is provided within Table 3.

Table 3, Summary of the average calculated in situ U-value measurements

A range of performance was observed in the first HFP array (1 to 9) across the floor. On 

inspection of the HFPs, there was some uncertainty as to the extent to which HFP3 maintained 

contact with the suspended timber ground floor surface throughout the tests.  This HFP was 

located near to an airbrick and close to the joist and external wall intersection. This location 

not only made the application of the suspended timber ground floor insulation more difficult 

but could have resulted in the thickness of the suspended timber ground floor insulation being 

compromised. However, the exact reason for this result was not possible to determine using 

the non-destructive testing methods available to the research team during the test periods. 

With respect to HFP9, a separate access tunnel was required for services below HFP9, 

meaning that the thickness of the insulation applied may have also been reduced in this area.  

The implications of this are that if insulation cannot be applied homogenously to the 

suspended timber ground floor, then there will be variations in the performance of the 

insulation. Consequently, the results obtained for HFP3 and HFP9 post-retrofit have been 

removed from the analysis, as they have been regarded as outliers.

Thus, the in situ U-values ranging from between 0.95 ± 0.13 to 1.26 ± 0.18 W/m²K, pre- retrofit, 
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and 0.11 ± 0.02 to 0.32 ± 0.04 W/m²K post-retrofit, in line with the 0.20 W/m²K target.  The 

improvement in U-value ranged from 0.71 ± 0.19 W/m²K to 1.13 ± 0.19 W/m²K, equating to a 

percentage improvement of 69% to 91%. The average improvement was 0.89 W/m²K (80%). 

In all instances the in situ U-values measured above the joists were better than that measured 

between joists prior to the retrofit, clearly the joist had an insulating effect. Post-retrofit the 

opposite was observed because less insulation could be applied directly below the joist (only 

30 mm compared to 130 mm).  However, the extent to which the HFPs located directly above 

the joists have greater heat flow in comparison to their neighbouring HFPs between the joists 

was not consistent, indicating that there may be some variation in the applied insulation 

thickness. 

Other variability was observed in the pre-retrofit in situ U-values. An increase in in situ U-value 

was observed the greater the distance from the airbrick located on the east elevation (HFP3, 

4 and 5). This result appears to be counter intuitive. Conversely, post-retrofit, the pattern was 

reversed.  Additionally, there is some uncertainty over the contact maintained by HFP3 

throughout the test, although this would not explain the result obtained pre-retrofit at HFP 

location HFP4. 

Electric coheating test results

An analysis of the external environmental data that was monitored during the testing period 
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was undertaken pre- and post-retrofit (see Table 4). This analysis confirmed that there was 

only a marginal difference in the test conditions experienced pre- and post-retrofit. This 

indicates that any differences in building fabric performance measured are likely to be 

attributable to the ground floor insulation retrofit, rather than differences in environmental 

conditions between the two test phases.

Table 4 Test conditions experienced during the pre- and post-retrofit

The solar corrected HTC obtained from the electric coheating tests is illustrated in Table 5 and 

Figure 8 for which a maximum total uncertainty in the measurement of ± 8% has been 

assumed (Jack, et al., 2018).

Table 5, Whole house heat losses

The addition of floor insulation has resulted in the aggregate HTC of the case study dwelling 

reducing from 178 ± 14 W/K pre-retrofit, to 135 ± 11 W/K post-retrofit.  A separate assessment 

of the standard errors associated with the multiple linear regression analysis only were found 

to be ± 5 W/K (adjusted r2 = 0.95) pre- and ± 6 W/K (adjusted r2 = 0.87).   The measured whole 

dwelling HTC can be further disaggregated into an approximated fabric and background 

ventilation heat loss by applying Sherman’s ratio; the N50/20 assumption (Sherman, 1987), to 

the pre- and post-retrofit air leakage rates. This results in an approximated reduction in the 

HTC attributed to background ventilation of 18 W/K.
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The overall measured reduction in HTC of 43 ± 18 W/K represents a 24% improvement in the 

HTC attributable to the ground floor retrofit. This is substantially higher than the 13 W/K (11%) 

reduction in HTC previously found by Farmer et al. (2017). In addition, the improvement in 

airtightness observed by Farmer et al. (2017) was only 8%, in comparison to 40% for this case 

study. Additionally, their retrofit took place on a two-storey end-terraced dwelling in which the 

ground floor represented a much smaller proportion of the overall heat loss area. This 

indicates the benefit of ground floor retrofits may be related to the dwelling form and condition.  

This case study dwelling was only half as airtight as the average UK house, had floor coverings 

removed and had a large ground floor area to heat loss area ratio, thus savings are likely to 

be lower for other housing types. It is also worth noting that the predicted HTC reduction from 

the EPC SAP model in Figure 8 was 23%, which is very close to the total 24% improvement 

measured in situ. However, given that the model assumes no ventilation improvements, this 

result is somewhat unexpected and is discussed further below. 

