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,is paper proposes and investigates a problem of preview tracking control for a class of continuous-time singular interconnected
systems. Firstly, the related items are deleted to obtain several isolated subsystems with low dimensions. An error system is
constructed for each isolated subsystem so that the tracking error is included in the state vector of the error system; then, the
tracking problem is transformed into a regulation problem. Secondly, the preview tracking controller is designed for each error
system and obtained controllers are combined as the controller of the error system of the singular interconnected system.,irdly,
the Lyapunov function method is utilized to determine the constraints of the related terms so that the closed-loop system of the
error system of the singular interconnected system is stable under the action of the controller obtained. Finally, the preview
tracking controller of the singular interconnected system is obtained from the relationship between the error system and the
original system. A numerical simulation algorithm for continuous-time singular systems is also proposed in this paper. ,e
numerical simulation illustrates the effectiveness of the theoretical results.

1. Introduction

Compared with the normal system, the singular system is a
kind of dynamic system with a more extensive form and
wide application background. Singular systems exist in
many fields, such as economic management, bioengineering
systems, aerospace technology, and robotic systems [1–3].
From the early 1970s to the end of the 1980s, fruitful
achievements have been made in the research of minimum
realization problem, observer design, and stability of sin-
gular systems [4–6]. Since the 1990s, research on singular
systems has been developed from basis to depth, covering
various topics from linear to nonlinear, from time-invariant
to time-varying systems, and from linear quadratic optimal
control to H∞ control [7–9]. Because the singular system
model comes from the engineering practice, the research of
the theory of singular systems must serve the practical
application finally. In many practical engineering situations,
there are usually large-scale, complex structures, many
factors, and functional comprehensive of the systems, that is,

large-scale systems, also known as interconnected systems,
which leads to the study of singular interconnected systems.
For singular interconnected systems, if the controller is
designed using a centralized control scheme, it will be
difficult to deal with too much information, which makes the
design difficult to achieve. ,erefore, a decentralized-ag-
gregation method is adopted to design the controller
[10, 11]. ,is is the decomposition method of large-scale
systems. Firstly, the related terms are deleted artificially, and
several lower-dimensional systems (also called isolated
subsystems) are obtained. ,e controllers satisfying the
requirements are designed, respectively. ,en, the controller
of the interconnected system is obtained through a certain
method of synthesis [12, 13]. In recent years, there exist
many research studies on control theory of singular inter-
connected systems and many significant results have been
obtained [14, 15]. Wo et al. studied robust stabilization of
discrete-time singular interconnected systems with param-
eter uncertainties [11]. Lu and Ho gave sufficient conditions
for stability and decentralized stabilization of a class of
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singular interconnected systems utilizing linear matrix in-
equalities (LMIs) [16]. Employing the singular Lyapunov
matrix equation, system decomposition method, and matrix
theory, Chen and Ding probed the stabilization problem of
singular linear interconnected systems with output feedback
and provided sufficient conditions for asymptotic stability
and instability of corresponding closed-loop singular
interconnected systems [17].

,e future values of desired tracking signals or dis-
turbance signals of some practical control systems are
partly or completely known, such as flight routes of aircraft,
processing paths of numerically controlled machine tools,
and driving paths of vehicles. Utilizing the known future
information to improve the quality of the closed-loop
system is known as the preview control problem. At
present, the research on optimal preview control of linear
quadratic form is in-depth. By adopting the method of
augmented systems, Katayama and Hirono discussed the
optimal preview control problem for continuous-time [18].
On the basis of [18], Liao et al. studied the situation where
both the desired tracking signal and the disturbance signal
are previewable at the same time [19]. In recent years, the
theory of preview control for stochastic systems, the theory
of robust preview control, and the theory of preview
control for multirate systems have been developed [20–22].
Wu et al. investigate the optimal preview control problem
for a class of continuous-time stochastic systems by con-
structing an auxiliary system [20]. Li and Liao combine
parameter-dependent Lyapunov stability theory with
function method and LMI techniques to solve the static
output feedback preview tracking control problem for a
class of polyhedral uncertain discrete-time systems [21]. At
the same time, preview control has been successfully used
in many practical applications, such as vehicle active
suspension systems, electromechanical servo systems, ro-
bots and aircraft [23–25].

On the premise that both the theory of singular inter-
connected systems and preview control have made con-
siderable progress, it is of great theoretical and practical
significance to combine them. So far, there is no literature on
preview control of singular interconnected systems. In view
of this, this paper proposes and studies the preview tracking
control problem for continuous-time singular inter-
connected systems.

Research contents are arranged as follows: Section 2
presents a class of preview tracking control problems for
continuous-time singular interconnected systems and gives
necessary assumptions. ,e designs of the error system
controller of isolated subsystems and the controller of the
singular interconnected system are discussed in Sections 3
and 4, respectively. Section 5 is numerical simulation. ,e
method presented is not only applicable to this paper but
also to general continuous-time singular systems. Finally, a
brief conclusion is given in Section 6.

,roughout this paper, A ∈ Rn×m represents A as the real
matrix of n × m; Q> 0 (Q≥ 0) shows the matrix Q sym-
metric positive definite (semi-positive definite); deg(det(·))

is the degree of the determinant; and ‖·‖ represents the
matrix norm derived from the Euclidean norm of a vector.

2. ProblemFormulationandBasicAssumptions

Consider a continuous-time singular interconnected system
as follows:

Ei _xi(t) � Aixi(t) + 􏽘

N

j�1
j≠i

Aijxj(t) + Biui(t), i � 1, 2, . . . , N,

y(t) � 􏽘

N

i�1
yi(t) � 􏽘

N

i�1
Cixi(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where xi(t) ∈ Rni , ui(t) ∈ Rmi , yi(t), y(t) ∈ Rp, Ei, Ai ∈
Rni×ni , Aij ∈ Rni×nj , Bi ∈ Rni×mi , and Ci ∈ Rp×ni are constant
matrices; Aij(i≠ j) is the related matrix; and rank(Ei) �

qi < ni (i � 1, 2, . . . , N).
Let yd(t) ∈ Rp be the desired tracking signal or the

reference signal.
Firstly, some necessary assumptions are given as follows:

