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Abstract. This work presents multi-scale model predictive control de-
sign scheme employing wavelet basis function. The proposed scheme is es-
tablished upon multi-scale subspace identification technique. It is aimed
to utilize the proficiency of wavelets in multi-scale data projection and
the robustness of subspace identification during estimation in a model
predictive control set-up. The multi-scale state-space models estimated
at different scales are used for output prediction and for designing predic-
tive control strategy. The competence of the proposed approach is estab-
lished for constrained load-following problem of a pressurized water-type
nuclear reactor. In addition, the fault-tolerant capability of the control
algorithm is also tested.

Keywords: MPC, Multi-resolution, Nuclear reactor, PWR, Subspace
Identification, Wavelet

1 Introduction

In the current scenario, model predictive control (MPC) is seen to be as a preva-
lent advanced modern control design strategies in the process industries [1].
Its wide applicability is because of its capability to handle process constraints
with an ease in adaptability to ever changing operating settings in a plant [2].
MPC solves an optimization problem at each sampling instant to regulate fu-
ture control input actions over a time horizon. In the receding horizon-based
MPC strategy, only the first control move in the series is fed to the process
and the same strategy is reiterated at the succeeding time instant [3]. Primar-
ily, MPC requires a suitable mathematical model of the underlying process for
designing controller. In case of complex multi-scale processes such as nuclear
reactor, it is imperative that an appropriately defined model is used to attain
good dynamic response. A nuclear reactor consists of simultaneously evolving
slow and fast modes exhibiting behaviour in multiple time-scales. Traditionally,
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it is modelled at single-scale using first principles approach. However, such a
system representation is not preferable for control purposes particularly in re-
furbishing control design technique in an existing nuclear plant which has aged
over time. It has been reported in literature that modelling of multi-scale systems
by single-scale approaches may degrade system response and sometimes it may
cause ill-conditioning. Thus, the adopted modelling and control design approach
should consider the existence of time-scales to avoid performance deterioration.

Over the years, different modeling approaches exploiting two and three time-
scales property of nuclear reactor system have been proposed [4]. However, dif-
ferent multi-scale aspects in a process are unclear in measurement space. Thus,
it is crucial to have process visualization in a multi-resolution set-up. Wavelets
are the new families of generalized basis functions for the better representation
of signals simultaneously in time and scale. The modelling problem is often sim-
plified by reformulating in multi-resolution using wavelet basis functions. The
objective translates to building linear descriptions at different resolution of a
non-linear system. Model identification employing wavelet basis is effective ow-
ing to its exceptional approximation capability in multi-resolution. Wavelet basis
function efficiently extracts local available knowledge from the data in time-scale
plane. Therefore, the wavelet identified model is capable of capturing complex-
ities such as non-linearity, integrating, and multiple time-scale behaviour effec-
tively in fewer parameters.

The integration of wavelets and wavelet-like basis with MPC is suggested
by Elias-Juarez and Kantor [5]. An approach for improving computational ef-
ficiency of MPC for systems with multiple time-scales using wavelet basis is
proposed in [6]. Feng et al. [7] developed a technique for simultaneous MPC and
identification involving time-scale system modelling. The notion of multi-scale
system modelling on dyadic trees formulated by Basseville et al. [8] has been
employed in literature for developing multi-scale MPC techniques. For instance,
a multi-scale MPC strategy on the dyadic trees is developed by Stephanopoulos
et al. [9, 10]. Zhang and Bentsman [11] suggested wavelet approximation-based
MPC approach for a non-linear system. A MPC scheme using the notion of con-
sistency in wavelet projections is proposed in [12]. Recently, a nonlinear MPC
using wavelet series of differentially flat systems has been developed [13]. How-
ever, a different stance has been adopted in this proposed work. Here, black-box
state-space models are identified directly from measurements at different scales
and are used for output prediction and then employed in designing control law.
Hence, enhancing the modelling in multi-resolution results into effective control
of modes in multiple time-scales.

