
Citation:
Leduc, C and Tee, J and Lacome, M and Weakley, J and Cheradame, J and Ramirez, C and Jones,
B (2020) Convergent validity, reliability and sensitivity of a running test to monitor neuromuscular
fatigue. International Journal of Sports Physiology and Performance. ISSN 1555-0273 DOI:
https://doi.org/10.1123/ijspp.2019-0319

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/6346/

Document Version:
Article (Accepted Version)

Accepted author manuscript version reprinted, by permission, from International Journal of Sports
Physiology and Performance, 2020, https://doi.org/10.1123/ijspp.2019-0319. © Human Kinetics, Inc.

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/6346/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk


1 

Convergent validity, reliability and sensitivity of a running test to monitor neuromuscular 

fatigue. 



2 

Title: Convergent validity, reliability and sensitivity of a running test to monitor 

neuromuscular fatigue. 

Submission type: Original Research 

Authors: Leduc, C.1, Tee, J.1,9, Lacome, M.6, Weakley, J.1,8, Cheradame, J.2 , Ramirez, 

C.1,3Jones, B.1,3,4,5,7,10

Institutions and Affiliations: 

1 Carnegie Applied Rugby Research (CARR) centre, Institute for Sport, Physical Activity and 

Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom 
2 Research Department, French Rugby Federation (FFR), Marcoussis, France 
3 Yorkshire Carnegie Rugby Union Football Club, Leeds, UK 
4 Leeds Rhinos Rugby League Club, Leeds, UK 
5 England Performance Unit, The Rugby Football League, Leeds, UK 
6 Performance Department, Paris Saint-Germain FC, Saint-Germain-en-Laye, France 
7 School of Science and Technology, University of New England, Armidale, NSW, Australia. 
8 School of behavioral and health sciences, Australian Catholic University,Brisbane, Australia 
9 Department of Sport Studies, Faculty of Applied Sciences, Durban University of 

Technology, South Africa. 
10 Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty 

of Health Sciences, the University of Cape Town and the Sports Science Institute of South 

Africa, Cape Town, South Africa 

Contact details:  

Cédric Leduc 

Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett 

University  

Churchwood Avenue, Leeds LS6 3QS,  

UNITED KINGDOM 

Email: c.leduc@leedsbeckett.ac.uk 

Mobile: +33682636505 

Running head: Invisible monitoring in team sport 

Abstract count: 250 

Text only word account: 3500 

Numbers of tables: 1 

Numbers of figures: 3 

Conflicts of interest: The authors do not have any conflict of interest. 

mailto:c.leduc@leedsbeckett.ac.uk


3 

Abstract 

Purpose: The aim of this research was to investigate the convergent validity, reliability and 

sensitivity over a week of training of a standardized running test to measure neuromuscular 

fatigue. Methods: Twenty male rugby union players were recruited for the study, which took 

place during preseason. The standardized running test consisted of four 60 m runs paced at ≈5 

m•s-1 with 33 seconds of recovery between trials. Data from micromechanical electrical systems 

(MEMS) were used to calculate a running load index (RLI) which was a ratio between the 

mechanical load and the speed performed during runs. RLI was calculated by using either the 

entire duration of the run or a constant velocity period. For each type of calculation, either an 

individual directional or the sum of the three components of the accelerometer were used. A 

measure of leg stiffness was used to assess the convergent validity of the RLI. Results: Unclear 

to large relationships between leg stiffness and RLI were found (r ranged from -0.20 to 0.62). 

Regarding the reliability, small to moderate (0.47 to 0.86) standardized typical errors were 

found. The sensitivity analysis showed the leg stiffness presented a very likely trivial change 

over the course of one week of training, while RLI showed very likely small to a most likely 

large change. Conclusion: This study showed that RLI is a practical method to measure 

neuromuscular fatigue. Additionally, such a methodology aligns with the constraint of elite 

team sport set up due to its ease of implementation in practice. 

Key words: Fitness monitoring, GPS, leg stiffness, running mechanisms. 
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Introduction 

Team sport practitioners are required to assess player readiness for training and matches using 

valid and reliable tests1. The constraints of a high level sport environment (e.g. access to 

players, competition focus, time pressures) make fatigue monitoring challenging2. 