A1: assume that (Ei, Ai) is regular, that is to say, there
exists si ∈ C, so that det(siEi − Ai)≠ 0 (i � 1, 2, . . . , N)
[26]
A2: assume that (Ei, Ai) is impulse free, that is to say,
for any s ∈ C, deg(det(sEi − Ai)) � rank(Ei) holds
(i � 1, 2, . . . , N) [26]
A3: assume that (Ei, Ai, Bi) is stabilizable, which means
rank sEi − Ai Bi􏼂 􏼃 � ni holds for any complex s sat-
isfying Re(s)≥ 0 (i � 1, 2, . . . , N) [26]

A4: assume that the matrix Ai Bi

Ci 0􏼢 􏼣 is of full row rank
(i � 1, 2, . . . , N)
A5: assume that (Ei, Ai, Ci) is detectable, which means

rank sEi − Ai

Ci

􏼢 􏼣 � ni holds for any complex s satisfying

Re(s)≥ 0 (i � 1, 2, . . . , N) [26]
A6: assume that desired tracking signal yd(t) is a
piecewise continuously differentiable function
satisfying

lim
t⟶∞

yd(t) � yd,

lim
t⟶∞

_yd(t) � 0,
(2)

where yd is a constant vector. Besides, yd(t) is previewable;
in other words, at the time t, yd(τ) (t≤ τ ≤ t + lr) is available,
where lr is called the preview length.

,e system
Ei _xi(t) � Aixi(t) + Biui(t),

yi(t) � Cixi(t),
􏼨 (3)

is called an isolated subsystem of (1). ,ere are N isolated
subsystems (i � 1, 2, . . . , N).

Remark 1. ,e establishment of A1 and A2 indicates that
the N isolated subsystems of System (1) are regular and
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impulse free. ,e establishment of A3 and A5 indicates that
the N isolated subsystems of System (1) are stabilizable and
detectable. A6 is the standard assumption of preview
control.

,e tracking error of System (1) is defined as follows:

e(t) � y(t) − yd(t). (4)

,e objective of this paper is to design a controller with
preview action so that y(t) is able to track the desired
tracking signal yd(t) without static error; in other words,

lim
t⟶∞

e(t) � lim
t⟶∞

y(t) − yd(t)􏼂 􏼃 � 0. (5)

3. Controller of the Error System of
Isolated Subsystems

For the sake of designing the controller, decentralized
control is adopted. Firstly, the controller is designed for each
isolated subsystem of System (1).,en, all the controllers are
combined as the controllers of singular interconnected
systems, and the Lyapunov function method is utilized to
give the restriction conditions of the related terms, such that
the output of closed-loop systems of singular interconnected
systems is able to track yd(t).

According to the form of System (1) output equation, the
tracking error e(t) is rewritten as

e(t) � 􏽘
N

i�1
ei(t) � 􏽘

N

i�1
yi(t) − αiyd(t)􏼂 􏼃, (6)

where αi(i � 1, 2, . . . , N) are constants which satisfy
􏽐

N
i�1αi � 1. It is known from (6) that if for any ei(t) � yi(t) −

αiyd(t) (i � 1, 2, . . . , N), there is limt⟶∞ei(t) � 0, then
limt⟶∞e(t) � 0.

Remark 2. yi(t) can be understood as the output of i-th
subsystem. (6) means that if output yi(t) of i-th subsystem
tracks αiyd(t) (i � 1, 2, . . . , N), then the output
y(t) � 􏽐

N
i�1yi(t) of System (1) can track yd(t). ,e pa-

rameter αi (i � 1, 2, . . . , N) gives us the freedom of choice.
For example, let α1 � α2 � · · · � αN � 1/N, which means
that all yi(t) keep track of (1/N)yd(t). If αi � 0, this in-
dicates that the output of the i-th subsystem tracks the zero
vector, then the task of tracking yd(t) is completed by the
output of other subsystems cooperatively, etc.

,e optimal control technique is employed to design the
controller of System (3). For a given i(i � 1, 2, . . . , N), the
quadratic performance index function is introduced as
follows:

Ji �
1
2

􏽚
∞

0
e

T
i (t)Qei

ei(t) + _u
T
i (t)Ri _ui(t)􏽨 􏽩dt, (7)

where Qei
∈ Rp×p and Ri ∈ Rmi×mi are positive definite ma-

trices. It has been pointed out in [19] that the introduction of
_ui(t) in the performance index function can make the
controller contain integrators, which helps to eliminate the
static output errors in the closed-loop system.

An error system is constructed for the isolated subsystem
by utilizing the usual preview control method, so that the
tracking error becomes a part of the state vector of the error
system. As a result, the tracking problem of the isolated
subsystem is turned into a regulation problem of the error
system. Since the error system of the singular interconnected
system is needed later in this paper, for the purpose of
avoiding repetition, the error system of System (1) is firstly
constructed, then the related term is removed to obtain the
error system of isolated subsystems.

Differentiate both sides of the state equation of System
(1) to obtain

Ei €xi(t) � Ai _xi(t) + 􏽘
N

j�1

j≠i

Aij _xj(t) + Bi _ui(t), i � 1, 2, . . . , N.

(8)

,en, differentiate ei(t) � yi(t) − αiyd(t) (i � 1,

2, . . . , N) to obtain

_ei(t) � _yi(t) − αi _yd(t) � Ci _xi(t) − αi _yd(t), i � 1, 2, . . . , N.

(9)

Combining (8) and (9), we have

Ei
_Xi(t) � AiXi(t) + 􏽘

N

j�1

j≠i

AijXj(t) + Bi _ui(t) − Gi _yd(t),

i � 1, 2, . . . , N,

(10)

where

Xi(t) �
ei(t)

_xi(t)
􏼢 􏼣 ∈ R

p+ni ,

Ei �
Ip 0

0 Ei

􏼢 􏼣 ∈ R
p+ni( )× p+ni( ),

Ai �
0 Ci

0 Ai

􏼢 􏼣 ∈ R
p+ni( )× p+ni( ),

Aij �
0 0

0 Aij

⎡⎣ ⎤⎦ ∈ R
p+ni( )× p+nj( 􏼁

,

Bi �
0

Bi

􏼢 􏼣 ∈ R
p+ni( )×mi ,

Gi �
αiIp

0
􏼢 􏼣 ∈ R

p+ni( )×p
.