The primary objective of the proposed work is to formulate a predictive
control strategy using wavelet-based state-space identified model. A non-linear
process is estimated by a set of linear models operating at distinct time-scale.
The identified models are employed to predict the output behaviour only at
those scales where the process is evolving. The output predictions at significant
scales are then fused using inverse wavelet operator. These fused or synthesized
predictions are then used for optimization to find future control input. The
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efficacy of the technique is validated in the load-following mode of operation of
a pressurized water-type reactor (PWR).

The rest of the paper is organized as follows: Section 2 presents a brief intro-
duction to multi-scale subspace identification. Section 3 proposed model predic-
tive control strategy in multi-resolution. Application of proposed technique to
PWR is given in Section 4. Finally, conclusions are drawn in Section 5 indicating
main contributions.

2 Multi-scale Subspace Identification

Multi-scale subspace identification (MSID) is a projection space or time-scale
domain based modelling technique for the estimation of system states directly
from the wavelet projection of measurements. It establishes a definite correspon-
dence in time-scale domain with the evolution of low order state-space sub-band
models at different resolutions thereby spanning complete frequency band of the
underlying process. MSID can be divided into two stages wherein the first stage
is to represent the data in multi-resolution and the next stage is to identify
models from the wavelet projections.

2.1 Multi-scale Data Representation

Wavelet transform is one of the established mechanism for representing measure-
ments in multi-resolution. Wavelets are known as approximate Eigenfunctions
of the convolution operator. They decouple system modes with sharp decay
in correlation structure in projection space. Transforming the measurements to
multi-resolution facilitates monitoring of various modes present in the data-set at
different scales. The wavelet transform in multi-scale subspace identification can
be implemented by integer discretization scheme as shown in Fig. 1 which demon-
strates two level of wavelet decomposition. The measurements are recorded at
scale j = 0 and they are known up to time instant k. A window of 2J observa-
tions is composed and decomposed into detail spaces at j = 1, 2, . . . , J and an
approximation space at j = J+1. The wavelet decomposition is then performed
on the one time step ahead translated window at instant k + 1 window. The
similar procedure is iterated thereafter.

Consider recorded input (U) and output (Y ) time-series data. The wavelet
transformation is then given by

Uw =
[
UT
J+1 UT

J UT
J−1 · · · UT

1

]T
= WU ;

Y w =
[
Y T
J+1 Y T

J Y T
J−1 · · · Y T

1

]T
= WY ;

(1)

where Uw and Y w are called as wavelet coefficients and comprised of approxi-
mation and details. The wavelet operator W is given by

W =

[
J

Π
j=1

HT
j GT

J

J−1
Π
j=1

HT
j GT

J−1
J−2
Π
j=1

HT
j · · · GT

1

]T
,

=
[
H̃T

J G̃T
J G̃T

J−1 · · · G̃T
1

]T
,

(2)
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Fig. 1. Implementation of wavelet transform.

where H̃J

(
1× 2J

)
and G̃J

(
2J−j × 2J

)
are matrices of wavelet filter coefficients

[14]. For Haar wavelet and J = 2, W is given by

W =

 H̃2

G̃2

G̃1

 =
1

2


1 1 1 1
1 1 −1 −1√
2 −
√

2 0 0

0 0
√

2 −
√

2

 . (3)

Measurements can be reconstructed back from wavelet coefficients by applying
inverse wavelet transform (W ) as

Û = WUw; Ŷ = WY w, (4)

where Û and Ŷ are reconstructed input and output respectively. For orthogonal
wavelet transform, W = W−1 = WT .