Neuromuscular function is a commonly measured fatigue indicator in team sports3 and is 

usually estimated via variations of jumping actions (e.g. countermovement jump, drop jump, 

reactive jumps)4. Despite the regular use of jump testing within the literature, several limitations 

of this methods exist from a practical and scientific perspective2,5. In practice, implementing a 

monitoring system for a full squad (e.g. 50 players in rugby union) can be time consuming 

especially when training time during the season is limited. For example, employing a jumping 

task may be challenging due to coach and player reluctance, as well as perceived risk of 

injury2,6. Jump tests may also not be specific enough to capture the actual level of fatigue 

induced by training sessions or games due to the horizontal nature of displacements in team 

sport7. Methods of neuromuscular fatigue monitoring need to evolve to allow data to be 

collected rapidly and without interfering with practice.  

Micromechanical electrical systems (MEMS) provide sport science practitioners with large 

amounts of data, which are collected during training and match play. Using methods of data 

processing (e.g. R, Python), MEMS may allow a more practical method of fatigue monitoring 

within team sports8. One relevant variable for fatigue monitoring that can be calculated from 

data obtained via commercially available MEMS units is the sum of instantaneous rate of 

change from the 3 axis planes (e.g. PlayerLoadTM, Force Load). Such metrics are influenced by 

the presence of neuromuscular fatigue during both small sided games and game play, suggesting 

a relationship with an athlete’s state of fatigue 9,10.  

Whilst the use of accelerometer data during game situations shows promise as a fatigue 

measure, it is not without its challenges (e.g. reluctance from coaches to use the same 

standardized drills on a week to week basis, effect of contextual variables such as team 

composition, rules, number of players necessary to perform the drills of interest11). For these 

reasons, in some contexts a more practical approach may be to examine the relationship 

between work load and immediate physiological responses during a standardized running task 

(e.g. box to box runs)7,12. This approach has the advantage of being able to be conducted during 

a warm up (even on a low intensity training day). For example, Buchheit and colleagues7 

demonstrated that the ratio between “velocity load” and “force load”, designated Running Load 
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Index (RLI), performed during a standardized running test presented small to moderate typical 

errors. Moreover they found a session-dependent sensitivity of RLI while changes in 

“traditional” test results (countermovement jump [CMJ] and groin squeeze) were trivial to small 

after different small sided games suggesting a better sensitivity of this “running load” variable7. 

However, some aspects of such a test remain questionable. For instance, the agreement of RLI 

with established neuromuscular fatigue measures like leg stiffness test have yet to be 

established11; the inclusion of all the components of the accelerometer remains questionable 

due to the potential major implication of the vertical component9 and the inclusion of the full 

run (acceleration and deceleration phase) remain debatable due to the potential implication of 

constant velocity on leg stiffness13. 

The aim of this study was to investigate the convergent validity, reliability and sensitivity of 

RLI as a method to monitor neuromuscular fatigue during a standardized running test. 

Methods 

Subjects 

Twenty male rugby union players taking part in the highest university rugby competition in 

England were included. Three players were excluded because they missed one of the testing 

sessions. Finally, 17 male rugby union players (age: 21.0 ± 1.3 years; height: 185.2 ± 6.1 cm; 

body mass; 97.3 ± 10.3 kg). Participants provided informed consent prior to starting the study. 

Ethics approval was granted by the Leeds Beckett University ethics board and the 

recommendations of the Declaration of Helsinki were respected. 

Design 

The study took place over four non-consecutive sessions during the first two weeks of pre-

season of a University rugby union team (Figure 1). Each testing session consisted of 5 minutes 

standardized warm up including mobility, squats, lunges and hopping. Following this, leg 

stiffness was measured via a submaximal hopping test performed on a force platform. After 

≈15-minute break (which corresponded to the time to set up all the MEMS units and go to the 

pitch), participants performed a standardized warm up which consisted of 5 minutes running 

(≈9 kmh-1) followed by 3 minutes of recovery. Participants then performed the standardized 

running test. For each session, this procedure was conducted at the same time of the day, before 

the first training session in order to control for any chronobiological effects on performance. 
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During the first session (session 1), a familiarization with the testing measures (described 

below) was conducted. The familiarization session included a full explanation of the procedure. 

