
Citation:
Alexander Schirmer, P and Mporas, I and Sheikh Akbari, A (2020) Robust Energy Disaggregation
using Appliance-Specific Temporal Contextual Information. EURASIP Journal on Advances in Signal
Processing. ISSN 1687-6180 DOI: https://doi.org/10.1186/s13634-020-0664-y

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/6498/

Document Version:
Article (Accepted Version)

Creative Commons: Attribution 4.0

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/6498/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk


Robust Energy Disaggregation using Appliance-Specific Temporal Contextual Information 

Pascal Alexander Schirmer1*, Iosif Mporas1 and Akbar Sheikh-Akbari2 
1Communications and Intelligent Systems Group 

School of Engineering and Computer Science, University of Hertfordshire 
Hatfield AL10 9AB, UK 

2School of Built Environment, Engineering and Computing, Leeds Beckett University 
Leeds LS6 3QS, UK 

{p.schirmer, i.mporas}@herts.ac.uk, a.sheikh-akbari@leedsbeckett.ac.uk 
*Corresponding author 

Abstract: An extension of the baseline Non-Intrusive Load Monitoring approach for energy disaggregation using 
temporal contextual information is presented in this paper. In detail the proposed approach uses a two-stage 
disaggregation methodology with appliance-specific temporal contextual information in order to capture time 
varying power consumption patterns in low frequency datasets. The proposed methodology was evaluated using 
datasets of different sampling frequency, number and type of appliances. When employing appliance-specific 
temporal contextual information an improvement of 1.5% up to 7.3% was observed. With the two-stage 
disaggregation architecture and using appliance-specific temporal contextual information the overall energy 
disaggregation accuracy was further improved across all evaluated datasets with the maximum observed 
improvement, in terms of absolute increase of accuracy, being equal to 6.8%, thus resulting in a maximum total 
energy disaggregation accuracy improvement equal to 10.0%. 

Keywords: Non-Intrusive Load Monitoring, energy disaggregation, contextual temporal information, two-stage 
energy disaggregation. 

1. INTRODUCTION
In the last decades rising energy consumption needs within residential and industrial environments have 

become a crucial issue with nowadays consumer households accounting for approximately 40% of the total 
worldwide consumed energy [1, 2]. With the development of information and communication technologies (ICT) 
and the increasing usage of electrical appliances and automation of tasks the electric power needs will grow further 
and the number of electrical appliances per household will significantly increase within the next 20 years [1, 2]. 
Despite the expected increase in total energy consumption, studies estimate that 20% of households’ consumed 
energy could be saved by changing consumers’ behaviour and improving the existing poor operational strategies 
[3, 4]. Furthermore, the establishment of smart grids and demand management as well as the fluctuation of power 
generation due to an increasing percentage of renewable energies are enhancing the issue of increasing energy 
needs [5, 6]. These changes in energy demand and generation are challenging for network operators and power 
generation facilities, since power needs are becoming less stable and unpredictable while rising at the same time 
[7, 8]. To address those challenges accurate and fine grained monitoring of electrical energy consumption within 
residential environments is needed [2, 9] as well as proper demand management [10]. However nowadays energy 
monitoring is mostly done via an aggregated measures of energy consumption in the form of monthly bills and 
therefore does not address the above mentioned issues. 

To measure energy consumption smart meters are used. A smart meter, also referred to as a smart plug, is a 
device used to measure electrical power/energy consumption with resolution in the order of seconds to minutes. 
Smart meters measure the voltage-drop over the device/circuit and the current flowing through the device/circuit 
with an arbitrary sampling frequency 𝑓𝑓𝑠𝑠 which usually varies from 1 60⁄  Hz to 30 kHz [11]. Higher sampling 
frequencies are usually preferred, since they contain more detailed information about the energy consumption, 
however they increase linearly the amount of acquired data and exponentially the cost of hardware [12]. With the 
sampling rate in the order of seconds data handling for several months/years becomes feasible and hardware costs 
are relatively low. However with the ability to provide real-time information through smart-metering and 
determining detailed household energy consumption, consumer privacy concerns are arising and energy data 
protection becomes prominent [7, 13]. To address these issues, energy monitoring must be carried out cost 
effectively and under the consideration of privacy concerns. 

According to [14] the largest improvements in terms of energy savings can be made when monitoring energy 
consumption on device level to detect faulty device operation and inefficient or suboptimal operational strategies. 
To measure energy consumption on device level, energy has to be measured either for each device separately 
using one sensor per device or the aggregated energy (combined energy of several devices measured at one central 
point e.g. the power inlet of a household) has to be disaggregated into device level using computational algorithms. 
When only using one sensor to disaggregate the total consumed energy and extract energy consumption on 
appliance level the task is referred to as Non-Intrusive Load Monitoring (NILM) as introduced in [15]. NILM 
formulates the energy disaggregation problem as a single channel source separation problem, where the smart 
meter is the only input channel measuring the total power consumption and the goal is to find the inverse of the 
aggregation function to calculate consumption per device. Comparing to Intrusive Load Monitoring (ILM), NILM 



has the advantage of requiring less hardware (ILM uses one smart meter per device) as well as meets consumers 
acceptability with respect to privacy conserving [7, 13] . 