An efficacious implementation of wavelet-based technique demands meticu-
lous selection of wavelet and scale. The technique proposed here is built on Haar
wavelet due to its aptness in closely locating features in time domain. Due to
compact support it does not insert delay and calculates the transformation em-
ploying measurements from the present and past only. Scale or maximum depth
of decomposition (J) is selected such that a minimum amount of data sets should
strike the support of each basis and may be calculated from Fourier transform
such that the magnitude of Fourier transform is above the noise floor-level [15],
i.e. ∣∣U (π/2J)∣∣ ≥ |U (π/f)| ,

∣∣Y (π/2J)∣∣ ≥ |Y (π/f)| . (5)

Usually, all of the scales do not contribute in the process and for a parsimonious
model description, computation of significant scales is critical. The prediction
ability of estimated models may be utilized to compute significant scales [16].
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2.2 Subspace Identification at Significant Scales

Consider a linear time invariant (LTI) system in innovation form at jth scale,
given by

xj [k + 1] = Aj xj [k] +Bj uj [k] +Kj ej [k],
yj [k] = Cj xj [k] +Dj uj [k] + ej [k],

(6)

where state xj [k] ∈ Rnj , input uj [k] ∈ Rmj , output yj [k] ∈ Rlj , innovation
ej [k] ∈ Rlj , and error covariance matrix E(ej [k]eTj [k]) = Sj . Aj ∈ Rnj×nj ,

Bj ∈ Rnj×mj , Kj ∈ Rnj×lj , Cj ∈ Rlj×nj , and Dj ∈ Rlj×mj are respective system
matrices at jth scale. Let, the measurements are recorded for k ∈ {1, 2, . . . , N}
and have been transformed into wavelet domain. Define, Up,j ∈ Rimj×(N−2i+1)

and Uf,j ∈ Rimj×(N−2i+1) as past and future Hankel matrices formed using input
wavelet coefficients at jth scale respectively as

Up,j =


uj [1] uj [2] · · · uj [N − 2i+ 1]
uj [2] uj [3] · · · uj [N − 2i+ 2]

...
...

. . .
...

uj [i] uj [i+ 1] · · · uj [N − i]



Uf,j =


uj [i+ 1] uj [i+ 2] · · · uj [N − i+ 1]
uj [i+ 2] uj [i+ 3] · · · uj [N − i+ 2]

...
...

. . .
...

uj [2i] uj [2i+ 1] · · · uj [N ]

 .
(7)

Similarly, other Hankel matrices, Yp,j ∈ Rilj×(N−2i+1), Yf,j ∈ Rilj×(N−2i+1),
Ep,j ∈ Rilj×(N−2i+1), and Ef,j ∈ Rilj×(N−2i+1) can be defined. Also, let Xp,j ∈
Rnj×(N−2i+1) and Xf,j ∈ Rnj×(N−2i+1) as

Xp,j =
[
xj [1] xj [2] · · · xj [N − 2i+ 1]

]
,

Xf,j =
[
xj [i+ 1] xj [i+ 2] · · · xj [N − i+ 1]

]
.

(8)

Multi-scale subspace identification estimates extended observability matrix from
the recorded data at different scales. Thus, from (6)–(8), it follows that

Yf,j = Γi,jXf,j + Lu,jUf,j + Le,jEf,j ,
= Lx,jWp,j + Lu,jUf,j + Le,jEf,j ,

(9)

where Γi,j ∈ Rilj×nj is the extended observability matrix. Lu,j ∈ Rilj×imj and
Le,j ∈ Rilj×ilj are the deterministic and stochastic Toeplitz matrices. Lx,j is the
product of controllability and observability matrix. From (9), we can write,

[
Lx,j Lu,j

]
= Yf,j

[
Wp,j

Uf,j

]†
, (10)

whereWp,j =
[
Y T
p,j UT

p,j

]T
and [.]

†
represents the Moore-Penrose pseudo-inverse.

Lx,j can be estimated using QR decomposition. The SVD can be utilized on the
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weighted Lx,j matrix to calculate observability matrix and thereafter Aj and Cj

matrices as

Âj = Γ̂ †i−1,j

([
0(i−1)lj×lj I(i−1)lj×(i−1)lj

]
× Γ̂i,j

)
,

Ĉj =
[
Ilj×lj 0lj×(i−1)lj

]
× Γ̂i,j .

(11)

Le,j can be estimated by projecting (9) onto a basis orthogonal to
[
WT

p,j UT
f,j

]T
.