Then, each test was performed twice with feedback regarding the hopping technique and the 

pace of the standardized running test if it was not satisfactory. The convergent validity of the 

standardized running test was assessed during the session 2. The week to week reliability 

procedure was undertaken on the session 2 and 3. Each session was preceded by two days of 

no lower body training; as such a physiological and non-fatigued state was expected.  The 

sensitivity analysis aimed to assess the ability of the different RLI to detect meaningful change 

over a typical week of training. This analysis was conducted during the second week of our 

study. The standardized running test and the hopping test were conducted at the beginning 

(session 3) and at the end of the training week (session 4). Data gathered during the session 3 

were used as baseline for comparison.  

***Insert Figure 1 about here*** 

Methodology 

Double leg hopping test: Participants completed one submaximal hopping test which consisted 

of sub-maximal rebounding at 2.5 Hz to provide a measure of leg stiffness on a force platform 

(NMP Technologie Ltd., ForceDecks Model FD4000a, London, UK). This method has been 

used in a similar rugby union population14. Participants completed a total of 20 consecutive 

hops and hopping frequency was controlled with a digital metronome14. Data were processed 

on R Studio Statistical software (Version 1.1.442, R Foundation for Statistical Computing) as 

explained by Lloyd and colleagues 15. Leg stiffness was calculated through Dalleau’s equation 

16 where M is the mass (kg), Ft and Ct are flight time (ms) and contact time (ms) respectively. 

𝐿𝑒𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 =
𝑀 × 𝜋(𝐹𝑡 + 𝐶𝑡)

𝐶𝑡²((𝐹𝑡 +
𝐶𝑡
𝜋 ) − (

𝐶𝑡
4 ))

Standardized running test: Participants performed four paced, high speed runs. Each run was 

60 m long and players were directed to complete the run in 12 seconds (mean velocity ≈ 18 

km·h-1) in a similar manner to previous research 17. Players began from a static start with a 3 

second count down to ascertain a static position. Cones were displayed every 20 m and whistle 

signals were given at 4 and 8 seconds to assist with pacing. Each standardized run was 

interspersed by ≈30 seconds rest according to precedent work in soccer 7. During the 
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standardized run, participants wore the same GPS unit (Optimeye S5, Catapult Innovations, 

Melbourne, Australia) between scapulae in a specific tightly fitting vest. Each unit contains a 

GPS system and a tri-axial accelerometers sampling at 10 and 100Hz respectively.  

RLI calculation: The raw data from the accelerometer sampled at 100 Hz were first downloaded 

from the Openfield software (Openfield software, Catapult Innovations, Melbourne, Australia). 

Each file included the four runs. All the files were then uploaded in R Studio Statistical software 

(Version 1.1.442, R Foundation for Statistical Computing). Initially the entire 12 second of the 

run minus the recovery period was included to calculate RLI noted RLI0-12. A second layer of 

analysis was applied to identify a specific period of run that took place at constant velocity in 

order to avoid the effect of the acceleration and deceleration phases on the calculation noted 

RLIcvel. Thus, we could double-check that the period of run used for analysis were at a constant 

velocity. The acceleration threshold was set at |0.25m-2| and determined arbitrarily by the 

research team. A specific algorithm that detects the beginning and the end of each run was 

written. For each determined interval, the mechanical load was calculated by the sum of 

instantaneous rate of changes from 1)  all of the 3 components of the accelerometer noted ‘full’ ; 

2) only with the vertical component noted ‘vert’; 3) with the anterio-posterior component noted

‘fwd’; 4) with the medio-lateral component noted ‘side’. Each calculated mechanical load was then 

divided by the average velocity (m·s-1) performed over the period of the running analysis. Based 

on these 2 different methods, 8 different RLI were used in this study: 1) RLI0-12-full; 2) RLI0-12-

vert; 3) RLI0-12-fwd; 4) RLI0-12-side; 5) RLIcvel-full; 6) RLIcvel-vert; 7) RLIcvel-fwd; 8) RLIcvel-side. 