In general NILM assumes that there is a single observation (smart meter measurements) and multiple 
unknowns (electrical devices) making the disaggregation problem highly under-determined and difficult to solve 
without any further constraints. Therefore several approach for disaggregation have been proposed, which can be 
briefly split into methods with and without Source Separation (SS). Approaches without SS are based on the 
decomposition of the aggregated signal to a sequence of feature vectors, which will be classified to device labels 
by a Machine Learning (ML) algorithm (e.g. Artificial Neural Networks (ANN) [16], Decision Trees (DT) [17], 
Hidden Markov Models (HMM) [18], K-Nearest Neighbours (KNN) [19], Support Vector Machines (SVM) [20]) 
or by a predefined set of rules and thresholds [21, 22]. Furthermore, recent research in deep learning and big data 
has led to a significant increase of use of data-driven approaches using large scale datasets (e.g. AMPd [23]). 
Approaches based on Convolutional Neural Networks (CNNs) [24–26], Recurrent Neural Networks (RNNs) [27, 
28] and Long Short Time Memories (LSTMs) [27, 29] have been proposed in the literature, while denoising Auto
Encoders (dAEs) [30] and Gate Recurrent Units (GRUs) [26] have also been used.  Approaches with SS are based 
on single channel source separation algorithms (e.g. non-negative matrix factorization [31], sparse component 
analysis [32]) to extract the consumption of each device from the aggregated signal by using additional constraints 
(e.g. sparseness or sum-to-one [33]) during the optimization procedure. The features extracted from the aggregated 
signal in approaches with and without SS strongly depend on the sampling frequency, with either macroscopic 
(for low sampling frequency) or microscopic (for high sampling frequency) features being extracted. Macroscopic 
features are mainly active and reactive power, while statistical values of from the active or reactive power (e.g. 
mean, median, variance or energy) can be estimated as well [34]. Microscopic features can be current harmonics 
or transient energy [21, 35] and require high-sampling frequency to be calculated (1 kHz and above). 

Several NILM approaches with and without SS have been proposed in the literature. In these approaches one 
or multi-state electrical devices have been modelled by finite-state machines, i.e. with steady energy consumption 
behaviour per operational state [15]. In contrast to one/multi-state devices, there is no established approach in 
detecting appliances with continuous power consumption or with non-linear behaviour and highly varying power 
signature [36, 37]. Researchers have addressed this issue by using high frequency features or wavelets to detect 
transient device behaviour, which however have the drawback of higher cost in hardware and increased 
computational power needed [12, 37, 38]. Therefore most approaches use disaggregation algorithms with 
sampling rates in the order of seconds to minutes, in addition with temporal information (e.g. Factorial Hidden 
Markov Models (FHMM) [18, 39])  to identify appliances with varying power consumption [12, 40]. Furthermore 
special filtering techniques (e.g. Kalman filters [41]) with time varying coefficients and probabilistic approaches 
using appliance grouping [42] have been proposed to address the issue of modelling devices with continuous or 
non-linear characteristics. 

In this paper we propose the integration of temporal contextual information for each electrical appliance in the 
form of concatenation of adjacent feature vectors within a device-dependent time window to improve device 
detection performance in NILM. The remainder of this paper is organized as follows: In Section 2 the proposed 
NILM approach using temporal contextual information per device is presented. In Section 3 the experimental setup 
is described and in Section 4 the evaluation results are presented. Finally the paper is concluded in Section 5. 

2. METHODS
NILM energy disaggregation can be formulated as the task of determining the power consumption on device 

level based on the measurements of one sensor, within time window (frame or epoch). Specifically, for a set of 
𝑀𝑀 − 1 known devices each consuming power 𝑝𝑝𝑚𝑚 with 1 ≤ 𝑚𝑚 ≤ 𝑀𝑀, the aggregated power 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 measured by the 
sensor will be 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑓𝑓�𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑀𝑀−1, 𝑝𝑝𝑎𝑎  � = ∑ 𝑝𝑝𝑚𝑚𝑀𝑀−1
𝑚𝑚=1 + 𝑝𝑝𝑎𝑎 = ∑ 𝑝𝑝𝑚𝑚𝑀𝑀

𝑚𝑚=1  (1) 

where 𝑝𝑝𝑎𝑎 = 𝑝𝑝𝑀𝑀 is a ‘ghost’ power consumption usually consumed by one or more unknown devices. In NILM the 
goal is to find estimations 𝑃𝑃� = {�̂�𝑝𝑚𝑚, �̂�𝑝𝑎𝑎} of the power consumption of each device 𝑚𝑚 using an estimation method 
𝑓𝑓−1 with minimal estimation error and �̂�𝑝𝑀𝑀 = �̂�𝑝𝑎𝑎, i.e. 

𝑃𝑃� = ��̂�𝑝1, �̂�𝑝2, … , �̂�𝑝𝑀𝑀−1, �̂�𝑝𝑎𝑎� = 𝑓𝑓−1(𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎) 
𝑠𝑠. 𝑡𝑡.   argmin

𝑓𝑓−1
{�𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃��2} = argmin

𝑓𝑓−1
{�𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 − ∑ �̂�𝑝𝑚𝑚𝑀𝑀

1 �2 (2) 

  
 2.1. Baseline NILM architecture 

As baseline NILM approach we consider a data-driven energy disaggregation methodology without the use of SS 
techniques, adopted in several publications found the literature [39, 43–46]. The baseline NILM consists of 



pre-processing of the aggregated signal, then decomposition of the sequence of frames to a sequence of 
feature vectors followed by processing from a classification/regression algorithm using pre-trained 
appliances’ models to determine device operation as shown in Figure 1. 
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Figure 1: Baseline NILM approach. 

During the pre-processing step filtering and/or down-sampling is performed and then the signal is frame 
blocked. Framing can be done either with constant or with variable frame-length [35, 47]. In the state-based 
baseline NILM approach in order to estimate device consumption on state level a regression algorithm instead of 
a classification algorithm is used [48, 49], while classification is used in event-based approaches to detect devices’ 
On/Off states [39, 45, 46]. 