Now, assume ēj [k] = F−1j ej [k] with identity covariance matrix, we can extract
Kj as [17], [

F̂j

K̂jF̂j

]
=

[
Ilj×lj 0lj×nj

0(i−1)lj×lj Γ̂i−1,j

]−1
Le,j

[
Fj

0(i−1)lj×lj

]
. (12)

where 0lj×nj
and Ilj×lj represent zero and identity matrices respectively. The re-

maining matrices can be computed as the least squares estimate of the predictor
defined by

ȳj [k] = GjBK,juj [k] + D̄juj [k] +Gjx0,j + ēj [k], (13)

where,

ȳj [k] = F̂−1j

(
Ij − Ĉj

(
qIj − ÂK,j

)−1
K̂j

)
yj [k],

ÂK,j =
(
Âj − K̂jCj

)
, BK,j = Bj − K̂jDj ,

Gj = F̂−1j Ĉj

(
qIj − ÂK,j

)−1
, D̄j = F̂−1j Dj .

(14)

3 Model Predictive Control With Multiple Resolutions

MPC in multi-resolution set-up combines multi-scale subspace identification with
the predictive controller. In MPC, a set of future controller actions are defined
by optimizing a quadratic cost function. In the philosophy of receding horizon-
based MPC, only the first of the control action is executed as the present control
action. At the next sampling instant, the optimization is solved again and the
similar procedure is then reiterated.

3.1 Problem Formulation

MPC problem can be defined as follows:
Given a future set-point

rf =
[
rT [t+ 1] rT [t+ 2] · · · rT [t+Np]

]T
,

and a prediction of output

ŷf =
[
ŷT [t+ 1] ŷT [t+ 2] · · · ŷT [t+Np]

]T
,

find a control input sequence

uf =
[
uT [t+ 1] uT [t+ 2] · · · uT [t+Nc]

]T
such that the following cost function is optimized:

(ŷf − rf )
T
Qf (ŷf − rf ) +∆uf

TRf∆uf , (15)
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subjected to

Umin ≤ uf ≤ Umax; ∆Umin ≤ ∆uf ≤ ∆Umax;
Ymin ≤ yf ≤ Ymax; ∆Ymin ≤ ∆yf ≤ ∆Ymax.

(16)

where,

Umin =
[
uTmin · · · uTmin

]T
, ∆Umin =

[
∆uTmin · · · ∆uTmin

]T
,

Ymin =
[
yTmin · · · yTmin

]T
, ∆Ymin =

[
∆yTmin · · · ∆yTmin

]T
,

and the same notation holds with subscript max terms. Np and Nc are prediction
and control horizons, with Nc≤ Np. Rf and Qf are positive definite and positive
semi-definite weighing diagonal matrices penalizing rate of change of input and
error between output and set-point respectively.

3.2 Prediction at Significant Scale

MPC depends up on the mathematical description of the process as a part of
an optimization strategy. It computes future behaviour of the control input to
determine the desired process performance. In the proposed scheme, the output
predictions are first calculated from the multi-scale state-space identified model
as a function of past values of inputs and outputs and of future control sig-
nals. The principle behind the advocated scheme is that the MPC banks upon
a model of the process can use multi-scale model description to determine con-
trol actions at scales at which they manifest themselves. The estimated models
are working at different time-scales thereby able to capture different phenomena
occurring in the underlying process suitably. Thus, the resulting control action
that is implemented at measurement space will contain contributions from other
scales thereby enhancing performance. The block diagram depiction of the sug-
gested MPC scheme is shown in Fig. 2. The inputs to and outputs from the
multi-scale model are real-valued variables in measurement domain. The analy-
sis half transforms the measurements at multiple resolutions using the wavelet.
The significant scales are calculated for parsimonious model identification. The
identified models are then employed in predicting outputs at respective scales.
The central idea is to have predictions in the multi-resolution around significant
scales using state-space identified models. The predictions are then combined
by projecting wavelet prediction coefficients into measurement space using in-
verse wavelet operator. The synthesized predictions are then used in optimizer
to design the future control input. The wavelet-based model has been proved
to be of good capability. Furthermore, it has been found that the multi-scale
state-space identified model performs better prediction of output in contrast to
other classical single-scale identified models in terms of least-squares sense [18].