***Insert Table 1 about here*** 

Training load: During the second week, total time ‘on feet’ (hour:minute [hh:mn]), total 

distance covered (TD), high-speed distance (HSD) both expressed in meter (m) and 

PlayerLoadTM (Arbitrary Units [AU]) were used to quantify training load. HSD was determined 

by the distance covered above Maximal aerobic speed (MAS). MAS was assessed during the 

first week of preseason with the 30-15 Intermittent Fitness Test 18. The MAS score ranged from 

16 to 20.5 km·h-1 for this population. The training schedules as well as the training load are 

reported in Figure 1. 

Statistical Analyses 
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All data were first log-transformed to reduce bias arising from non-uniformity error. Pearson 

correlations and 90% confidence intervals (CI) were used to assess the convergent validity of 

the RLI with the double hopping test. Correlations were interpreted as follow: if the 90%CI 

over-lapped positive (0.1) and negative (-0.1) trivial values, the magnitude was deemed unclear. 

Clear correlations were interpreted as follows: trivial (0.0-0.1), small (>0.1-0.3), moderate 

(>0.3-0.5), large (>0.5-0.7), very large (>0.7-0.9) and nearly perfect (>0.9-0.1) 19. The 

reliability of the standardized running test was assessed while calculating both the typical error 

of measurement expressed as a coefficient of variation (CV, 90% CI), standardized typical error 

and the smallest worthwhile change (SWC) with a specific spreadsheet 20. A magnitude-based 

inferential (MBI) approach to statistics was used to assess differences between the RLI and leg 

stiffness changes gathered at the beginning and at the end of the week 2 19. Effect sizes (ES) 

and 90% CI were quantified to indicate the practical meaningfulness of the differences 19. 

Threshold values for ES and standardized typical error were >0.2 (small), >0.6 (moderate), >1.2 

(large) and >2 (very large) 21. 

Result 

The relationships between the different RLI and leg stiffness are reported in Figure 2. When 

the full run was included unclear to moderate relationships were found for RLI0-12-full (r= 0.07 

[-0.33 – 0.45]), RLI0-12-vert (r= 0.36 [-0.04 – 0.66]), RLI0-12-fwd (r= -0.20 [-0.57 – 0.18]) and RLI0-

12-side (r= 0.01 [-0.38 – 0.40]). Considering RLIcvel-vert and RLIcvel-full, large relationships were

found (r= 0.62 [0.30 – 0.81]; r= 0.52 [0.16 – 0.76]) respectively. Unclear to moderate 

relationship was found for RLIcvel-fwd (r= 0.16 [-0.25 – 0.51]) and RLIcvel-side (r= 0.39 [0.01 – 

0.68]). 

***Insert Figure 2 about here*** 

The results regarding the reliability are reported in Table 1. 

***Insert Figure 3 about here*** 

The results regarding the sensitivity are displayed in Figure 3. Over the period of training used 

for the sensitivity analysis, players performed two rugby sessions. The total time “on feet” was 

02:51±00:01hh:mn with a TD of 9816±833m and HSD of 1224±287m. The global 

PlayerLoadTM was 949±89AU.  A very likely trivial change between the beginning and the end 
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of the week of training was observed for leg stiffness (ES= 0.01 [-0.15 – 0.16]). Possibly small 

increases were found for RLI0-12-full (ES= 0.27 [-0.09 – 0.64]) and RLI0-12-vert (ES= 0.25 [-0.02 

– 0.51]). A possibly trivial increase was found for RLI0-12-fwd (ES= 0.14 [-0.15 – 0.42]) while

the change observed for RLI0-12-side (ES= -0.08 [-0.47 – 0.31]) was deemed unclear. A most 

likely very large increase was found for RLIcvel-full (ES= 2.03 [1.71 – 2.35]) over the course of 

one week of training. Most likely large increases were found for RLIcvel-vert (ES= 1.74 [1.49 – 

1.99]), RLIcvel-fwd (ES= 1.61 [1.23 – 1.98]) and RLIcvel-side (ES= 1.90 [1.42 – 2.39]) over the 

same period. 