2.2. Proposed NILM architecture 
The proposed methodology uses a two-stage disaggregation scheme, with the first stage performing power 

consumption estimation for each device by extending the baseline NILM architecture to using Temporal 
Contextual Information (TCI) and the second stage fusing the estimation results of each device using a regression 
model. The block diagram of the proposed two stage NILM architecture using TCI is illustrated in Figure 2. 
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Figure 2: Block diagram of the NILM architecture using device dependent temporal contextual information (TCI). 

Similarly to the baseline NILM the aggregated power consumption signal 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 is initially pre-processed and a 
feature vector 𝑣𝑣𝑡𝑡, 𝑣𝑣𝑡𝑡 ∈ ℝ𝐿𝐿, is extracted for every frame ℎ𝑡𝑡, with 1 ≤ 𝑡𝑡 ≤ 𝑇𝑇, where 𝑇𝑇 is the total number of frames. 
During stage 1 the feature vectors are expanded to 𝐶𝐶𝑚𝑚 using their 𝑁𝑁 adjacent ones, thus creating a temporal 
contextual window 𝑤𝑤 of length equal to 𝑤𝑤 = 2𝑁𝑁 + 1 concatenated frames, i.e. 

𝐶𝐶𝑚𝑚𝑡𝑡 = 𝑇𝑇𝐶𝐶𝐼𝐼𝑚𝑚�𝑣𝑣𝑡𝑡 ,𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡𝑚𝑚 � = [𝑣𝑣𝑡𝑡−𝑁𝑁𝑜𝑜𝑜𝑜𝑡𝑡𝑚𝑚 ,⋯ , 𝑣𝑣𝑡𝑡 ,⋯ , 𝑣𝑣𝑡𝑡+𝑁𝑁𝑜𝑜𝑜𝑜𝑡𝑡𝑚𝑚 ] (3) 

where 𝑇𝑇𝐶𝐶𝐼𝐼𝑚𝑚 is the temporal contextual information expansion function for the 𝑚𝑚𝑡𝑡ℎ device and 𝐶𝐶𝑚𝑚𝑡𝑡  is the 
expansion for the 𝑚𝑚𝑡𝑡ℎ device and the 𝑡𝑡𝑡𝑡ℎ frame. The TCI expansion is performed separately for each device m 
using its optimal temporal contextual information 𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡 = {𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡𝑚𝑚 }, with 𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡  being calculated offline on a 
bootstrap training dataset. The expanded feature vector Cm of each device m is then processed by a regression 
model 𝑓𝑓() and the output of stage 1, �̂�𝑝𝑚𝑚′ , is an initial estimation of the power consumption of each device: 

�̂�𝑝𝑚𝑚′ = 𝑓𝑓(𝐶𝐶𝑚𝑚) (4) 



The power consumption estimations, 𝑃𝑃�′ ∈ ℝ𝑀𝑀, of the 𝑀𝑀 devices from stage 1 are used together with the feature 
vector, 𝑣𝑣𝑡𝑡, in order to calculate enhanced estimations of the power consumptions of the M devices. In detail, in 
the second stage 𝑀𝑀 regression models are receiving as input the power consumption estimates 𝑃𝑃�′ from stage 1 
and the initial feature vector 𝑣𝑣𝑡𝑡. The use of the device estimates 𝑃𝑃�′ allows the second stage regression model 
estimators to model power consumption correlations between different devices. In both stages 1 and 2 the 
regression models of the 𝑀𝑀 devices operate in parallel and separately for each device. The proposed methodology 
combines the integration of temporal contextual information with the device specific operation of each of the 𝑀𝑀 
appliances, thus capturing temporal information individually for each appliance and learning it by the regression 
model. 

3. EXPERIMENTAL SETUP
The proposed two stage NILM architecture with the device dependent temporal contextual information 

presented in Section 2 was evaluated using a number of publicly available datasets and a deep learning algorithm 
for regression. The datasets and parameters set for deep learning regression are presented below. 

3.1. Databases 
Three different publicly available databases were used, namely the ECO [50], the REDD [51] and the iAWE 

[52] database. The ECO and REDD databases consist of different datasets with each of them containing power
consumption recordings from different houses, while iAWE database consists of recordings from one house. The 
evaluated datasets are tabulated in Table 1 with the number of appliances denoted in column ‘#App’. In the same 
column, the number of appliances in brackets is the number of appliances after excluding devices with power 
consumption below 25 W (indicated in red), which were added to the power of the ‘ghost device’, similarly to the 
experimental setup followed in [53, 54]. The next three columns in Table 1 are tabulating the sampling period 𝑇𝑇𝑠𝑠, 
the duration 𝑇𝑇 and the appliance types of each evaluated dataset. 

Table 1: List of evaluated datasets and their properties. 
Dataset # App. 𝑻𝑻𝒔𝒔 𝑻𝑻 Appliance Type Appliances 

ECO-1 7 (6) 1s 7d One-state/ multi-
state (1) fridge, (2) dryer, (3) coffee machine, (4) kettle, (5) washing machine, (6) PC, (7) freezer 

ECO-2 12 (9) 1s 7d One-state/ multi-
state/non-linear 

(1) tablet, (2) dishwasher, (3) air exhaust, (4) fridge, (5) entertainment, (6) freezer, (7) kettle, 
(8) lamp, (9) laptop, (10) Stove, (11) TV, (12) Stereo

ECO-4 8 (8) 1s 7d One-state/ multi-
state/non-linear 

(1) fridge, (2) kitchen appliances, (3) lamp, (4) stereo & laptop, (5) freezer, (6) tablet, (7) 
entertainment, (8) microwave 

ECO-5 8 (6) 1s 7d One-state/ multi-
state/non-linear 

(1) tablet, (2) coffee machine, (3) kettle, (4) microwave, (5) fridge, (6) entertainment, (7) PC,
router & printer, (8) fountain 