(11)

System (10) is the error system of singular inter-
connected System (1).

,e error system of the isolated subsystem can be ob-
tained by taking all the associated matrices Aij(i≠ j) in (10)
as zero matrices. ,e error system of the i-th isolated
subsystem becomes
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Ei
_Xi(t) � AiXi(t) + Bi _ui(t) − Gi _yd(t). (12)

Adopting the state vector of formula (12), the perfor-
mance index function (7) can be written as

Ji �
1
2

􏽚
∞

0
X

T
i (t)QiXi(t) + _u

T
i (t)Ri _ui(t)􏽨 􏽩dt, (13)

where Qi �
Qei

0
0 0􏼢 􏼣 ∈ R(p+ni)×(p+ni).

For the sake of making full use of the mature controller
design methods and results in the optimal preview control
theory of normal systems, System (12) needs to be changed
into a normal system and an algebraic equation by restricted
equivalent transformation [26].

Notice that if A1 and A2 are true, then (Ei, Ai) is regular
and impulse free. ,is is proved as follows.

In the light of [26], (Ei, Ai) is regular and impulse free if
and only if there are nonsingular matrices Si and Ti, such
that

SiEiTi �
Iqi

0

0 0
􏼢 􏼣,

SiAiTi �
Ai1 0

0 Ini− qi

⎡⎣ ⎤⎦.

(14)

Taking the nonsingular matrix Sii �
Ip 0
0 Si

􏼢 􏼣 and

Tii �
Ip 0
0 Ti

􏼢 􏼣, there are

SiiEiTii �
Ip 0

0 SiEiTi

􏼢 􏼣 �

Ip 0 0

0 Iqi
0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

SiiAiTii �
0 CiTi

0 SiAiTi

􏼢 􏼣 �

0 􏽥Ci1
􏽥Ci2

0 Ai1 0

0 0 Ini − qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(15)

Let Si �

Ip 0 − 􏽥Ci2
0 Iqi

0
0 0 Ini − qi

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦Sii and Ti � Tii. Obviously, Si

and Ti are nonsingular and there are

SiEiTi �

Ip 0 − 􏽥Ci2

0 Iqi
0

0 0 Ini − qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ip 0 0

0 Iqi
0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

Ip 0 0

0 Iqi
0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

SiAiTi �

Ip 0 − 􏽥Ci2

0 Iqi
0

0 0 Ini − qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 􏽥Ci1
􏽥Ci2

0 Ai1 0

0 0 Ini− qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

0 􏽥Ci1 0

0 Ai1 0

0 0 Ini − qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(16)

,is means that (Ei, Ai) is regular and impulse free [26].
In addition, the right side of the two formulas is denoted

as 􏽢Ei and 􏽢Ai, respectively, i.e., 􏽢Ei � SiEiTi �
Ip+qi

0
0 0􏼢 􏼣 and

􏽢Ai � SiAiTi �
􏽥Ai1 0
0 Ini − qi

􏼢 􏼣. For System (12), introducing a

nonsingular linear transformation Xi(t) � TiXi(t) and then
premultiplying a nonsingular matrix Si on both sides, we
obtain

􏽢Ei
_Xi(t) � 􏽢AiXi(t) + 􏽢Bi _ui(t) − 􏽢Gi _yd(t), (17)

where

􏽢Bi � SiBi,

􏽢Gi � SiGi.
(18)

Denote

Xi(t) �
Xi1(t)

Xi2(t)
⎡⎣ ⎤⎦, (19)

where Xi1(t) ∈ Rp+qi and Xi2(t) ∈ Rni− qi . Blocks 􏽢Bi and 􏽢Gi

are as follows:

􏽢Bi �
􏽥Bi1

􏽥Bi2

⎡⎣ ⎤⎦,

􏽢Gi �
􏽥Gi1

􏽥Gi2

⎡⎣ ⎤⎦.

(20)

,en, (17) can be written as

_Xi1(t) � 􏽥Ai1Xi1(t) + 􏽥Bi1 _ui(t) − 􏽥Gi1 _yd(t), (21a)

0 � Xi2(t) + 􏽥Bi2 _ui(t) − 􏽥Gi2 _yd(t). (21b)

Using the state vector of (17) (or (21)), the performance
index function (13) can be written as

Ji �
1
2

􏽚
∞

0
X

T

i (t) 􏽢QiXi(t) + _u
T
i (t)Ri _ui(t)􏼔 􏼕dt, (22)

where 􏽢Qi � T
T

i QiTi ∈ R(p+ni)×(p+ni).
Note that the restricted equivalence transformation does

not change the dynamic characteristics of singular systems,
such as regularity, impulse free, stability, stabilization, and
detectability [26]. ,erefore, System (12) can be studied
through System (17) (or (21)). ,at is, only the controller of
System (21a) needs to be designed.

By utilizing the state vector of formula (21a), the per-
formance index function (22) can be written as

Ji �
1
2

􏽚
∞

0
X

T

i1(t) 􏽥QiXi1(t) + _u
T
i (t)Ri _ui(t)􏼔 􏼕dt, (23)

where 􏽥Qi �
Qei

0
0 0􏼢 􏼣 ∈ R(p+qi)×(p+qi).

From the known conclusion [19], ,eorem 1 can be
proved directly.

Theorem 1. If (􏽥Ai1, 􏽥Bi1) is stabilizable, ( 􏽥Q
1/2
i , 􏽥Ai1) is de-

tectable and A6 holds; then, the controller of System (21a),
which minimizes the performance index function (14), has the
form of

_ui(t) � − R
− 1
i

􏽥B
T

i1PiXi1(t) + gi(t), (24)
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where

gi(t) � R
− 1
i

􏽥B
T

i1 􏽚
lr

0
exp σ 􏽥A

T

ci􏼒 􏼓Pi
􏽥Gi1 _yd(t + σ)dσ. (25)

􏽥Aci is a stable matrix and its expression is
􏽥Aci � 􏽥Ai1 − 􏽥Bi1R

− 1
i

􏽥B
T

i1Pi. (26)

Pi is the positive definite solution of the following Riccati
equation:

􏽥A
T

i1Pi + Pi
􏽥Ai1 − Pi

􏽥Bi1R
− 1
i

􏽥B
T

i1Pi + 􏽥Qi � 0. (27)

Next, the optimal preview controller for System (12) and
the performance index (13) is given. Firstly, the following two
lemmas are established.