***Insert Table 1 about here*** 

Discussion 

The main findings of this study suggest under the constant velocity condition and when using 

the full or vertical accelerometer components RLI demonstrates 1) a large relationship with leg 

stiffness, 2) small typical errors and 3) a high sensitivity to fatigue during a typical week of 

training. As a consequence, practitioners should consider the present RLI based on constant 

velocity (i.e. RLIcvel-vert) outlined here in order to make the monitoring process and assessment 

of readiness to play more efficient and less intrusive. 

This study is the first study to correlate data computed from MEMS devices gathered during a 

standardized running test and a measure of leg stiffness. When RLI was calculated with the 

whole run as proposed by other studies 7,12, only a moderate (i.e. RLI0-12-vert)  and unclear (i.e. 

RLI0-12-full, RLI0-12-fwd and RLI0-12-fwd) relationships were found with leg stiffness. Based on our 

method that included only the constant velocity period, large relationships were found with leg 

stiffness for both RLIcvel-vert (r= 0.62 [0.30 – 0.81]) and RLIcvel-full (r= 0.52 [0.16 – 0.76]) 

suggesting a better convergent validity of this method to monitor neuromuscular fatigue. The 

lack of relationship when the full run was included is possibly due to the integration of the 

acceleration and deceleration phase in the calculations. Indeed it has been shown that leg 

stiffness may remain constant from 4 to 7 m·s-1 13. As a consequence, the variation in the speed 

could deteriorate the relationship and explain the present results 13. An appealing consideration 

is that if RLI ratio is more accurate during the constant velocity portion of a run, it may not be 



10 

necessary to normalize the accelerometer measures to speed. This aspect of the RLI measure 

requires further investigation. 

Moreover, removing the other components and focusing only on the vertical component of the 

accelerometer (i.e. RLIcvel-vert) increases the relationship with leg stiffness. This may be 

explained by the multicollinearity between RLIcvel-vert and RLIcvel-full suggesting that the vertical 

component of the accelerometer explain the major part of the relationship with leg stiffness. 

The absence of stronger (i.e. RLIcvel-vert) or absence (i.e. RLIcvel-fwd and RLIcvel-side) correlation 

could be explained by the nature of the task involved to perform the validity analysis. Indeed, 

projecting the center of mass forward during running necessitates different muscle activity with 

changes in the electromyography profiles compared to vertical jumps or hops 22. Such different 

patterns of activation may explain the lack of better correlation. As a result, further studies 

could evaluate the concurrent validity of the RLI with a gold standard such as use of an 

instrumented treadmill as criterion.  

The results from this study suggest that typical errors ranged from small to moderate for the 

different RLI tested (Table 1). These results are slightly different than results found by Buchheit 

and colleagues in term of reliability7. Such differences could be explained by the difference of 

period used in our study. Indeed, our study was performed during preseason while Buchheit 

and colleagues conducted their research during several consecutive in season macro cycle7. 

Using the new testing method outlined here (i.e. measurements based on a constant velocity), 

standardized typical errors found were lower than observed when the full run was included in 

the calculation (i.e. RLI0-12vert, RLI0-12-full). Nevertheless, typical errors need to be considered in 

relation with the change in a variable (Signal) and its usual SWC 1. Considering this noise/signal 

ratio in our study, the method based on a constant velocity interval remained better than when 

the full run was included and should be considered. Even if only moderate to large effect can 

be detected, the cost/benefit of the method is promising. The present standardized running test 

is particularly useful as it can be difficult for practitioners to repeat maximal testing (e.g. CMJ) 

across the season2. Therefore, with the present methodology, it is easier to implement a 

monitoring during warm-up and more efficient to complete for a full team. Additionally, it has 

been proposed that accelerometer activity during small side game could be used to measure 

neuromuscular fatigue 10. While this methodology seems appealing it could be difficult to use 

such approach to assess readiness to train after the game due to several contextual challenges11. 