ECO-6 7 (6) 1s 7d One-state/ multi-
state/non-linear 

(1) lamp, (2) laptop & printer, (3) routers, (4) coffee machine, (5) entertainment, (6) fridge,
(7) kettle

REDD-1 18 (17) 3s 14d One state/ multi 
state/ continuous 

(1) oven, (2) oven, (3) refrigerator, (4) dishwasher, (5) kitchen-outlets, (6) kitchen-outlets,
(7) lighting, (8) washer-dryer, (9) microwave, (10) bathroom, (11) electric-heat, (12) stove, 

(13) kitchen-outlets, (14) kitchen-outlets, (15) lighting, (16) lighting, (17) Washer-dryer, 
(18) Washer-dryer

REDD-2 9 (10) 3s 11d One-state/ multi-
state 

(1) kitchen-outlets, (2) lighting, (3) stove, (4) microwave, (5) washer-dryer, (6) kitchen-
outlets, (7) refrigerator, (8) dishwasher, (9) disposal 

REDD-3 20 (18) 3s 14d One-state/ multi-
state/non-linear 

(1) outlets-unknown, (2) outlets-unknown, (3) lighting, (4) electronics, (5) refrigerator, (6) 
disposal, (7) dishwasher, (8) furnace, (9) lighting, (10) outlets-unknown, (11) washer-dryer,

(12) washer-dryer, (13) lighting, (14) microwave, (15) lighting, (16) smoke-alarms, (17) 
lighting, (18) bathroom, (19) kitchen-outlets, (20) kitchen-outlets 

REDD-4 18 (16) 3s 14d 
One state/ multi 

state/ continuous / 
non-linear 

(1) lighting, (2) furnace, (3) kitchen-outlets, (4) outlets-unknown, (5) washer-dryer, (6)
stove, (7) air-conditioning, (8) air-conditioning, (9) miscellaneous, (10) smoke-alarms, (11) 
lighting, (12) kitchen-outlets, (13) dishwasher, (14) bathroom, (15) bathroom, (16) lighting, 

(17) lighting, (18) air-conditioning

REDD-6 15 (14) 3s 12d 
One state/ multi 

state/ continuous / 
non-linear 

(1) kitchen-outlets, (2) washer-dryer, (3) stove, (4) electronics, (5) bathroom, (6) refrigerator,
(7) dishwasher, (8) outlets-unknown, (9) outlets-unknown, (10) electric-heat, (11) kitchen-

outlets, (12) lighting, (13) air-conditioning, (14) air-conditioning, (15) air-conditioning

iAWE 10 (9) 1s 7d One state/ multi 
state/ continuous 

(1) fridge, (2) air condition, (3) air condition, (4) washing machine, (5) laptop, (6) iron, (7) 
kitchen, (8) television, (9) waterfilter, (10) watermotor 

The appliances type categorization is based on their operation as described in [55, 56], i.e. one-state devices 
have only on/off status (e.g. resistive lamps, kettles or fridges without significant power spikes), multi-state 
devices have several discrete power consumption states (e.g. washing machines including different washing 
cycles), non-linear loads (e.g. electronics) and devices with continuous power consumption signature, which are 
controlled by power electronics (e.g. air condition) and usually have an exponential decay pattern. In all appliance 
types a peak might appear at the beginning of their signature, e.g. in refrigerators. Characteristic examples of the 
power consumption signatures of each of the four appliance types are illustrated in Figure 3. The ECO-3 and 
REDD-5 datasets were excluded as ECO-3 contains only the aggregated signal and not the power consumptions 
per device thus there is not ground truth to evaluate NILM approaches [50] and REDD-5 has significantly short 
monitoring duration [57]. Regarding the size of the evaluated data, the whole REDD database was used (ignoring 



the gaps in the measurements as in [58]), while one week of data was chosen for the ECO and iAWE databases to 
have similar amounts of training samples as in the REDD dataset. In detail, the week from the 5th of July till the 
11th of July 2012 was selected from the ECO database while the week from the 8th of June till the 14th of June 
was selected for the iAWE database respectively. These particular weeks were selected in order as many as 
possible devices to appear in the aggregated signal and since in previous papers using the ECO and iAWE 
databases [44, 50]  the time interval used has not been reported. 

Figure 3: Different appliance signatures for the four appliance types (A) one-state without significant peak (lamp), (B) one-state appliance 
with significant peak (refrigerator) (C) non-linear appliance (laptop) and (D) continuous appliance with decay (air-conditioning) 

In Table 2 the appliances from each dataset are categorized according to the four different appliances types 
mentioned above. The categorization is done with respect to the electrical properties of the appliances and their 
corresponding power consumption signatures. In addition the percentage of the total energy per appliance type in 
each dataset is given. The id number of appliances (columns ‘App’) correspond to the appliances of each dataset 
as denoted in Table 2. 

Table 2: Distribution of four appliance types, (A) One-State/Multi-State Appliances without significant power peal (B) Appliances with 
significant power peak (C) Non-Linear appliances (D) Continuous appliances, across the 11 evaluated datasets.   

