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Abstract 

Bechtel & Abrahamsen (2010) defined and described what it means to be a dynamic causal 

mechanistic explanatory model. They discussed the development of a mechanistic explanation of 

circadian rhythms as an exemplar of the process, and they challenged cognitive science to follow this 

example. This paper takes on that challenge.  

A mechanistic model is one that accurately represents the real parts and operations of the 

mechanism being studied. These real components must be identified by an empirical programme 

that decomposes the system at the correct scale and localises the components in space and time. 

Psychological behaviour emerges from the nature of our real time interaction with our 

environments, and so here we show that the correct scale to guide decomposition is picked out by 

the ecological perceptual information that enables that interaction. As proof of concept, we show 

that a simple model of coordinated rhythmic movement, grounded in information, is a genuine 

dynamical mechanistic explanation of many key coordination phenomena.  
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Introduction 

Not all explanations are equal. Cognitive models are primarily functional, ‘how-possibly’ models of 

system capacities. These models represent one way a system that exhibits a target capacity might 

function, and they can be useful first steps, but they may not correspond in any meaningful way to 

the causal structure underpinning the system of interest.  

The gold standard ‘how-actually’ explanation for science is called a dynamic causal mechanistic 

explanation (e.g. Bechtel & Abrahamson, 2010). These are scientific theories, usually implemented in 

a quantitative model, in which each part and operation of the model explicitly stands in for real parts 

and operations (collectively, real components) of the system to be explained. When they are an 

option, causal mechanistic models offer a number of explanatory advantages that a scientific 

discipline can benefit greatly from (Bechtel and Abrahamson, 2010); 

1) demonstrate that a given mechanism is sufficient to produce the target phenomenon 

2) explore the functioning of the mechanism in a larger parameter space than is accessible in 

experiments 

3) identify whether candidate parts are essential to the mechanism’s functioning 

4) explore how particular types of damage might affect the system by perturbing the model in 

particular ways 

5) to explain how coordinated behavior can emerge from the coupling of simpler mechanisms 

6) to explore the consequences of altering the relations between multiple mechanisms 

Compared to other explanation types (e.g., functional, covering law) only dynamical causal 

mechanistic models have access to all benefits, most notably the last two. For this reason, if the 

subject matter is amenable to this type of explanation, it is worth steering research in the direction 

of dynamic causal mechanistic models.  
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In this paper we present a theoretical and methodological framework that can support the 

development of causal mechanistic explanations of cognition and behaviour. This framework is 

firmly rooted in James J Gibson’s ecological approach to perception and action (Gibson, 1979), with 

the resulting mechanistic models grounded at the scale of Gibsonian perceptual information. Our 

analysis has emerged from our work pursuing the implications of the ecological ontology for 

cognitive science in general (Charles et al, 2014; Golonka, 2015; Golonka & Wilson, 2012, 2018; 

Wilson & Golonka, 2013, 2015; Wilson, 2012, 2014, 2018a, b). It became clear to us that the most 

appropriate framing to identify what makes the ecological approach distinct was in terms of the 

types of explanations it made possible.  It turns out that ecological explanations are built from parts 

and processes with an identifiable material basis. This means that the ecological approach is, at least 

in principle, capable of supporting causal mechanistic explanations.  

We will briefly review the characteristics of mechanistic explanations, and then contrast these with 

characteristics of typical cognitive psychological models. We will then review the characteristics of 

ecological explanations and evaluate how well they support the development of mechanistic 

explanations, with reference to a specific worked example (coordinated rhythmic movement). We 

conclude that the ecological approach is actually very well suited to support mechanistic 

explanations of cognition and behaviour, and should serve as the framework for future work in this 

area. 

Mechanisms 

Bechtel & Abrahamsen (2010) define a mechanism like this: 

A [dynamic] mechanism is a structure performing a function in virtue of its component 

parts, component operations, and their organization. The orchestrated functioning of 

the mechanism, manifested in patterns of change over time in properties of its parts and 

operations, is responsible for one or more phenomena”  

p. 323.  
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In order to be a causal mechanistic explanation of this type, a model must accurately represent the 

actual parts and operations (the real components) of the structure, rather than simply characterise 

the functions of those components. Parts “typically have locations, sizes, structures, and 

orientations. They are the kinds of things that have masses, carry charges, and transmit 

momentum.” (Craver, 2007, p. 5). Parts should also have some kind of independent existence 

outside of the mechanism (Glennan, 1996). If the system of interest was the functioning of a car, 

causal mechanistic models would model parts like the engine and brake line, while functional 

models would characterise the capacity to accelerate or the capacity to stop. Operations, in contrast, 

“are the causal components in mechanisms…[which] can potentially be exploited for the purposes of 

manipulation and control” (Craver, 2007, p. 6). This definition clarifies why the distinction between 

part types above is important. Causal components can only be identified among parts that are 

locatable in space /time, that exist independent of the mechanism. Causal components cannot be 

identified among functional parts, though filler terms may be used instead.  