However, the present methodology here outperforms the aforementioned issue related to SSG 
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because such a test is performed during warm up which is led by the strength and conditioning 

coach. 

Over the course of one week of training during preseason with rugby union players, a trivial 

change (ES=0.01 [-0.15 – 0.16]) was found in leg stiffness. Our results are similar than those 

found by Oliver and colleagues14 among a similar population after a week of training. The 

absence of change found in this study could be explained by the lack of specificity of the vertical 

based test used. Indeed hopping test involve only a vertical dimension while a great majority of 

force applications occur horizontally in run-based sports 7. For example, it has been shown that 

CMJ after a training session did not change while sprint performance did 23. Conversely, the 

different RLI changed from a small to a very large magnitude over the same week of training 

suggesting a better sensitivity than leg stiffness 14. Similarly to our study, Buchheit and 

colleagues 7 found only small changes in results of the “vertical based test” (i.e. CMJ), while a 

moderate to large change was observed with similar standardized tests after different football 

session. As such, the increase observed in the ratio could be interpreted as an impairment of 

running economy (more quantity of movement for a similar task). Indeed we observed increased 

RLI(cvel) in all three planes of motion indicating that fatigue from the weeks’ training had altered 

the players running mechanics. Due to the multifactorial nature of neuromuscular fatigue, the 

exact mechanism of changes remains difficult to draw and will require further work. We could 

suggest that changes observed may be related to an impairment of the posterior chain and the 

running mechanics induced by fatigue accumulated during training7. Indeed, it has been shown 

a reduced maximum combined hip flexion and knee extension angle resulted in a decreased 

stride length and increase of stride frequency in presence of fatigue 24. As such this increased 

of stride frequency may result of an increase of the quantity of movement and consequently 

explains the increased of RLI observed. The results concerning the sensitivity are unequivocal. 

Indeed, when the entire run was included, trivial to small differences were observed while the 

method based on acceleration interval displayed large to very large changes. The dissimilarity 

between both methods remained unknown. We can hypothesize that the acceleration method 

decreases the noise of the measure and therefore allow capturing the real fatigue state of the 

athlete explaining the better sensitivity observed.   

Limitations 

Due to players’ requirements, one upper body session was undertaken the day before the first 

session of reliability. Nevertheless, it is unlikely that such upper body session influence results 
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for task involving mainly the lower body 25. Therefore, better result may have been obtained 

during an in-season cycle as a result of a more stable physiological status. Second, we decided 

to use a measure of leg stiffness to compare with RLI that is by nature different (hoping vs. 

running). Nevertheless, it was difficult to take the players out of their training routine in order 

to perform a measure of leg stiffness during a running task in a laboratory setting. Further 

concurrent validity studies seem warranted to ascertain the biomechanics value of such 

approach. It has to be acknowledged that the important change observed may be due to the 

period (i.e. second week of preseason, session the day before involving lower body exercise) 

used to perform this study as well the population involved. Consequently the magnitude of the 

changes observed may be due to important physiological perturbations and their inexperience 

regarding recovery practices 26. As a result, the sensitivity results in the present study have to 

be considered with caution. Further research is required to cross validated this approach in other 

high-performance team sport environments and during an in-season macrocycle. Finally, 

regarding the method in itself, it could be argued that the threshold used in this study was set 

arbitrarily. Future research using bigger datasets may emply more advanced method of analysis 

(e.g. machine learning) in order to ascertain the most appropriate threshold to determine the 

constant velocity period. 

Practical applications 

- The present standardized running test it is a valid as well as reliable method to monitor

player status.

- Performing a standardized running test during warm up is a viable and time efficient

method to monitor neuromuscular fatigue in a high-performance environment.

- Practitioners should consider the RLI at constant velocity (RLIcvel-vert and RLIcvel-full)

period during the run due to its better sensitivity to fatigue compare the entire run and

vertical based test.