Dataset 
One-State/Multi-State 

without Power-Peak (A) 
One-State/Multi-State with 

Power-Peak (B) Non-Linear (C) Continuous (D) 

Energy App Energy App Energy App Energy App 
ECO-1 57.3% (2), (4), (5) 42.7% (1), (7) 0% - 0% - 
ECO-2 4.7% (3), (8) 46.1% (4), (6) 49.2% (5), (9), (11), (12) 0% - 
ECO-4 6.2% (3), (8) 74.1% (1), (5) 19.7% (2), (4), (7) 0% - 
ECO-5 12.7% (2), (4) 45.6% (5) 41.7% (6), (7) 0% - 
ECO-6 16.6% (4), (7) 21.0% (6) 62.4% (2), (5) 0% - 

REDD-1 13.1% (1), (2), (4), (9), (11) 67.5% (3), (7), (8), (15), 
(16), (18) 19.4% (5), (6), (10), 

(13), (14) 0% - 

REDD-2 11.4% (3), (4), (9) 77.4% (2), (5), (7), (8) 11.2% (1), (6) 0% - 

REDD-3 6.6% (6), (14), (18) 64.0% (1), (3), (5), (7)-
(12), (15), (17) 29.4% (4), (19), (20) 0% - 

REDD-4 3.3% (6) 71.7% (1), (2), (5), (11), 
(13)-(15), (17) 24.0% (3), (4), (12) 1.1% (7), (8), (18) 

REDD-6 7.2% (3), (10) 52.7% (6), (7) 17.5% (1), (4), (5), (8), 
(9), (11), (12) 22.6% (13)-(15) 

iAWE 1.1% (4), (6) 14.7% (1) 10.9% (5), (8) 73.3% (2), (3), (10) 

As can be seen in Tables 1 and 2 the number of appliances as well as the appliance type in the evaluated 
datasets are varying. In particular, the number of appliances vary from six (ECO-1) to 18 (REDD-3) while the 
number of appliance types vary from two (REDD-2) to four (REDD-4/6), thus the 11 evaluated datasets include 
different device combinations and characteristics, which are representative of modern households. Common in all 



datasets is their relatively low sampling period (1-3 sec) and the consideration of active power samplings only, 
resulting to computational simplicity and runtime advantages [59]. Furthermore all three databases were recorded 
within the last decade meaning that the households used were equipped with recent device technology [50, 51]. 

In our experimental setup the real aggregated signal (which includes ghost power from unknown devices) was 
used to evaluate the performance of the proposed NILM methodology, thus making the experimental setup 
identical to real life conditions. Specifically, the input aggregated power consumption signal we used was the 
originally measured by the smart-meter (one sensor only) during data acquisition (similarly to [60]) and not an 
artificially generated aggregated signal created by adding the power consumption signals from a manually selected 
closed-set of devices (synthesized data), as in [29, 61–63], which was criticized in [64] for not corresponding to 
real-world conditions. 

3.2. Pre-processing and Feature Extraction 
During pre-processing the aggregated signal was frame blocked in frames of 10 samples with overlap between 

successive frames equal to 50% (i.e. 5 samples). For every frame a feature vector consisting of the mean, root 
mean square, standard deviation and peak to root mean square value was calculated, similarly to [65], resulting to 
feature vectors of dimensionality equal to four. In detail the mean value is used as the most general information 
about the energy consumption in each frame, while the root mean square value is used as a filtered version of the 
mean value smoothing outliers and small changes (noise) in the power consumption signal [65]. Moreover the 
standard deviation is used in order to capture sudden changes of the power signal within a frame i.e. changes of 
device states, while the peak to root mean square value is selected to capture the maximum change in power 
normalized to the root mean square value of the frame in order to have a quantitative measure of change in power 
within each frame [65]. In order to consider temporal contextual information expanded feature vectors were 
extracted by concatenating to each feature vector the 𝑁𝑁 preceding and the 𝑁𝑁 succeeding vectors as described in 
Section 2. 

For the regression models of stage 1 feed-forward Deep Neural Networks (DNNs) were used. In detail, the 
DNN consisted of three hidden layers with 32 sigmoid nodes per layer. The number of layers and nodes were 
empirically selected after evaluation on a bootstrap training subset with artificially generated aggregated data 
(removed ghost power) as shown in Table 3. A “one vs. all” regression approach was followed thus the output 
layer consisted of one regression node only predicting the power of the 𝑚𝑚𝑡𝑡ℎ appliance. In order to avoid overlap 
between training and test data, each of the evaluated datasets was equally split into two subsets, one for training 
the DNN models and one for evaluating the proposed architecture. 

Table 3: DNN regression performance for different numbers of hidden layers and nodes per layer. 
Layers\ Nodes 4 8 16 32 64 128 

1-Layer 80.40% 87.50% 87.90% 83.70% 86.40% 81.70% 
2-Layers 70.10% 86.40% 86.90% 87.50% 82.70% 83.60% 
3-Layers 80.40% 86.70% 87.90% 88.70% 88.40% 84.20% 
4-Layers 75.40% 87.95% 87.02% 87.15% 85.32% x 

4. RESULTS AND DISCUSSION
The architecture presented in Section 2 was evaluated according to the experimental setup described in Section 

3. The performance was evaluated in terms of estimation accuracy (𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴), as proposed in [66], taking into account
the estimated power �̂�𝑝𝑚𝑚 where 𝑇𝑇 is the number of disaggregated frames and 𝑀𝑀 is the number of disaggregated 
devices including the ghost power, i.e. 

𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 = 1 −
∑ ∑ |�̂�𝑝𝑚𝑚𝑡𝑡 − 𝑝𝑝𝑚𝑚𝑡𝑡 |𝑀𝑀

𝑚𝑚=1
𝑇𝑇
𝑡𝑡=1

2∑ ∑ |𝑝𝑝𝑚𝑚𝑡𝑡 |𝑀𝑀
𝑚𝑚=1

𝑇𝑇
𝑡𝑡=1

(5) 

For evaluating estimation accuracy on device level Eq. 5 was modified and the summation over 𝑀𝑀 appliances 
   was eliminated resulting in Eq. 6   

𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 1 −
∑ |�̂�𝑝𝑚𝑚𝑡𝑡 − 𝑝𝑝𝑚𝑚𝑡𝑡 |𝑇𝑇
𝑡𝑡=1

2∑ |𝑝𝑝𝑚𝑚𝑡𝑡 |𝑇𝑇
𝑡𝑡=1

(6) 

The NILM architecture with temporal contextual information (TCI) was tested for a set of temporal contextual 
windows of different length. The experimental results of the TCI architecture (i.e. the output of stage 1 in Figure 
2) for different temporal contextual window lengths 𝑤𝑤, with same 𝑤𝑤 for all devices and 1 ≤ 𝑁𝑁 ≤ 6, are shown in
Table 4. The best performing length of the temporal contextual window 𝑤𝑤 for each of the evaluated datasets is 
indicated in bold. In the first column (𝑤𝑤 = 1) the performance without TCI is given. In the last column (𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡) the 



estimation accuracy 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴  when using the optimal temporal contextual window separately for each device is 
 shown. 

Table 4: Energy disaggregation performance in terms of estimation accuracy (𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴) for different temporal contextual window lengths w. 
Dataset w=1 w=3 w=5 w=7 w=9 w=11 w=13 𝒘𝒘𝒐𝒐𝒐𝒐𝒐𝒐 
ECO-1 70.0 70.6 70.6 72.8 72.0 71.2 71.1 74.2 
ECO-2 75.0 76.0 76.0 76.1 77.3 76.1 75.1 79.5 
ECO-4 79.7 79.9 80.0 80.1 81.1 80.2 79.2 83.3 
ECO-5 84.5 84.6 84.6 85.7 86.8 85.8 84.9 87.9 
ECO-6 80.8 81.1 81.3 81.5 81.4 80.7 79.7 82.3 

REDD-1 69.2 69.2 71.2 70.2 69.4 69.6 69.7 72.7 
REDD-2 73.8 75.9 76.9 76.9 76.0 75.9 74.9 78.2 
REDD-3 62.5 62.5 63.7 63.6 63.0 63.1 62.8 64.6 
REDD-4 70.7 71.0 71.3 73.5 73.8 72.9 72.1 74.3 
REDD-6 77.9 78.9 79.1 79.1 79.0 78.1 77.1 80.7 
iAWE 63.1 63.8 65.9 66.1 67.9 68.9 67.7 70.4 

As can be seen in Table 4, the use of TCI improves energy disaggregation performance when compared to the 
baseline NILM system (𝑤𝑤 = 1) across all evaluated datasets. In the case of using temporal contextual window of 
same length for all devices, i.e. 𝑤𝑤 = 3 up to 𝑤𝑤 = 13, the best performing setup varies from 𝑤𝑤 = 5 to 𝑤𝑤 = 11. In 
general the datasets with optimal 𝑤𝑤 in low lengths (𝑤𝑤 ≤ 5) mostly have one/multi-state types of devices, while 
datasets with higher optimal TCI lengths (𝑤𝑤 ≥ 9) are dominated by devices of non-linear/continuous type. The 
NILM performance using TCI is further improved when the optimal temporal contextual window length per device 
is used (𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡). Specifically the use of an optimized 𝑤𝑤 value for each device instead of a flat value for all devices 
improves the performance from 0.5% (REDD-4) up to 2.2% (ECO-2/REDD-1), in terms of absolute improvement. 
The use of device dependent TCI was found to improve the performance across all evaluated datasets and 
especially in the datasets with approximately equal energy consumption distribution of the appliances types, like 
datasets ECO-2 and REDD-1. 

Next we evaluated the performance of the two-stage methodology presented in Section 2. The evaluation 
results of the proposed NILM architecture are shown in Table 5. For the purpose of direct comparison of the two-
stage architecture with the TCI approach (stage 1), the same training and test subset division was used in all 
evaluated datasets. The best achieved performance of TCI approach for each of the evaluated datasets shown in 
Table 4 is repeated in Table 5 as well. 

Table 5: Energy disaggregation performance in terms of estimation accuracy for the two stage NILM methodology. 
Dataset baseline 

NILM 
TCI 

(stage 1) w=1 w=3 w=5 w=7 w=9 w=11 w=13 𝒘𝒘𝒐𝒐𝒐𝒐𝒐𝒐 

ECO-1 70.0 72.8 70.6 72.7 73.2 73.7 67.6 67.1 67.5 76.1 
ECO-2 75.0 77.3 75.1 76.6 76.5 76.4 79.9 76.1 76.9 84.1 
ECO-4 79.7 81.1 82.3 83.1 82.9 83.4 83.2 82.9 82.1 86.4 
ECO-5 84.5 86.8 87.3 87.3 87.4 87.3 89.8 87.4 87.6 89.9 
ECO-6 80.8 81.5 81.1 82.0 80.7 80.5 80.5 80.4 80.3 82.8 

REDD-1 69.2 71.2 70.0 72.9 73.6 69.2 70.1 69.4 67.2 73.9 
REDD-2 73.8 76.9 74.3 74.4 77.9 76.4 75.3 71.9 73.0 80.1 
REDD-3 62.5 63.7 66.6 68.7 68.9 67.1 63.2 62.8 60.8 69.7 
REDD-4 70.7 73.8 73.9 73.2 74.3 74.7 73.0 73.1 72.9 76.3 
REDD-6 77.9 79.1 78.5 79.2 79.1 77.4 77.5 77.7 76.7 81.3 
iAWE 63.1 68.9 63.9 64.0 66.3 64.7 66.9 71.4 64.1 73.1 