Lemma 1 (see [26]). For a given i(i � 1, 2, . . . , N), (􏽥Ai1,
􏽥Bi1)

is stabilizable if and only if (Ei, Ai, Bi) is stabilizable.
>e proof of Lemma 1 is shown in >eorem 8.4.1 in lit-

erature [26].

Remark 3. Lemma 1 shows that the stabilization of singular
System (12) is determined only by normal System (21a)
obtained through its restricted equivalent transformation.

Lemma 2. For a given i (i � 1, 2, . . . , N), ( 􏽥Q
1/2
i , 􏽥Ai1) is

detectable if and only if (Ei, Ai, Qi
1/2) is detectable.

Proof. ,is lemma can be obtained according to ,eorem
8.3.2 in literature [26] and by the method of proving ,e-
orem 8.4.1 in literature [26]. It is omitted here.

Under the performance index function (13), the optimal
preview controller of System (12) is given by ,eorem 2.

Theorem 2. If (Ei, Ai) is regular and impulse free,
(Ei, Ai, Bi) is stabilizable, (Ei, Ai, Q

1/2
i ) is detectable, and A6

holds; then under the performance index function (13), the
optimal preview controller of System (12) is

_ui(t) � − R
− 1
i

􏽥B
T

i1PiUiXi(t) + gi(t), (28)

where Ui � Ip+qi
0􏽨 􏽩T

− 1
i . Besides, (Ei, Ai − BiR

− 1
i

􏽥B
T

i1PiUi) is
admissible.

,e so-called admissibility refers to regularity, impulse free,
and stabilization [26]. ,erefore, (Ei, Ai − BiR

− 1
i

􏽥B
T

i1PiUi) is
admissible which means that (Ei, Ai − BiR

− 1
i

􏽥B
T

i1PiUi) is reg-
ular, impulse free, and stable.

Proof. When (Ei, Ai) is regular and impulse free, the re-
stricted equivalent transformation of the above system (13)
holds. In addition, according to Lemma 1 and Lemma 2, the
condition of ,eorem 2 can guarantee that ,eorem 1 is
true. ,erefore, the controller (24) is obtained according to
,eorem 1. Because Ti is an invertible matrix in the
transformation Xi(t) � TiXi(t), the optimal preview con-
troller (24) for System (21a) and the performance index (23)
is the optimal preview controller for System (12) under the
performance index function (13).

,anks to Xi(t) � TiXi(t) and Xi(t) �
Xi1(t)

Xi2(t)
􏼢 􏼣, there

is Xi1(t)

Xi2(t)
􏼢 􏼣 � T

− 1
i Xi(t). ,erefore,

Xi1(t) � Ip+qi
0􏽨 􏽩

Xi1(t)

Xi2(t)
⎡⎣ ⎤⎦ � Ip+qi

0􏽨 􏽩T
− 1
i Xi(t) � UiXi(t).

(29)

Substitute (29) into (24) to get (28).
,e following proves that (Ei, Ai − BiR

− 1
i

􏽥B
T

i1PiUi) is
admissible.

Taking 􏽥Si � Si and 􏽥Ti � Ti

Ip+qi
0

􏽥Bi2R
− 1
i

􏽥B
T

i1Pi Ini − qi

⎡⎣ ⎤⎦, 􏽥Si and 􏽥Ti

are not singular. Because

􏽥SiEi
􏽥Ti � SiEiTi

Ip+qi
0

􏽥Bi2R
− 1
i

􏽥B
T

i1Pi Ini − qi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
Ipi+qi

0

0 0
􏼢 􏼣

Ip+qi
0

􏽥Bi2R
− 1
i

􏽥B
T

i1Pi Ini − qi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
Ipi+qi

0

0 0
􏼢 􏼣,

􏽥Si Ai − BiR
− 1
i

􏽥B
T

i1PiUi􏼒 􏼓􏽥Ti � SiAiTi − SiBiR
− 1
i

􏽥B
T

i1PiUiTi􏼒 􏼓
Ip+qi

0

􏽥Bi2R
− 1
i

􏽥B
T

i1Pi Ini − qi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
􏽥Ai1 0

0 Ini− qi

⎡⎢⎣ ⎤⎥⎦ −
􏽥Bi1

􏽥Bi2

⎡⎣ ⎤⎦R
− 1
i

􏽥B
T

i1Pi
Ip+qi

0􏽨 􏽩⎛⎝ ⎞⎠
Ip+qi

0

􏽥Bi2R
− 1
i

􏽥B
T

i1Pi Ini − qi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
􏽥Ai1 − 􏽥Bi1R

− 1
i

􏽥B
T

i1Pi 0

− 􏽥Bi2R
− 1
i

􏽥B
T

i1P Ini− qi

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
Ip+qi

0

􏽥Bi2R
− 1
i

􏽥B
T

i1Pi Ini− qi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
􏽥Ai1 − 􏽥Bi1R

− 1
i

􏽥B
T

i1Pi 0

0 Ini− qi

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(30)

there is
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􏽥Si Ei Ai − BiR
− 1
i

􏽥B
T

i1Pi
􏽨 􏽩􏽥Ti

�
Ipi+qi

0 􏽥Ai1 − 􏽥Bi1R
− 1
i

􏽥B
T

i1Pi 0

0 0 0 Ini− qi

⎡⎢⎢⎣ ⎤⎥⎥⎦.
(31)

,is indicates that (Ei, Ai − BiR
− 1
i

􏽥B
T

i1PiUi) is regular and
impulse free [26]. Notice that 􏽥Ai1 − 􏽥Bi1R

− 1
i

􏽥B
T

i1Pi is stable,
which means that (Ei, Ai − BiR

− 1
i

􏽥B
T

i1PiUi) is also stable [26].
,us, ,eorem 2 is proved.