The research strategy for developing mechanistic models is to empirically identify the real parts (to 

contrast them from functional parts as described above) and processes of the mechanism. This is a 

programme of decomposition and localisation (Bechtel & Richardson, 2010)1. Decomposition is 

breaking the mechanism down into the right parts (carving it up at the joints, as it were). Localisation 

is figuring out where and when these parts do their work in the mechanism. Complete 

decomposition and localisation may not always be possible, but they should still be pursued. This 

process is heuristic; there are no rules for doing it other than 'work hard to check you are breaking 

things up in the right place'. For example, I can decompose a clock by either systematically 

unscrewing it into smaller and smaller parts that still do things, or by hitting it with a hammer. While 

 
1 Mechanistic models can exist at various stages of development (sketches, schemata, complete mechanisms; 
Craver, 2007). It takes time to develop the relevant evidence base and it is often appropriate to model the 
components you know about as you go. 
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fun, the latter approach does not leave me with parts that feature in the mechanism of a working 

clock, and I learn this when I try and fail to get the pieces to exhibit meaningful behaviour.  

Bechtel (2008a) offers an interesting analogy to 19th century fermentation research to illustrate this 

point: 

By describing the potential intermediates formed in the process of fermentation as 

themselves undergoing fermentations, physiologists looked too high. They provided 

little explanatory gain, since researchers were appealing to the phenomenon to be 

explained to describe the operations that were to provide the explanation. In contrast, 

by focusing on the elemental composition of sugar and alcohol and appealing to 

operations of adding or deleting atoms to explain organic processes such as 

fermentation, chemists focused too low. The chemists clearly appealed to operations 

on components in a mechanism to explain the phenomenon, but this approach was 

under constrained.  

p 989. 

Researchers eventually identified another way in which to carve up the parts to explain 

fermentation: biochemistry. Operations relevant to fermentation occur between biochemical 

entities. Thus, to explain fermentation, researchers needed to find biochemical parts. In this 

example, the success of the research programme depended upon first identifying the appropriate 

scale for analysis (biochemistry) and then identifying relevant parts and operations. We suggest 

below that a similar problem is faced by psychology today, and that the ecological approach offers a 

solution.  

Carving Psychology at the Joints 

The key issue for psychology is not the complexity of the subject – other life sciences such as biology 

and genetics routinely develop causal mechanistic explanations. Instead, the issue is identifying real 
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cognitive components that are identifiable with material transformations. Bechtel has attempted 

this analysis (e.g. Bechtel, 2008b) but still notes that “mental mechanisms are often most usefully 

described in terms of the content they carry, not their intrinsic physical features” (pg 48). Weiskopf 

argues against mechanistic modelling in psychology, noting that  “for psychological phenomena… 

often enough, we have no well-demarcated physical system to decompose, and little idea of the 

proper parts and operations to use in such a decomposition.” (pg 322). Some are even less generous 

about the scale of the problem. For example, Keijzer (2006) argues that “[c]ognition thus conceived 

is a useful and pragmatic way of demarcating the cognitive domain. Nevertheless, it comes at great 

theoretical costs. Most notably…it obstructs a clear linkage between the cognitive domain and 

particular kinds of material systems” (pg 1593). There is, as yet, no clear cut way to decompose 

cognitive systems into real parts and operations2. 

In recognition of this, another variety of psychological model has gained popularity in recent years. 

Chemero and colleagues have argued extensively that cognitive systems cannot actually be 

meaningfully decomposed, and that dynamical systems theory (DST) explanations work as an 

alternative to mechanistic explanations in cognitive science (Chemero & Silberstein, 2008; Silberstein 

& Chemero, 2013; Stepp et al, 2005). For instance, DST models of networks in the brain can 

successfully capture invariant features of the system while making no reference to any specific parts 

or operations. Silberstein and Chemero argue that, though these models are not – and cannot be – 

mechanistic, they are still allow us to 'derive, predict and discover' (pg 964); in other words, they can 

serve as a guide to discovery (Chemero, 2009).  