As can been seen in Table 5 the proposed two-stage methodology outperforms the TCI NILM architecture 
(stage 1) in all evaluated datasets. In detail, the highest performance improvement (when considering temporal 
contextual window of same length for all devices) in terms of 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴  values was observed in the REDD-3 dataset 
(+5.2% for 𝑤𝑤 = 5) followed by the REDD-2/ECO-5 dataset (+3.0%, for 𝑤𝑤 = 5) while the lowest improvement 
was found in the REDD-6 dataset (+0.1%, for 𝑤𝑤 = 3), when compared to the TCI NILM. Moreover the best energy 
disaggregation performance for ten out of eleven datasets was observed for temporal contextual window lengths 
between 3 ≤ 𝑤𝑤 ≤ 11 with the majority of the datasets having an optimal temporal contextual window length 
between 5 ≤ 𝑤𝑤 ≤ 9. In the case of ECO database (with only 6-9 appliances per dataset) the two stage NILM 
methodology offered an improvement of 0.5%-3.0% in terms of 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 , while the REDD database (with 10-18 
appliances per dataset) offered an improvement of 0.1%-5.2%. When considering the optimal temporal contextual 
window length per device (column ‘𝑤𝑤𝑜𝑜𝑜𝑜𝑡𝑡’ in Table 5) the energy disaggregation improvement offered by the two-
stage NILM architecture is even higher. In particular, the highest performance improvement was observed in ECO-
2 and ECO-4 datasets (+5.2% and +3.0%, respectively), while the lowest improvement was observed in ECO-5 



dataset (+0.1%), when compared to the TCI NILM. When compared to the baseline NILM the highest performance 
improvement is +10.0% (iAWE) and the lowest one is +2.0% (ECO-6). 

To further compare the results with the NILM methods proposed in literature the very recent work of [67] was 
used, which includes a summary of NILM performances for the REDD database for different setups. Approaches 
using the most popular experimental setup using houses 1,2,3,4 and 6 with all devices and measuring performance 
using the 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴  metric were considered. Moreover the results from [67] were extended by including recently 
published results [70, 72] on the same experimental setup. It is worth mentioning that although the same data and 
the same accuracy metric was used, direct comparison is not assured as data splits or pre-processing might vary 
between the compared approaches (such information is not provided in most papers found in bibliography). The 
results are tabulated in Table 6. 

Table 6: Comparison of power disaggregation accuracy values (𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴) for recently proposed NILM methodologies. The reported performance 
is the average 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴  across houses 1,2,3,4 and 6. (Methods with a star are not directly comparable due to a reduced number of devices) 

NILM Method Year Dataset 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴  
General Sparse Coding [69] 2010 REDD-1/2/3/4/6 56.4% 
Discriminating Sparse Coding [69] 2010 REDD-1/2/3/4/6 59.3% 
Temporal ML [71] 2011 REDD-1/2/3/4/6 53.3% 
Powerlets-PED [70] 2015 REDD-1/2/3/4/6 72.0% 
Greedy Deep Sparse Coding [68] 2017 REDD-1/2/3/4/6 62.6% 
Exact Deep Sparse Coding [68] 2017 REDD-1/2/3/4/6 66.1% 
Supervised GSP* [72] 2018 REDD-1/2/3/4/6 67.8% 
Unsupervised GSP* [72] 2018 REDD-1/2/3/4/6 74.6% 
Proposed TCI method 2020 REDD-1/2/3/4/6 76.3% 

As can be seen in Table 6 the proposed fusion methodology outperforms all other reported approaches on the 
REDD-1/2/3/4/6 dataset setup. In detail the proposed approach outperforms the Powerlets approach [70] by 4.3%, 
while it performs 1.7% better than supervised GSP proposed in [72]. However it must be noted that the approach 
in [72] uses a reduced number of appliances and thus cannot be directly compared with the other NILM 
approaches. 

Analysis of the proposed two-stage NILM methodology on device level was performed. In Table 7 the energy 
disaggregation improvement in terms of absolute increase of device estimation accuracy (𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ) and the 
corresponding optimal temporal contextual window length per device, respectively, are presented. The first 
column in Table 7 denotes the type of each appliance as defined in Tables 1 and 2. 

Table 7: Energy disaggregation performance increase for each device in terms of estimation accuracy 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  when using the optimal temporal 
contextual window length w per device. 

Type Appliance ECO REDD iAWE 
1 2 4 5 6 1 2 3 4 6 1 

D Air conditioner 1.4 (3) 9.7 (11) 26.5 (9) 
A Air exhaust 0.0 (1) 
A/B/C Bathroom-Gfi 0.9 (13) 13.1 (3) 0.1 (11) 2.4 (3) 
A Coffee Maker 1.8 (3) 0.2 (3) 
B Dishwasher 4.8 (5) 4.9 (5) 0.0 (1) 3.6 (13) 0.5 (3) 
A Disposal 0.5 (3) 0.0 (1) 
A Dryer 0.6 (7) 
A Electric heat 1.9 (3) 0.0 (1) 
C Electronics 4.3 (11) 10.5 (7) 
C Entertainment 2.3 (5) 1.8 (7) 1.2 (7) 3.2 (3) 
B Freezer 3.4 (5) 3.4 (9) 0.4 (7) 
B Fridge 2.8 (5) 2.8 (5) 17.1 (5) 0.6 (3) 5.1 (3) 4.8 (11) 5.6 (5) 3.5 (13) 2.0 (3) 0.6 (5) 
B Furnace 60.8 (11) 5.4 (13) 