4 Application to Pressurized Water Reactor

4.1 Mathematical Model of PWR

For system identification and control purposes, the mathematical model of PWR
can be suitably illustrated by point kinetics equation coupled with thermal hy-
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ProcessOptimizer

Reference
Control Input

Controlled 
Output

+

+

Subspace 
Identification

Subspace 
Identification

Subspace 
Identification

MSID Model
Constraints

Fig. 2. Block diagram of the proposed control scheme for a decomposition depth of
two.

draulics model considering six groups of delayed neutrons precursors’ concen-
tration. Here, the developed model is based on the following assumptions. The
primary and secondary loops are modeled in which the primary loop is charac-
terized by a nonlinear lumped model along with constant mass flow rate and
pressure. The heat generated in the core is transferred by single-phase coolant
only. The reactivity and power are considered as reactor system’s input and
output respectively [19].

dP

dt
=

ρT −
6∑

i=1

βi

Λ
P +

6∑
i=1

βiCi

Λ
, (17)

dCi

dt
= λi (P − Ci) , i = 1, 2, . . . , 6, (18)

dTf
dt

= HfP − γf (Tf − Tc) , (19)

dTc
dt

= −Hc (Tout − Tin) + γc (Tf − Tc) , (20)

dTin
dt

=
1

τcold
(Tcold − Tin) , (21)

dThot
dt

=
1

τhot
(Tout − Thot) , (22)
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dTsg
dt

= − 1

τsg
(Tsg − Thot)−D1LT , (23)

Tcold = D2Tsg −D3Thot, (24)

ρT = ρRR + αfTf + αcTc. (25)

where P is normalized neutronic power; λi, βi, and Ci indicate decay constant,
fraction of delayed neutrons, and normalized delayed neutron precursors’ concen-
tration of ith group respectively; Λ represents prompt neutron life time; ρRR and
ρT respectively denote reactivity contributed by regulating rod (RR) movement
and the total reactivity; αc and αf are temperature coefficients of reactivity of
coolant and fuel respectively; Tf is fuel temperature; Tout and Tin are core-outlet
and inlet temperatures respectively; Tc = (Tout + Tin) /2 denotes average coolant
temperature; Hf and Hc define the rate of rise of fuel and coolant temperatures
respectively; γf and γc indicate the inverse of mean time for heat transfer from
fuel to coolant and from core-outlet to inlet respectively; Tcold, Thot, and Tsg
respectively symbolize cold leg, hot leg and steam generator temperatures and
are related to their respective time constants τcold, τhot, and τsg; D1, D2, and
D3 are constants; LT is turbine load. Values of constants used in (17)–(25) are
taken from [19,20] and listed in Table 1.

4.2 Model Estimation

Initially, the nuclear reactor is considered to be operating at 50% full power. The
model defined by (17)–(25) is then perturbed by the movement of RR. Fig. 3
and Fig. 4 respectively depict variation in reactivity due to the movement of RR
and the corresponding reactor power output superimposed with 40 dB additive
white Gaussian noise. The reactivity and power form the estimation data set for
system identification exercise.

The Fourier transform of estimation data set is computed for finding the
decomposition depth. The Fourier transform of measurements is shown in Fig. 5.
It can be seen that the magnitude of the Fourier transform reaches the noise
floor level roughly afterwards π/124 rad/sample. Thus, the maximum scale for
decomposition is selected such that π/2J ≥ π/124, i.e. J = 6. Measurements are
then transformed using Haar wavelet up to J = 6. An explanatory data analysis
technique based on scatter plot is adopted to find the significant scales. The
scatter plot between observed value and one-step-ahead prediction is plotted
in Fig. 6. It can be seen from Fig. 6 that scales j = 1 to 3 do not consist of
any critical knowledge as compared to scales j = 4 to 6, thus the former can
be ignored for model estimation. Hence, the models are estimated only at scale
j = 4, 5, 6 and J + 1 = 7 using Akaike’s Information Criterion.