Conclusions 

The present study aimed to evaluate the usefulness of the RLI to improve the monitoring 

processes. Elite sport set ups make monitoring fatigue challenging and more practical solutions 

are required. This new variable could be used in practice due to its small to moderate typical 

error, large relationship with leg stiffness, and large sensitivity to fatigue. This research 

confirms the potential of microtechnology to optimize the monitoring of elite athletes in 
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comparison to commonly used fatigue monitoring tests. Further studies are required to 

determine the aetiology of the changes observed in response to fatigue and to what extent these 

changes affect the different components of the running gait. Finally, as the use of accelerometer 

devices to monitor fatigue is a relatively new development, future studies could consider using 

microtechnology to assess other aspects of fatigue testing such as jump tests. 

Acknowledgments 

The authors do not have any conflict of interest. The authors would like to thank all the players 

and staff members for taking part in this study. 

References 

1. Roe G, Darrall-Jones J, Till K, et al. Between-Days Reliability and Sensitivity of

Common Fatigue Measures in Rugby Players. Int J Sports Physiol Perform.

2. Carling C, Lacome M, Mccall A, Simpson B, Buchheit M. Monitoring of Post-match

Fatigue in Professional Soccer : Welcome to the Real World. Sport Med. 2018.

3. Roe G, Till K, Darrall-Jones J, et al. Changes in markers of fatigue following a

competitive match in elite academy rugby union players. South African J Sport Med.

2016;28(1):2.

4. Taylor K-L, Chapman DW, Cronin JB, Newton MJ, Gill N. Fatigue Monitoring in

High Performance Sport: A Survey of Current Trends. PhD Propos. 2012;20(1):12-23.

5. Buchheit M, Simpson BM. Player-Tracking Technology: Half-Full or Half-Empty

Glass? Int J Sport Physiol Perform. 2017;12:S2-35-S2-41.

6. Roe G, Darrall-Jones J, Till K, et al. To Jump or Cycle? Monitoring Neuromuscular

Function in Rugby Union Players. Int J Sports Physiol Perform. 2017;12(5):690-696.

7. Buchheit M, Lacome M, Cholley Y, Simpson BM. Neuromuscular responses to

conditioned soccer sessions assessed via GPS-Embedded accelerometers: Insights into

tactical periodization. Int J Sports Physiol Perform. 2018;13(5):577-583.

8. Delaney JA. The paradox of “invisible” monitoring: The less you do, the more you do!

|. HIITScience.com.

9. Cormack SJ, Mooney MG, Morgan W, McGuigan MR. Influence of neuromuscular



14 

fatigue on accelerometer load in elite Australian football players. Int J Sports Physiol 

Perform. 2013;8(4):373-378. 

10. Rowell AE, Aughey RJ, Clubb J, Cormack SJ. A Standardized Small Sided Game Can

Be Used to Monitor Neuromuscular Fatigue in Professional A-League Football Players.

Front Physiol. 2018;9:1011.

11. Lacome M, Buchheit M, Saint P, Football G. Monitoring Training Player-Tracking

Technology. Aspetar Sport Med J. 2018;(June):54-63.

12. Garrett J, Graham SR, Eston RG, et al. A Novel Method of Assessment for Monitoring

Neuromuscular Fatigue Within Australian Rules Football Players. Int J Sports Physiol

Perform. November 2018:1-25.

13. Brughelli M, Cronin J. A review of research on the mechanical stiffness in running and

jumping: methodology and implications. Scand J Med Sci Sports. 2008;18(4):417-426.

14. Oliver JL, Lloyd RS, Whitney A. Monitoring of in-season neuromuscular and

perceptual fatigue in youth rugby players. Eur J Sport Sci. 2015;15(6):514-522.

15. Lloyd RS, Oliver JL, Hughes MG, Williams CA. Reliability and validity of field-based

measures of leg stiffness and reactive strength index in youths. J Sports Sci.

2009;27(14):1565-1573.

16. Dalleau G, Belli A, Viale F, Lacour JR, Bourdin M. A simple method for field

measurements of leg stiffness in hopping. Int J Sports Med. 2004;25(3):170-176.

17. Buchheit M, Lacome M, Cholley Y, Simpson BM. Neuromuscular responses to

conditioned soccer sessions assessed via GPS-Embedded accelerometers: Insights into

tactical periodization. Int J Sports Physiol Perform. 2018;13(5):577-583.