4. Design of a Preview Controller for Singular
Interconnected Systems

_ui(i � 1, 2, . . . , N) given by equation (28) are employed to
construct a vector

_u(t) � _uT
1 (t) _uT

2 (t) · · · _uT
N(t)􏽨 􏽩

T
, (32)

as the controller of error System (10). Next, determine the
conditions in which the related term should satisfy so that
the state vector Xi(t) (i � 1, 2, . . . , N) of the closed-loop
system of System (10) is asymptotically stable to zero vector.
Firstly, the following lemma is given.

Lemma 3 (see [27]). For singular systems, the following
propositions are equivalent:

(i) E _x(t) � Ax(t) or (E, A) is admissible
(ii) For any given positive definite matrixW, there exists a

matrix P so that

P
T
A + ATP � − W,

ETP � P
T
E≥ 0,

⎧⎨

⎩ (33)

holds
(iii) >e singular Lyapunov function V(Ex) � xTETPx

satisfies

dV(Ex(t))

dt
< 0, (34)

where x(t)≠ 0, ETP � P
T
E≥ 0, and rank(ETP) � rank(E)

Substitute (32) into System (10) to get the closed-loop
system:

Ei
_Xi(t) � Ai − BiR

− 1
i

􏽥B
T

i1PiUi􏼒 􏼓Xi(t) + 􏽘

N

j�1
j≠i

AijXj(t) + ηi(t),

i � 1, 2, . . . , N,

(35)

where

ηi(t) � Bigi(t) − Gi _yd(t), i � 1, 2, . . . , N. (36)

>eorem 3 can be obtained, which gives the condition that
the state vector of System (35) is asymptotically stable to the
zero vector.

Theorem 3. If

(I) (Ei, Ai) is regular and impulse free, (Ei, Ai, Bi) is
stabilizable, and (Ei, Ai, Q

1/2
i ) is detectable (i �

1, 2, . . . , N);
(II) A6 holds;
(III) ‖P

T

i Aij‖≤ βij (i, j � 1, 2, . . . , N, i≠ j);
(IV) matrix

H �

c1 − 2β12 · · · − 2β1N

− 2β21 c2 · · · − 2β2N

⋮ ⋮ ⋱ ⋮

− 2βN1 − 2βN2 · · · cN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (37)

is a nonsingular M matrix, then the state vector Xi(t)

(i � 1, 2, . . . , N) of System (35) (that is, the closed-loop system
of (10)) is asymptotically stable to zero vector, where
ci � λmin(Wi), in which Wi is any given positive definite
matrix (i � 1, 2, . . . , N). Pi is the solution of the following
equation:

P
T

i Ai − BiR
− 1
i

􏽥B
T

i1PiUi􏼒 􏼓 + Ai − BiR
− 1
i

􏽥B
T

i1PiUi􏼒 􏼓
T

Pi � − Wi,

ET
i Pi � P

T

i Ei ≥ 0.

⎧⎪⎪⎨

⎪⎪⎩

(38)

Proof. Firstly, it is proved that the homogeneous system

Ei
_Xi(t) � Ai − BiR

− 1
i

􏽥B
T

i1PiUi􏼒 􏼓Xi(t) + 􏽘
N

j�1
j≠i

AijXj(t),

i � 1, 2, . . . , N,

(39)

corresponding to (35) is admissible.
In the light of ,eorem 2, (Ei, Ai − BiR

− 1
i

􏽥B
T

i1PiUi) is
admissible if (I) and (II) of this theorem hold. According to
Lemma 3, given matrix Wi > 0, there exists matrix Pi sat-
isfying (38). Employing Ei and Pi to construct Vi(EiXi) �

XT
i E

T

i PiXi, it is clear that there is Vi(EiXi)≥ 0. Differentiate
Vi(EiXi) along System (39) trajectory to get
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_Vi

􏼌􏼌􏼌􏼌(39)
� _X

T

i (t)E
T

i PiXi(t) + X
T
i (t)E

T

i Pi
_Xi(t)

� Ei
_Xi(t)􏼐 􏼑

T
PiXi(t) + X

T
i (t)P

T

i Ei
_Xi(t)

� X
T
i (t)􏼢 Ai − BiR

− 1
i

􏽥B
T

i1PiUi􏼒 􏼓
T

Pi

+ P
T

i Ai − BiR
− 1
i

􏽥B
T

i1PiUi􏼒 􏼓􏼣Xi(t)

+ 2X
T
i P

T

i 􏽘

N

j�1

j≠i

AijXj(t).

(40)

Note that ci � λmin(Wi) � − λmax[(Ai − BiR
− 1
i

􏽥B
T

i1PiUi)
T

Pi + P
T

i (Ai − BiR
− 1
i

􏽥B
T

i1PiUi)] to obtain an estimate of _Vi|(39)

as follows:

_Vi

􏼌􏼌􏼌􏼌(39)
≤ − ciX

T
i (t)Xi(t) + 2X

T
i P

T
i 􏽘

N

j�1

j≠i

AijXj(t).

(41)

Continuously, utilizing the properties of norms and (III),
we obtain

_Vi

􏼌􏼌􏼌􏼌(39)
≤ − ci Xi(t)

����
����
2

+ 2 􏽘
N

j�1
j≠i

X
T
i (t)

����
���� P

T

i Aij

�����

����� Xj(t)
�����

�����

� − Xi(t)
����

���� ci Xi(t)
����

���� − 2 􏽘

N

j�1
j≠i

βij Xj(t)
�����

�����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(42)

Let i � 1, 2, . . . , N to get

_V1
􏼌􏼌􏼌􏼌(39)

_V2
􏼌􏼌􏼌􏼌(39)

⋮

_VN

􏼌􏼌􏼌􏼌(39)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ −

X1(t)
����

���� 0 · · · 0

0 X2(t)
����

���� · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · XN(t)
����

����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H

X1(t)
����

����

X2(t)
����

����

⋮

XN(t)
����

����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(43)

Since (IV), that is, H is a nonsingular M matrix, there
exists K � diag(k1, k2, . . . , kN)> 0 so that KH + HTK> 0
[28].