4.3 Control Design

In this study, a load-following transient is considered to examine quintessential
load variations of ramp and step type. The transient is described as follows:
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Fig. 3. Assumed reactivity variation (estimation input data).
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put data).
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Table 1. Neutronic and thermal-hydraulic parameters

Group, i 1 2 3 4 5 6
λi(s

−1) 0.0125 0.0308 0.1152 0.3109 1.240 3.3287
βi 0.000216 0.001416 0.001349 0.00218 0.00095 0.000322

Hf (◦Cs−1) Hc(s
−1) γf (s−1) γc(s

−1) αf

(◦C−1) αc

(◦C−1) Λ(s)
102.7 0.2401 0.1792 0.0124 −2× 10−5 −5× 10−5 5× 10−4

τcold(s) τhot(s) τsg(s) D1(◦Cs−1) D2 D3

7.0 5.0 11.3 3.746 0.7005 −0.2995

0
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)|
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Fig. 5. The discrete-time Fourier transform of the input and output signal.

Initially, the desired power is maintained at 50% full power for 200 s. Then it is
varied from 50% to 90% full power in 480 s and held constant at 90% full power
for the next 300 s; then it is reduced from 90% to 75% full power in 180 s; held
at 75% full power for 300 s; then a 10% step increase is applied at 1460ths; held
at 85% full power for 500 s; then a 10% step decrease is applied at 1960ths and
held at 75% full power for 540 s [19,20].

The values of prediction and control horizon for simulation are set to NP = 20
and NC = 5, respectively. Here, constraints on input and output are also taken
into account, where the constraints on input determine the insertion/withdrawal
limit and the rate of movement of RR whereas the constraint on output limits
the maximum power output. For this case study, the following constraints are
considered:

0.48 ≤ P ≤ 0.92,
−5× 10−3 ≤ ρRR ≤ 5× 10−3,
−1× 10−5 ≤ ∆ρRR ≤ 1× 10−5.

(26)
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Fig. 6. Scatter plot between observed output and one-step-ahead prediction.

During normal operations of load-following, te set-point variation and the
performance of the proposed controller during set-point tracking in the presence
of process constraints is shown in Fig. 7. It can be observed that the controller
tracks the variation smoothly as envisaged. It is able to handle the 5%/min ramp
as well as the 10% step variations in the load. The control signal (ρRR) and rate
of change of controlled signal (∆ρRR) variations are also shown in Figs. 8 and
9, respectively.

In addition to the normal mode of operation, the fault-tolerant performance
of the proposed controller is also tested in case of an actuator-based fault. Here, a
fault due to sudden drop of RR is simulated which introduces negative reactivity
in the system. At 980 s, it is considered that due to sudden drop in RR from its
nominal position, a negative reactivity of the value 5×10−6 is introduced in the
system. It can be noted that the controller is unaware of the fault and the input
has been reconfigured to adjust for the failure (Figs. 8, 9), with the controller
is able to track the set-point (Fig. 7). The proposed controller maintains the
process constraints sufficiently in normal operation as well as in the presence of
fault and preserves the inherent fault-tolerant capability of an MPC.

5 Conclusions

A predictive control approach using wavelet-based state-space identified model
is introduced in the paper. The proposed MPC employs multi-resolution state-
space models operating at different time-scales for output prediction. Thus, the
resulting control action incorporates contribution from multiple time-scales. The
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Fig. 7. Load tracking performance of proposed controller during normal and in the
presence of a fault.
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Fig. 8. Variation of control input during normal and in the presence of a fault.
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Fig. 9. Variation of rate of change of control input during normal and in the presence
of a fault.

controller is applied to the constrained load-following problem of a PWR nuclear
reactor. Simulations are performed to study control performances in normal
mode of operation as well as in the presence of an actuator-based fault due to
sudden drop of RR. The designed control law is found effectively to cope up with
step and ramp type transients in the load without violating process constraints
and preserves the inherent fault-tolerant capability of an MPC.
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