In this paper, we propose that it is possible to meaningfully decompose cognitive systems into real 

parts and processes, and that we therefore do not have to settle for DST models as our best 

explanations. The first step in getting to the relevant real parts and operations for a given cognitive 

 
2 Stating that psychological models do not typically contain real parts and operations is not the same as saying 
that they require a dualism. It is just that being physically realizable is not the same as knowing how particular 
parts and operations are physically realized, and the computational approach to psychology was driven by the 
former, rather than the latter (e.g. Goel, 2003).  
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capacity is to identify the correct scale (Eronen, 2015) for explaining that capacity, as in the 

fermentation example. Our thesis is that for animal behaviour, the relevant scale is picked out by 

ecological information (Gibson, 1979). In the following sections we first explain what the ecological 

scale is and then show what information is available to observers at that scale. We will then work 

within the constraints imposed on us by the nature of ecological information to identify additional 

real components in ecological mechanistic explanations. Our goal is to show that the ecological 

approach grounds psychological explanations in the types of parts and operations that are amenable 

to dynamic causal mechanistic models.  

Perceptual Information & the Ecological Scale 

Most of the environment is ‘over there’ (i.e. not in mechanical contact with our bodies). Somewhat 

inconveniently, in order to stay alive our behaviour must be shaped by these distal properties, so a 

central challenge for perceiving/acting organisms is acting with respect to things with which they are 

not in mechanical contact. We clearly manage this, so the question is how? The short answer is that 

organisms are immersed in various perceptual media (e.g. light for vision) and patterns within these 

media arrays act as remarkably good stand ins3 for properties in the environment. The key to this is 

the ability of patterns in energy media to specify dynamic properties of the world, which we explain 

in detail below.  

The World is Dynamic 

There are many different ways to describe objects and events in the world, but it is only at the level 

of dynamics that categories of objects and events can be uniquely identified (Bingham, 1995). This 

simply means that a comprehensive mathematical representation of some object or event will 

 
3 This notion of ‘standing-in for’ implies that information is serving as a representation. This is basically true, 
although it is not the kind of representation typically invoked in the cognitive sciences. We have analysed this 
implication in detail (Golonka & Wilson, 2018). For the purposes of our current argument, it is only important 
to note that information is a very particular kind of mediating connection between organisms and properties 
of the environment. 
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require units of time, length and mass (forces). A dynamical description of an event type is an 

equation that includes a specific set of variables placed in a particular relation to each other using 

operators such as addition, differentiation, etc. This equation describes the characteristic form a 

category of events take as it unfolds over space and time. A particular instance of an event type is 

specified by setting parameters on those variables. Two throws, for example, are both examples of 

the dynamic event category projectile motion even if they differ in their parameters (release angle, 

speed or height). In order to functionally interact with the world, an organism’s behaviour must 

complement the current dynamical state of the world, otherwise it falls over, gets eaten, etc.  

Information is Kinematic 

Fortunately for us, these typically distant dynamics interact with various media (e.g., light, 

atmosphere) that we are also embedded in, and they are projected as patterns into those media. 

This projection is governed by ecological laws (Turvey et al, 1981), and through this interaction 

radiant light (for example) becomes structured ambient light (Gibson, 1979). The field of energy is 

no longer symmetrical; there are variations in density, intensity, etc that make each given view point 

unique. The field has become an array. Put simply, environmental properties structure various 

media in particular ways.  

For structures in arrays to be really useful to organisms, they should be good stand-ins for the 

dynamical properties that cause them. The most meaningful way in which they can be “good” stand-

ins is if a particular structure in an energy array maps 1:1 with an environmental property of interest. 

The patterns projected into energy media are kinematic, not dynamic; a complete description 

doesn’t require mass (Bingham, 1988). This means that kinematic information cannot be identical to 

dynamics. Fortunately, kinematic patterns can be specific (i.e., map 1:1) to dynamics (Runeson & 

Frykholm, 1983; Turvey et al, 1981), meaning that they can serve as good stand-ins for properties of 

interest. This is ecological information.  
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There is now extensive evidence that kinematic patterns in ambient arrays can and do specify 

dynamic properties, and that organisms can and do use the kinematic patterns as information for 

the underlying dynamics. We have no room here for an extensive review of this evidence, but we 

want to mention the major lines of research to support our claims here; 

1. Dynamic Occlusion: when one surface goes out of view behind another, it creates a specific 

pattern in the optic array (progressive accretion and deletion of optical texture at the 

leading and trailing edges, respectively). People perceive the dynamical event ‘occlusion’ 

rather than an object ceasing to exist (Gibson et al, 1969; Kaplan, 1969) with powerful 

consequences on multiple object tracking (Scholl & Pylyshyn, 1999). 