Ghost 1.1 (3) 2.9 (3) 1.0 (3) 1.0 (9) 0.3 (11) 0.8 (3) 0.0 (1) 0.1 (11) 0.0 (1) 0.4 (3) 
A Iron 0.0 (1) 
A Kettle 3.4 (7) 2.4 (3) 
A/B/C Kitchen 0.0 (1) 6.1 (7) 8.4 (5) 7.7 (3) 2.8 (5) 14.2 (3) 
A Lamp 0.2 (5) 32.2 (13) 0.1 (3) 
C Laptop 12.7 (9) 1.1 (7) 
B Lighting 17.8 (7) 4.9 (5) 8.4 (7) 2.0 (7) 5.8 (9) 
A/B Microwave 0.5 (9) 0.0 (1) 5.7 (7) 0.7 (3) 9.6 (5) 
B/C Out-Unknown 4.6 (7) 1.1 (9) 3.0 (11) 
A Oven 0.0 (1) 
C PC + printer 2.3 (5) 3.3 (13) 
C Stereo 1.9 (7) 0.2 (7) 
A Stove 7.6 (3) 6.6 (7) 9.4 (3) 
C TV 0.9 (9) 0.4 (13) 
B Washer-Dryer 7.2 (7) 5.7 (11) 14.1 (7) 17.4 (7) 
A WM 0.0 (1) 0.0 (1) 
D Watermotor 44.7 (11) 



As can be seen in Table 7 appliances belonging to type A (i.e. single or multi-state appliances with their power 
consumption signature not varying in time, like air exhaust, disposal, electric heat, iron, lamp) are not significantly 
benefiting by the two-stage NILM methodology with temporal contextual information since the energy 
disaggregation improvement for type A devices ranges between 0.0%-3.4% with average improvement of 1.6%. 
Type B appliances (i.e. devices without strong temporal behaviour but with significant peak-power at the 
beginning of their power signature, like dishwasher, freezer, fridge, washer-dryer) were found to benefit from the 
proposed methodology with the energy disaggregation improvement for type B appliances ranging between 0.4%-
17.8% with average improvement of 8.6%. In the case of non-linear appliances (appliances type C, e.g. electronic 
devices, entertainment, laptops), the power signature is usually strongly varying with time and the temporal 
contextual information can capture well their dynamic characteristics, with the energy disaggregation 
improvement for type C appliances ranging between 0.2%-12.7% with average improvement of 3.8%. As regards 
continuous devices (appliances type D, like air-conditioner and watermotor) their power signature appears in the 
form of an exponential rise or decay including significant power-peaks at the onset of their signature. Due to their 
slowly but strongly time varying behaviour their amplitude variation can be captured by temporal contextual 
information and misclassification with multi-state appliances of the similar consumption amplitude levels can be 
reduced, with the energy disaggregation improvement for type D devices ranging between 1.4%-44.7% with 
average improvement of 28.6%. The effect of the two-stage temporal contextual information NILM methodology 
proposed in Section 2 on each of the four appliance types is summarized in Table 8. 

Table 8: Average 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴  improvement and temporal contextual window length for four appliance types (A,B,C and D) 

Appliance Type Average optimal temporal contextual 
window length w Average 𝑬𝑬𝑨𝑨𝑨𝑨𝑨𝑨 improvement 

A (One-State/Multi-State without Power-Peak) 2.92 1.6% 
B (One-State/Multi-State with Power-Peak) 7.38 8.6% 

C (Non-Linear) 8.30 3.8% 
D (Continuous) 9.00 28.6% 

As can be seen in Table 8, the energy disaggregation performance in type D devices improves by almost 30%, 
followed by type B benefiting by almost 10%. Also the average optimal temporal contextual window length for 
appliance types D and B is 𝑤𝑤 = 9.00 and 𝑤𝑤 = 7.38, respectively. For the case of non-linear appliances (type C) 
the performance improvement is almost 4%, however the average optimal window length is greater than the one 
of type B, which is most probably owed to the longer duration of patterns as well as the non-repetitive 
micropatterns within non-linear appliances. Furthermore the two-stage architecture improves the detection of 
continuous or non-linear appliances as they can be highly related to the daily routine of the users/consumers or 
even be related/dependent to each other as for example in the case of TV and Entertainment appliances which are 
usually interconnected. For such devices, with inter-device dependencies or daily routine patterns, the apriori 
knowledge of the power consumption of other devices they operate together with or devices with similar daily 
routine (i.e. usually operating or not operating simultaneously) can be beneficial for the estimation of their power 
consumption. Such devices can benefit from the fusion stage of the proposed architecture in which estimates of 
the power consumption of the other appliances (calculated from the 1st stage) are used as input. Except this, 
detection of devices with power spikes, i.e. peaks that appear during the switching on of electrical motors, e.g. in 
fridges or freezers, was found to benefit from the fusion stage of the proposed methodology, since the presence 
of a power spike within a frame affects the distribution of energy among the set of devices to be disaggregated 
which is implicitly expressed by the power consumption estimates of each device detector computed at the first 
stage of the proposed architecture. The power signature for each appliance type was illustrated in Figure 3. 

5. CONCLUSION
A two-stage methodology for energy disaggregation using temporal contextual information was presented. 

The methodology extends the baseline non-intrusive load monitoring (NILM) approach by employing a two-stage 
disaggregation and using temporal expansion of the feature vectors within a time window of variable length. The 
proposed methodology was evaluated using the real aggregated signal as measured by the smart-meter across 
various datasets of different sampling frequency, number and types of appliances, demonstrating improvement of 
performance across all datasets. The maximum improvement in terms of absolute increase of accuracy was equal 
to 10.0% when using appliance-driven temporal contextual information lengths and two-stage disaggregation. In 
detail the most significant improvements were observed for devices with power-peaks and exponential decay 
power consumption signatures such as refrigerators and air conditions. Moreover improvements in energy 
disaggregation performance were observed for appliances with strong time varying power signatures like 
electronic devices e.g. stereos, laptops or entertainment electronics. With the use of the fusion stage inter-device 
dependencies or daily routine patterns can be modelled and power spikes can be found, thus resulting in further 
improvement of the disaggregation accuracy. 
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