Figure 8, Whole house HTC for dwelling pre- and post- retrofit 

Deriving an improvement in U-Value from an aggregate HTC 

It is possible to approximate the effective improvement in the ground floor U-value achieved 

by the application of the ground floor insulation by dividing the approximated reduction in fabric 
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heat loss, (see Table 5), by the ground floor area of 43.86m². This results in an effective 

reduction in the ground floor U-value of 0.55 W/m²K.  This can be considered a more robust 

estimate of the actual reduction in heat loss since it accounts for the complexities of heat 

transfer in a dynamic system such as a house, specifically thermal bridging. It is important to 

note that this is a smaller reduction in U-value than was estimated by the spot heat flux values, 

which indicated an average improvement of 0.89 W/m2K. If HFP3 and HFP9 are included in 

the analysis, then the average improvement in U-value only reduces to 0.77 W/m2K.  However, 

these measurements were used indicatively to illustrate the extent of change in conductive 

heat loss.  It is not clear if measuring heat flux density in more locations may have substantially 

changed this result or achieved parity with the U-value derived via the aggregated approach.  

This could form the basis of future research. 

Modelled and measured heat loss

RdSAP is the government’s modelling software on which EPCs are based (BRE, 2012).  This 

provides a simplified and standardised estimate of energy used in homes, which is useful in 

informing and tracking policy interventions at a national scale, however, it also has some 

challenging limitations.  For example, unlike in the full Standard Assessment Procedure (SAP) 

used for new builds, changes to the default ventilation rates cannot be made in RdSAP, this 

is a problem as it also assumes that fabric retrofits only affect conductive heat loss, meaning 
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any convective heat loss reductions are ignored.  Additionally, as illustrated in Table 2, the 

assumed U-values contained within RdSAP often do not reflect those observed on site 

(Marshall, et al., 2017).  Thus, the benefits of ground floor insulation modelled in RdSAP, may 

differ from the actual benefits received by the household.

Table 6 illustrates the modelled HTC for the building post-retrofit under two scenarios 

(Scenario 1 and 2), as well as the measured HTC obtained from the electric coheating test.  

Scenario 1 represents the outputs from the initial RdSAP model using default values 

(Appendix S), including a standard y-value of 0.15 W/m²K to represent thermal bridging.  

Scenario 2 uses the U-values predicted by the BRE U-value calculator, to provide a more 

accurate model, as it is recognised that the U-value defaults incorporated within RdSAP are 

often not reflective of the performance of the fabric in the field (Marshall, et al., 2017).  Both of 

these figures are compared with the HTCs measured by the electric coheating test in Table 6.  

Table 6, RdSAP input data and calculated heat loss pre and post-retrofit

Scenario 1 predicts a similar percentage reduction in whole house HTC to that measured 

using the electric coheating test. However, since it does not account for changes in 

background ventilation heat loss, Scenario 1 overestimates the fabric heat loss reduction 

because the pre-retrofit wall U-value was unrealistic.  Scenario 2 makes a better prediction of 

the fabric heat losses, since it is based on more realistic fabric U-value assumptions, although 
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again it does not account for reductions in background ventilation heat loss.  Therefore, 

Scenario 2 under predicts the benefit of the retrofit.  These findings highlight the difficulties 

associated with using steady-state thermal models to predict the impact that thermal upgrades 

may have on a dwelling.  Specifically, it indicated that using default assumptions for the fabric 

and ventilation heat loss may result in unrepresentative estimates of the benefits of retrofits.  

This is relevant for current policy, since EPCs are the basis of financial payments to energy 

companies.  Greater flexibility around inputting more realistic assumed fabric U-values, along 

with being able to input measured before and after infiltration rates in RdSAP, could improve 

the accuracy of the predicted savings.  

EPC are a recognised certification for householders and they are a standardised assessment 

procedure. They provide useful output metrics for householders, including fuel bill estimates 

and an aggregate dwelling energy efficiency rating from A to G.  The outputs associated with 

the two EPCs produced in this project (Scenario 1 and Scenario 2), are illustrated in Table 7.  

Table 7, Predicted savings of floor retrofit calculated by EPC (RdSAP)

In both Scenarios the suspended timber floor retrofit failed to improve the bungalow’s EPC 

rating of D.  In the context of Minimum Energy Efficiency Standards (MEES) this is worth 

highlighting because improving the EPC band is the main requirement.  This indicates single 

measure retrofits like floor insulation may not be able to achieve future policy goals (BEIS, 
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2018).  