2. Event Perception (Johansson et al, 1980): This work uses point light displays in which only 

kinematic information about the underlying dynamics is presented to an observer. These 

displays support perception of a wide range of both physical and social properties (size and 

weight but also gender, intent to deceive and vulnerability to attack; Blake and Shiffrar, 

2007).  

3. Optic Flow: Relative motion between an observer and the environment creates optic flow, 

which specifies both spatial and temporal elements of both self- (global flow) and other- 

(local flow) motion (Warren, 2004). Research here focuses on the control of locomotion (e.g. 

Fajen & Warren, 2003; Wilkie & Wann, 2003) and interception (e.g. McBeath et al, 1995). 

4. Non-Visual Information: While research on information is dominated by vision, there are 

examples that show how we can perceive dynamical properties acoustically (Button & 

Davids, 2004; Gaver, 1993; Warren and Verbrugge, 1984; Warren et al, 1987). A related field 

is work on echolocation in bats and dolphins (Thomas et al, 2004), orca (Au et al, 2010), and 

humans (Kolarik et al, 2014).  

5. No Information, No Perception: When information is available, functional and adaptive 

behaviours can be assembled to complement the specified dynamics. When information is 

not present, behaviour fails catastrophically. For example, friction between two surfaces 
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does not exist ahead of them coming into contact and it therefore creates no information 

ahead of contact. Consequently, people are highly variable and dysfunctional when asked to 

make friction-related judgments ahead of acting (Joh et al, 2006, 2007) and friction-related 

injuries are common and reactive (Courtney et al, 2001).  

The practical upshot of all this research is that higher-order kinematic patterns of motion created by 

and specific to dynamical events (i.e., ecological information variables) are an extraordinarily rich 

source of information about those dynamics. More importantly, humans and other animals are 

exquisitely sensitive to these patterns and can learn to use them as information (e.g. dogs, Shaffer et 

al, 2004; cats, Blake, 1993; pigeons, Dittrich et al, 1998; newborn chicks, Regolin, et al, 2000).  

Information is the Ground Floor Scale for Behavioural Mechanistic Explanations 

A key element of this kinematic specification of dynamics analysis is that we use kinematic patterns 

to stand-in for dynamics. So why ground our mechanistic models of behaviour in ecological 

information, and not dynamical properties? 

The key here is that kinematic, ecological information is our only point of contact with distal 

properties of the environment. Just as our response to a mechanical event depends on the form of 

the force being applied, our response to the perception of a dynamical event depends on the form 

of the information enabling that perception. From the point of view of the organism, behaviour 

begins with information. Therefore, information is where will ground our explanations, in exactly the 

same way that biochemicals identify the correct scale to ground explanations of fermentation. 

The next two sections explore two other behaviourally relevant components that are constrained by 

/ constrain the use of information. The first is the processes of action coordination (selection) and 

control, and the second is the activity of the nervous system.  The ecological analysis of how these 

two components operate provide additional support for the claim that information is the correct 

scale at which to ground our explanations.  
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Task Specific Devices, Caused by Information 

The job of the action system is functional coordination with the environment. Action systems are 

massively complex, and, since Bernstein, researchers have tried to uncover how they can be suitably 

constrained to organise functional, adaptive behaviour. “Organising behaviour” means arranging the 

components of an action system so that the dynamics of the resulting arrangement complement the 

task dynamics (e.g., behaviourally relevant environmental properties).  

Any component that can change state is a degree of freedom, something whose state must be set, or 

controlled. Even simple action systems contain many degrees of freedom, which creates a significant 

control problem, known (handily enough) as the degrees of freedom problem (Bernstein, 1967). 

When you have more degrees of freedom than required to solve the task, the system is redundant; 

you can complement task dynamics in more than one way. This provides essential flexibility (‘the 

bliss of motor abundance’; Latash, 2012), but having a large space of possible actions means you 

must constrain the space in task relevant ways to be able to quickly and efficiently select the 

appropriate actual action.  

Historically, there are two types of solution to the problem (Rosenbaum et al, 1996) but both fail to 

help us here. The first is that the action system ‘freezes out’ some degrees of freedom, via 

biomechanical linkages (e.g. Alexander, 1991) or softly assembled synergies (Latash, 2008; Turvey, 

1990). But which degrees of freedom to freeze, and why? The second is via cost functions (e.g. 

minimising jerk; Flash & Hogan, 1985), which guides selection to the ‘cheapest’ solution. But because 

costs are task specific (Rosenbaum et al, 1996), we’re still left asking which cost function, and why? 