18. Buchheit M. The 30-15 Intermittent Fitness Test: Accuracy for Individualizing Interval

Training of Young Intermittent Sport Players. J Strength Cond Res. 2008;22(2):365-

374.

19. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies

in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3-13.

20. Hopkins WG. Spreadsheets for analysis of validity and reliability. Retrieved from

http://sportscience.sportsci.org.

21. Hopkins WG. Measures of Reliability in Sports Medicine and Science. Sport Med.

2000;30(1):1-15.

22. Mero A, Komi P V. EMG, Force, and Power Analysis of Sprint-Specific Strength

Exercises. J Appl Biomech. 1994;10(1):1-13.

23. Marrier B, Le Meur Y, Robineau J, et al. Quantifying Neuromuscular Fatigue Induced



15 

by an Intense Training Session in Rugby Sevens. Int J Sports Physiol Perform. 

2017;12(2):218-223. 

24. Small K, McNaughton LR, Greig M, Lohkamp M, Lovell R. Soccer fatigue, sprinting

and hamstring injury risk. Int J Sports Med. 2009;30(8):573-578.

25. Abaïdia A-E, Delecroix B, Leduc C, et al. Effects of a Strength Training Session After

an Exercise Inducing Muscle Damage on Recovery Kinetics. J Strength Cond Res.

2017;31(1):115-125.

26. Murray A, Fullagar H, Turner AP, Sproule J. Recovery practices in Division 1

collegiate athletes in North America. Phys Ther Sport. 2018;32:67-73.



16 

Figures and Tables 

Legend 

Figure 1. Schematic representation of the study design.       : Monitoring session;       : 

strength session;      : Rugby training;       : ‘Off-feet’ (bike) fitness training 

Figure 2. Convergent validity analysis. Linear relationship between leg stiffness and the different RLI 

with the dashed lines representing the 90% confidence intervals. Figure A: RLI0-12-full. Figure B: RLIcvel-

full. Figure C: RLI0-12-vert. Figure D: RLIcvel-vert. Figure E: RLI0-12-fwd. Figure F: RLIcvel-fwd. Figure G: RLI0-

12-side. Figure H: RLIcvel-side.

Figure 3. Sensitivity analysis. Black dots and bold dashed lines represent group change expressed as 

mean±SD over 1 week of training. Grey lines represent individual change. Figure A: RLI0-12-full. Figure 

B: RLIcvel-full. Figure C: RLI0-12-vert. Figure D: RLIcvel-vert. Figure E: RLI0-12-fwd. Figure F: RLIcvel-fwd. Figure 

G: RLI0-12-side. Figure H: RLIcvel-side. *: Possibly trivial; **: Possibly small; *** Most likely large; **** 

Most likely very large. 

Table 1. Week to week reliability analysis for the different Running Load Index. TE: Typical Error; 

CV: Coefficient of Variation; SWC:  Smallest Worthwhile Change. 
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Figure 2. 



19 

Figure 3. 
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Table 1. Week to week reliability analysis for the different running load index. 

TE as CV% 

(90%CI) 

Standardized TE 

(90%CI ) 
SWC (%) 

RLI0-12-full 8.8 (6.9-12.4) 0.86 (0.68-1.20) 2.6 

RLI0-12-vert 8.3 (6.5-11.7) 0.70 (0.55-0.97) 2.8 

RLI0-12-fwd 11.6 (9.1-16.4) 0.57 (0.45-0.79) 4.5 

RLI0-12-side 7.6 (6.0-10.7) 0.47 (0.37-0.65) 3.5 

RLIcvel-full 10.0 (7.8-14.1) 0.54 (0.42-0.74) 4.1 

RLIcvel-vert 11.5 (9.0-16.3) 0.53 (0.42-0.73) 4.8 

RLIcvel-fwd 13.4 (10.4-19.0) 0.57 (0.45-0.79) 5.2 

RLIcvel-side 13.0 (10.1-18.4) 0.73 (0.57-1.00) 4.2 