The improvements made by retrofits can be described via a range of metrics; reductions in 

HTC (W/K), reductions in space heating energy use (kWh), annual fuel bill savings, GHG 

reductions, SAP point reductions or EPC bands.  Table 7, illustrates metrics provided by the 

EPC, Savings to fuel bills may be most pertinent metric for householders and these were 

estimated by RdSAP to range from £171 per year to £309 per year.  Using this information, 

along with the BEIS costs estimates for suspended timber ground floor insulation of between 

£87 to £208 per m2 the retrofit for this case study dwelling would have a payback period of 

somewhere between 11 and 48 years. 

 The findings also highlight that the Government’s RdSAP tool, which generates EPCs to 

evaluate the success of retrofits, is incapable of capturing convective heat loss reductions 

resulting from fabric insulation retrofits.  It also indicates that the default U-values used in 

RdSAP may not reflect measured in situ U-values, and so EPCs are unlikely to realistically 

predict the benefits of retrofits. The implications of this are that thousands of retrofits may have 

received unrepresentative EPC scores.  It is important that homes have correct EPC scores 

since this can determine their access to government funding (BEIS, 2018; HMSO, 2018), 

influence house prices (BEIS, 2013; Fuerst, McAllister, Nanda, & Wyatt, 2016), and are the 

means by which Government evaluates policy success.
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CONCLUSION

The findings indicate that suspended timber ground floor insulation retrofits could reduce 

domestic space heating energy demand.  For this case study bungalow, which had poor levels 

of airtightness and a large floor area to heat loss area ratio, the HTC decreased by 24% via 

reductions in both fabric and ventilation heat losses.  This suggests that suspended timber 

ground floor retrofits have the potential to contribute to national carbon reduction policy, and 

by reducing draughts, could also result in improvements to the thermal comfort experienced 

by the occupants.  However, further research is required to investigate the practicalities, costs 

and potential CO2 emission reductions that could be achieved by increasing the adopting 

suspended timber ground floor retrofits, as well as understanding how these retrofits are likely 

to affect thermal comfort and moisture risks in dwellings. 

A comparison of the two separate measurement approaches to evaluate the suspended timber 

ground floor retrofit suggests that the adoption of an aggregate measurement method, in this 

case an electric coheating test, may produce a more reliable evaluation of the thermal benefits 

of a fabric retrofit, and should be adopted where practical.  Aggregate methods are not only 

capable of accounting for the heterogeneity of heat flow that occurs across the ground floor 

surface, but they also account for thermal bridging and any changes in infiltration heat loss. 

Consequently, they can overcome the main limitations associated with adopting a 
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disaggregated measurement approach. This finding challenges the current practice of using 

disaggregated measurement approaches, such as point heat flux density measurements and 

air pressurisation tests, to assess the impacts of fabric insulation retrofits.  Disaggregated 

methods, such as spot heat flux density measurements and air pressurisation tests, are 

however, currently, more widely adopted and are also used to inform government policy (BRE, 

2016).  This may be, in part, because aggregate methods, such as the electric coheating test, 

are time consuming and are often impractical to undertake commercially. They are only 

reliable when undertaken during the space heating season and require the property to be 

unoccupied throughout the test period, which is not always practical. Consequently, 

developing alternative aggregate measurement approaches that are capable of overcoming a 

number of these limitations should be the focus of future research. 
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Figure 1, Retrofit measures installed via Government Schemes, excluding low energy lighting and double 
glazing 
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Figure 3, Ground floor plan illustrating the location of the floor HFPs 
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Figure 4, Infiltration around service penetrations through the ground floor 
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Figure 5, Infiltration through the ground floor 
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Figure 6, Exfiltration through unsealed electricity meter open to interior of dwelling 
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Figure 7, Infiltration through hallway floor pre retrofit (top) and post retrofit (bottom) 
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Figure 8 Whole house HTC for dwelling pre- and post- retrofit 
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Table 1, Pressurisation test results 
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Table 2, Building Elemental point U-value measurements pre and post retrofit 

243x137mm (120 x 120 DPI) 

Page 46 of 51

URL: https://mc.manuscriptcentral.com/rbri  Email: RBRI-peerreview@journals.tandf.co.uk

Paper submitted to Building Research & Information

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Table 3, Summary of the average calculated in situ U-value measurements 
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Table 4 Test conditions experienced during the pre- and post-retrofit 
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Table 5, Whole house heat losses 
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Table 6, rdSAP input data and calculated heat loss pre and post retrofit 
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Table 7, Predicted savings of floor retrofit calculated by EPC via rdSAP 

243x137mm (120 x 120 DPI) 

Page 51 of 51

URL: https://mc.manuscriptcentral.com/rbri  Email: RBRI-peerreview@journals.tandf.co.uk

Paper submitted to Building Research & Information

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