Bingham (1988) examined this problem in detail and identified that both these proposals start in the 

wrong place, with the full, unfrozen system. Every subsystem has a huge number of degrees of 

freedom, their own dynamic characteristics, and is embedded in the complex dynamics of the local 

environment. The unfrozen system is simply too big of a place to start (both for the organism and 

the scientist studying that organism). Bingham proposed that the only thing that can constrain 
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action to functional, task-relevant solutions are the task demands themselves. Task demands are 

perceived via information. Consequently, ecological information specifying task dynamics constrains 

action coordination and control to the space of task-relevant solutions.  

Because information is created by task dynamics, it only exists when those dynamics do; behaviour 

organised with respect to information will therefore have to be assembled in real time (while the 

task and therefore the information is present). Behaviour is task-specific and a given solution is a 

task-specific device (TSD; Bingham, 1988).  

One set of environmental properties are called affordances (Gibson, 1979; see Wilson et al, 2018 for 

a review of an explicitly task dynamical analysis of affordances in the context of targeted throwing). 

Affordances are action relevant dynamical properties4 of objects in the context of tasks; not ‘how 

large is that object?’ but ‘is it graspable by me?’ or ‘is it step-overable by me?’. TSDs assembled with 

respect to the perception of these intrinsically action-scaled properties means the space of possible 

actions is immediately and appropriately constrained by the task at hand. Bingham (1988) also 

includes advice and guidance on researching this perception-action problem space. 

Neural Activity, Caused by Information 

Information constrains the formation of task-specific action systems that can complement the 

specified task dynamics (affordances). But how are TSD components coupled to information, and 

what happens to the informational structure in energy arrays en route from perceptual receptors to 

other bodily systems? The answer, of course, lies in the nervous system, our next component.  

The ecological approach does not (yet) have much to say about the brain. However, we have argued 

extensively elsewhere (Golonka & Wilson, 2018) that the form of nervous system activity is 

 
4 There is a seemingly endless debate about whether affordances are best formalized as dispositional 
properties of the environment (Scarantino, 2003; Turvey, 1992) or as relations in the animal-environment 
system (e.g. Chemero, 2009). We treat them here as dispositional properties because we believe it is a more 
scientifically useful formulation that remains true to Gibson’s original intent for the concept and enables them 
to be perceptible (Wilson, 2018b). 
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constrained by interactions with information. Recent ecological neuroscience research that shows 

neural activity preserves, rather than transforms, the temporal structure present in information 

(Agyei et al, 2015; Magrassi et al, 2015; van der Meer et al, 2012; van der Weel & van der Meer, 

2009). This provides a very different way to interpret neural activity.  

Cognitive neuroscience interprets neural activity with respect to cognitive level theories, but as 

noted these are functional, ‘how-possibly’ models. There is therefore no guarantee that the 

cognitive capacities being investigated (‘attention’, ‘memory’, etc) will map onto material level 

components, even if those cognitive level descriptions capture some regularity in behaviour 

(Cummins, 2000). This is one reason why cognitive neuroscience is often concerned with neural 

correlates of cognitive capacities.  

The neural correlates approach faces two problems in identifying real neural components, namely 

neural reuse (Anderson, 2014) and neural degeneracy (e.g. Edelman & Gally, 2001). Neural reuse is 

when neural circuits originally dedicated to one capacity are recuited to achieve new capacities, 

without losing their original function. Brain regions do not specialise solely in particular types of 

cognitive tasks (e.g. memory tasks), but instead they operate across domains that don’t have any 

obvious cognitive-level commonality. Neural degeneracy presents the opposite problem; a single 

capacity may be expressed through many different neural implementations. These are both 

features, not bugs; they enable flexible and adaptive behaviour in the face of varying task demands 

and injury to the nervous system. We have just argued above that the related problems in action 

coordination and control can only be meaningfully constrained by information; we propose the same 

is true of neural coordination and control, for exactly the same reason (Golonka & Wilson, 2018). 