Using the diagonal elements of matrix K and taking

V � 􏽘

N

i�1
kiVi � k1 k2 · · · kN􏼂 􏼃

V1

V2

⋮

VN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

as the Lyapunov function of System (39), the total derivative
of V along System (39) trajectory is

_V|(39) � k1 k2 · · · kN􏼂 􏼃

_V1
􏼌􏼌􏼌􏼌(39)

_V2
􏼌􏼌􏼌􏼌(39)

⋮
_VN

􏼌􏼌􏼌􏼌(39)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (45)

Substitute (43) into (45) to obtain

_V|(39) ≤ − k1 k2 · · · kN􏼂 􏼃

X1(t)
����

���� 0 · · · 0

0 X2(t)
����

���� · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · XN(t)
����

����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H

X1(t)
����

����

X2(t)
����

����

⋮

XN(t)
����

����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� − X1(t)
����

���� X1(t)
����

���� · · · X1(t)
����

����􏽨 􏽩
KH + HTK

2
􏼠 􏼡

X1(t)
����

����

X2(t)
����

����

⋮

XN(t)
����

����

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(46)
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When λ is utilized to represent the minimum eigenvalue
of (KH + HTK)/2, there must be λ> 0. ,erefore, we obtain

_V|(39) ≤ − λ􏽘
N

i�1
Xi(t)

����
����
2

� − λ‖X(t)‖
2
. (47)

X(t) � XT
1 (t) XT

2 (t) · · · XT
N(t)􏽨 􏽩

T
is the state vector

of System (39). ,erefore, the total derivative of V along the
trajectory of System (39) is negative definite. According to
Lemma 3, System (39) is admissible.

Next, it is proven that limt⟶∞ηi(t) � 0 and ηi(t) is
bounded on [0, +∞) (i � 1, 2, . . . , N). Note the Hypothesis
A6, the desired tracking signal yd(t) is piecewise continu-
ously differentiable, so _yd(t) has only the discontinuity of
first kind at most. Naturally, _yd(t) is a bounded function.
Besides, considering the hypothesis of limt⟶∞ _yd(t) � 0, we
only need to prove that limt⟶∞gi(t) � 0 and gi(t) is
bounded.

Because 􏽥Aci is a stable matrix, there exist constants ωi > 0
and αi > 0, so that ‖exp(σ 􏽥A

T

ci)‖≤ωi exp(− αiσ) holds for all
σ ≥ 0. Since gi(t) � R− 1

i
􏽥B

T

i1 􏽒
lr

0 exp(σ 􏽥A
T

ci)Pi
􏽥Gi1 _yd(t + σ)dσ,

there is

gi(t)
����

����≤ R
− 1
i

􏽥B
T

i1

�����

����� 􏽚
lr

0
exp σ 􏽥A

T

ci􏼒 􏼓

������

������ Pi
􏽥Gi1

����
���� _yd(t + σ)
����

����dσ.

(48)

Substitute ‖exp(σ 􏽥A
T

ci)‖≤ωi exp(− αiσ) to get

gi(t)
����

����≤ R
− 1
i

􏽥B
T

i1

�����

����� 􏽚
lr

0
ωi exp − αiσ( 􏼁 Pi

􏽥Gi1
����

���� _yd(t + σ)
����

����dσ

≤ωi R
− 1
i

􏽥B
T

i1

�����

����� Pi
􏽥Gi1

����
���� 􏽚

lr

0
_yd(t + σ)

����
����dσ.

(49)

For any given ε> 0, due to limt⟶∞ _yd(t) � 0, there exists
T0 > 0 such that when t≥T0, there is ‖ _yd(t)‖<
(1/((1 + ωi‖R− 1

i
􏽥B

T

i1‖‖Pi
􏽥Gi1‖)(1 + lr)))ε, so when t≥T0, there

is

gi(t)
����

����<ωi R
− 1
i

􏽥B
T

i1

�����

����� Pi
􏽥Gi1

����
���� 􏽚

lr

0

1

1 + ωi R− 1
i

􏽥B
T

i1

�����

����� Pi
􏽥Gi1

����
����􏼒 􏼓 1 + lr( 􏼁

εdσ

�
ωi R− 1

i
􏽥B

T

i1

�����

����� Pi
􏽥Gi1

����
����􏼒 􏼓lr

1 + ωi R− 1
i

􏽥B
T

i1

�����

����� Pi
􏽥Gi1

����
����􏼒 􏼓 1 + lr( 􏼁

ε< ε.

(50)

,is proves limt⟶∞gi(t) � 0.
Secondly, exp(σ 􏽥A

T

ci)Pi
􏽥Gi1 _yd(t + σ) has only the dis-

continuity of the first kind at most on the basis of the
property of _yd(t), so gi(t) is a continuous function [29]. As a
result, gi(t) is bounded on [0, +∞) since gi(t) is continuous
and limt⟶∞gi(t) � 0 [30]. ,is proves that limt⟶∞ηi(t) �

0 and ηi(t) is bounded on [0, +∞).
Because System (39) is admissible, limt⟶∞ηi(t) � 0 and

ηi(t) is bounded on [0, +∞), according to [31], there is
limt⟶∞Xi(t) � 0 (i � 1, 2, . . . , N) in System (35). Hence,
,eorem 3 is proved.

Below, we adopt the relevant parameters of singular
interconnected System (1) to give the conditions, which
ensure that (Ei, Ai, Bi) is stabilizable and (Ei, Ai, Qi

1/2) is
detectable.

Lemma 4 (see [32]). >e sufficient and necessary condition

for (Ei, Ai, Bi) to be stabilizable is that rank Ai Bi

Ci 0􏼢 􏼣 � ni +

p and (Ei, Ai, Bi) is stabilizable (i � 1, 2, . . . , N).

Lemma 5 (see [32]). >e sufficient and necessary condition
for (Ei, Ai, Q

1/2
1 ) to be detectable is that (Ei, Ai, Ci) is de-

tectable (i � 1, 2, . . . , N).

Lemmas 4 and 5 can be proved by a method similar to
that in reference [32], so the proof is omitted here.

To sum up, one of the main theorems in this paper is as
follows.

Theorem 4. Suppose

(I) A1–A6 hold
(II) ‖P

T

i Aij‖≤ βij (i, j � 1, 2, . . . , N, i≠ j)

(III) H is a nonsingular M matrix
(IV) Qei

> 0, Ri > 0 (i � 1, 2, . . . , N)
(V) Let yd(k) � 0, xi(t) � 0, ui(t) � 0 (i � 1, 2, . . . , N)

for t< 0

>en, the controller with the preview effect, which enables
the output signal of (1) to track the desired tracking signal
asymptotically, is given as

u(t) � uT
1 (t) uT

2 (t) · · · uT
N(t)􏽨 􏽩

T
, (51)

where

ui(t) � ui(0) − Fei
􏽚

t

0
ei(σ)dσ − Fxi

xi(t) − xi(0)􏼂 􏼃 + gi(t),

i � 1, 2, . . . , N,

(52)

in which Fei
� R− 1

i
􏽥B

T

i1PiUei, Fxi
� R− 1

i
􏽥B

T

i1PiUxi, and Ui �

Uei Uxi􏼂 􏼃; the expression of gi(t) ∈ Rp is gi(t) �

R− 1
i

􏽥B
T

i1 􏽒
lr

0 exp(σ 􏽥A
T

ci)Pi
􏽥Gi1[yd(t + σ) − yd(σ)]dσ.

Proof. According to Lemmas 4 and 5, when (I)–(IV) is true
here, all conditions of ,eorems 1 to 3 are satisfied, so the
conclusion is valid. ,us, (32) gives the controller of the
error system, in which the component _ui(i � 1, 2, . . . , N) is
determined by (28) of ,eorem 2. We now derive the
controller of the original system from (32) and (28).

Note that (28) is

_ui(t) � − Fei
ei(t) − Fxi

_xi(t)

+ R
− 1
i

􏽥B
T

i1 􏽚
lr

0
exp σ 􏽥A

T

ci􏼒 􏼓Pi
􏽥Gi1 _yd(t + σ)dσ.

(53)

Integrate on [0, t] to get
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ui(t) − ui(0) � − Fei
􏽚

t

0
ei(σ)dσ − Fxi

xi(t) − xi(0)􏼂 􏼃

+ R
− 1
i

􏽥B
T

i1 􏽚
t

0
􏽚

lr

0
exp σ 􏽥A

T

ci􏼒 􏼓Pi
􏽥Gi1 _yd(t + σ)dσ􏼢 􏼣dt.

(54)

By exchanging the integration order of the last item on
the right side of the upper formula and then integrating it,
we can get (52). ,en, combining ui(t) (i � 1, 2, . . . , N), the
controller of System (1) is attained, that is, (51).

Remark 4. In (52), Fxi
xi(t) is the state feedback,

Fei
􏽒

t

0 e(σ)dσ is the integrator, and gi(t) is the preview
feedforward of reference information; moreover, ui(0) is the
initial value of input and Fxi

xi(0) is the compensation of
initial value.

5. Numerical Simulation

5.1. Numerical Simulation Method. In this section, the nu-
merical simulation of a singular system

E _x(t) � Ax(t) + Bu(t),

y(t) � Cx(t),
􏼨 (55)

is discussed. Here, matrices A, B, and C have appropriate
dimensions, A is a square matrix, and E is a singular matrix
and satisfies rank(E) � q< n. Let the state feedback be
u(t) � Fx(t).

Because (55) contains the singular matrix E, it is im-
possible to calculate the state value of the next moment from
System (55) and u(t) � Fx(t) by the usual direct dis-
cretization method, as normal systems do. ,erefore, an
algorithm is proposed to solve this problem.

Taking the sampling interval as h, it is noted that

_x((k + 1)h) �
x(kh) − x((k + 1)h)

− h
. (56)

At t � (k + 1)h, equation (55) is discretized to obtain

E
x(kh) − x((k + 1)h)

− h
� Ax((k + 1)h) + Bu((k + 1)h),

(57)

that is,

(E − Ah)x((k + 1)h) � Ex(kh) + Bhu((k + 1)h). (58)

For equation (58), an appropriate sampling interval h

can be chosen so that matrix (E − Ah) is nonsingular. ,en,
(58) can be written as

x((k + 1)h) � (E − Ah)
− 1

[Ex(kh) + Bhu((k + 1)h)].

(59)

Unfortunately, since the right side of (59) contains the
term u((k + 1)h), besides, u(t) � Fx(t), it is known that

u((k + 1)h) is related to x((k + 1)h); therefore, equation (59)
cannot be calculated. To overcome this difficulty, we take
u(kh) as the approximate value of u((k + 1)h) and then
substitute it into (59) to obtain the following iteration
scheme:

x((k + 1)h) � (E − Ah)
− 1

[Ex(kh) + Bhu(kh)]. (60)

,e rationality of replacing u((k + 1)h) with u(kh) is
explained below. Notice that if the output of the closed-loop
system can track the reference signal, there are x(∞) and
u(∞) such that

0 � Ax(∞) + Bu(∞),

y(∞) � Cx(∞).
􏼨 (61)

By adopting (56), (60) can be written as
E _x((k + 1)h) � Ax((k + 1)h) + Bu(kh). Letting k⟶∞,
we get the same relation. ,erefore, this method is rea-
sonable. In other words, when k is large, there is
u((k + 1)h) ≈ u(kh).

Notice that the output equation is y(t) � Cx(t), and
then the iterative scheme of (55) is

x((k + 1)h) � (E − Ah)− 1[Ex(kh) + Bhu(kh)],

y(kh) � Cx(kh).

⎧⎨

⎩ (62)

,e convergence condition of the iterative scheme (62) is
given below. ,e state feedback u(kh) � Fx(kh) is
substituted into the equation of state to obtain the following
closed-loop system:

x((k + 1)h) � (E − Ah)
− 1

(E − hBF)x(kh). (63)

Obviously, a sufficient condition for the convergence of
the iteration scheme (62) is that the spectral radius of
(E − Ah)− 1(E − hBF) (i.e., the maximum value of the ab-
solute value of the eigenvalue) is less than 1 [33].

5.2. Simulation Example. In this section, the effectiveness of
the designed controller is verified by numerical simulation.

Considering the singular interconnected system with
two subsystems (i.e., N � 2) n1 � 3 and n2 � 2, the co-
efficient matrices are

E1 �

1 0 0
0 0 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

A1 �

− 1 1 0
− 2 − 4 0
1.5 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

A12 �

0.4 0.1
0.5 5

− 0.6 0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

B1 �

1
2
1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,
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C1 � 1 1 1.5􏼂 􏼃,

E2 �
0 0

0 1
􏼢 􏼣,

A2 �
− 2 0

1 − 1
􏼢 􏼣,

A21 �
0.1 0.2 − 0.4

0.1 0.5 1
􏼢 􏼣,

B1 �
1

2
􏼢 􏼣,

C2 � 1 1.5􏼂 􏼃.

(64)

Let the weight matrix of the performance index function
(7) be

Qe1
� 50,

R1 � 10,

Qe2
� 50,

R2 � 10.

(65)

yd(t) can be chosen as

yd(t) �

0, t> 2.5,

2(t − 2), 2≤ t< 2.5,

1, t> 2.5.

⎧⎪⎪⎨

⎪⎪⎩
(66)

Take the initial state be x1(0) � 0.02 0 0􏼂 􏼃
T, u1(0) � 0,

x1(0) � 0 0.01􏼂 􏼃
T, and u2(0) � 0. Select α1 � 0.3 and

α2 � 0.7. It is easy to verify that the given system and the
reference signal meet A1–A6.

We conducted numerical simulation for lr � 0 (without
reference signal preview), lr � 0.5, and lr � 1.2, respectively.
,e solution of the Riccati equation for two isolated sub-
systems and the feedback gain matrix of the controller is
obtained by using MATLAB as follows:

P1 �

21.217420616941663 6.816120898775491 3.290565711834407
6.816120898775491 3.969175332838401 2.538387150184135
3.290565711834407 2.538387150184135 1.950469194330368

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

P2 �
18.374963043673894 5.269279301264373
5.269279301264373 2.934066776906499

􏼢 􏼣,

Fe1
� 2.236067977499793,

Fx1
� 0.710937379759689 0 1.118481650750235􏼂 􏼃,

Fe2
� 2.236067977499788,

Fx2
� 0 0.996980659289843􏼂 􏼃.

(67)

Let us take

W1 �

10 0 0
0 10 0
0 0 10

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

W2 �

10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(68)

Obviously, there are c1 � λmin(W1) � 10 and
c2 � λmin(W2) � 10. ,e solution of the singular Lyapunov
equation is obtained by using MATLAB:

P1 �

7.647751127599625 − 0.177729150439247 0 1.473871111233592
− 0.177729150439237 3.477348552026456 0 0.368592368778278
0.469963008352726 − 0.244431011953004 1.250000000000000 − 0.238435161715929
1.473871111233594 0.368592368778280 0 3.460928523839078

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P2 �

7.540791381135387 0 0.504302903522732
1.227462170454325 2.500000000000000 − 0.028058524738017
0.504302903522733 0 1.932031695225841

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(69)
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Let βij � ‖P
T

i Aij‖2, then β12 � 6.839132471138595 and
β12 � 2.685100253336826. So,

H �
10.000000000000000 − 13.678264942277190

− 5.370200506673653 10.000000000000000
􏼢 􏼣.

(70)

,e eigenvalues of H are 18.570590721965054 and
1.429409278034949, which means that H is a nonsingularM
matrix. In conclusion, the conditions of ,eorem 4 are all
satisfied.

Selecting the sampling interval h � 0.01, the calculation
shows that E − Ah is nonsingular and the spectral radius of
(E − Ah)− 1(E − hBFx) is less than 1. ,e tracking effect of
System (1) is shown in Figure 1.

As can be seen from Figure 1, with the gradual in-
crease in time t, the output signals of the singular

interconnected system (1) can asymptotically track the
desired tracking signal under different preview lengths.
In addition, with the increase in the preview length,
overshoot and adjustment time are decreasing. ,e
tracking error of singular interconnected systems is given
in Figure 2. It can be found from Figure 2 that, compared
with the controller with no preview effect (i.e., lr � 0), the
controller with the preview effect can reduce the overall
tracking error.

Figures 3 and 4 depict the control input component
diagram of the singular interconnected System (1). It can be
seen from the graph that the increase in the preview length
will not make the control input change dramatically but
makes the control input change smoothly.

y d
 an

d 
y

yd
y: lr = 0

y: lr = 0.5
y: lr = 1.2

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 80
t

Figure 1: ,e output response of singular interconnected systems.

e: lr = 0
e: lr = 0.5
e: lr = 1.2

1 2 3 4 5 6 7 80
t

–0.6
–0.5
–0.4
–0.3
–0.2
–0.1

0
0.1
0.2
0.3
0.4

e

Figure 2: ,e tracking errors of singular interconnected systems.

u1: lr = 0
u1: lr = 0.5
u1: lr = 1.2

u1

1 2 3 4 5 6 7 80
t

–0.35

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

Figure 3: Control input components u1(t) of singular inter-
connected systems.

u2: lr = 0
u2: lr = 0.5
u2: lr = 1.2

u2

1 2 3 4 5 6 7 80
t

0

0.05

0.1

0.15

0.2

0.25

Figure 4: Control input components u2(t) of singular inter-
connected systems.
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6. Conclusion

In this paper, the basic theory of preview control is extended
to continuous-time singular interconnected systems and the
problem of preview tracking control for such systems is
studied. With the help of decomposition theory of large-
scale systems, several isolated subsystems are obtained by
deleting related terms. Furthermore, the common methods
of preview control theory are adopted to construct error
systems for isolated subsystems, and the tracking problem is
transformed into a regulation problem. For each isolated
error system, the preview controller is designed and the
obtained controllers are combined as the controllers of the
singular interconnected system error system. By con-
structing Lyapunov functions and using the properties of
nonsingular M-matrices, the stability of closed-loop error
interconnected systems is discussed, and the criterion the-
orem to ensure its stability is given. Finally, the sufficient
conditions for the existence of preview controllers and
controllers in the original singular interconnected system are
derived.

Furthermore, a numerical simulation algorithm for
continuous-time singular systems is proposed, which does
not depend on the restricted equivalent transformation and
is suitable for the numerical simulation of all continuous-
time singular systems. ,e theoretical results and numerical
simulation show that the designed controller is able to make
the output of the system to track the desired tracking signal
without a static error, and the tracking performance is
improved with the increase in the preview length.
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