In contrast to the correlates approach, the ecological components described so far firmly constrain 

what the nervous system must accomplish in order to support a specific behaviour. Specifically, the 

informational and task dynamical analysis identifies which components are available to be 

connected, and whether behaviour shows evidence of structure not fully explained by information. 
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This places strict but useful limits on our expectations for and interpretations of neural activity 

during a behaviour. One of the biggest strengths of this approach is the ability to use a common 

mathematical language throughout. For instance, the dynamic description of task-relevant 

properties can be related to the kinematic description of information variables, which can be related 

a time series of neural activity, which can be related to a dynamic description of the action system. 

Therefore, our first implication for neuroscience is that the interpretation of neural activity can best 

be meaningfully constrained by what we already know about the form of the behavioural 

mechanism built of the components described above (Golonka & Wilson, 2018)5.  

There is clearly much more empirical work to do here, but as noted it has begun and, we argue, it 

will enable the development of mechanistic explanations of the neural level if it is grounded in our 

ecological analysis (see Wilson & Golonka, 2018 for more).  

A Mechanistic Model of Coordinated Rhythmic Movement 

We have so far developed a framework that can, in principle, support the development of dynamic 

causal mechanistic models of behaviour. Environmental properties create ecological information 

which causes skilled action systems to form task specific devices, the functioning of which enables an 

organism to complement the dynamics of the environment. We have also proposed how studying 

behavioural mechanisms at this scale can constrain the analysis of the nervous system, using the 

common language of dynamical systems theory. It’s now time to examine a specific example of the 

kind of model this approach can produce as a proof-of-concept for our approach, to demonstrate 

that (contra Chemero and colleagues), it is possible to meaningfully decompose and localise real 

components of cognitive systems and model the results as a mechanism. 

 
5 Conceptualising the role of the nervous system as enabling ongoing, context sensitive coordination of bodily 
systems with the perceived environment also connects nicely to the excellently named Skin-Brain Thesis of 
nervous system evolution (Keijzer, Duijn & Lyon, 2013). 
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This section will analyse the development and the current form of an ecological, dynamical systems 

model of coordinated rhythmic movement developed by Geoffrey Bingham and colleagues 

(Bingham, 2001, 2004a, b; Snapp-Childs, Wilson & Bingham, 2011). This model is a causal 

mechanistic model designed to replace an influential but non-mechanistic account, the famous 

Haken-Kelso-Bunz model (HKB; Haken, Kelso & Bunz, 1985). We will briefly sketch out the key 

empirical phenomena, and then detail how the empirical programme of Bingham and colleagues 

decomposed the system and localised many of the components. Finally, we show how mathematical 

representations of these components have been implemented in a mechanistic model of the 

phenomena. This programme lives up to the challenge posed by Bechtel and Abrahamsen (2010) 

and the result is a mechanistic model of a behavioural system. This model successfully explains all 

the known phenomena, has made novel predictions which have then been empirically verified and, 

even though it does not yet explicitly handle learning, it has constrained and informed multiple 

learning studies which are even now feeding back into an expansion of the model. We have 

considered this model before in terms of the benefits of theory-driven science (Golonka & Wilson, 

2012) but here we want to explicitly hold this model up as an exemplar of the kind of mechanistic 

explanations that are possible with our approach.  

The Task Dynamics of Coordinated Rhythmic Movement 

In its simplest form, coordinated rhythmic movement involves moving two things in parallel 

rhythmic oscillations that are placed in a particular relation (a specific relative phase). The oscillators 

can be limbs belonging to the same or different people (bimanual coordination) or one of them can 

even be a simulation on a computer screen (unimanual coordination). So long as at least one of the 

oscillators is being controlled by a person, however, the following phenomena apply.  

If the oscillators move so that they are doing the same thing at the same time (e.g. both flexing then 

extending) then they are moving at 0° mean relative phase. If they are moving so that they are doing 

the opposite thing at the same time (e.g. one flexing, the other extending) then they are moving at 



17 
 

180° mean relative phase. All possible coordinations can be uniquely identified with a mean relative 

phase, e.g. 90° is where the oscillators are out of phase by a quarter cycle.  

It turns out this simple task has some intriguing structure to it: 

1. Without at least some training, the only two coordinated rhythmic movements that people 

can stably produce are 0° and 180°. All other coordinations are produced with large errors 

(high relative phase SD) and people have a tendency to switch from the intended relative 

phase into either 0° or, less frequently, 180°. They can all be learned, however; jazz 

drummers are a possibility! 

2. 0° is more stable than 180°. As the required frequency is increased, movements at both 0° 

and 180° become less stable (increasing relative phase SD) but more so at 180°. At a certain 

frequency (bimanual: ~3-4Hz, unimanual: ~1.5Hz) people become unable to maintain 180° 

and (under a non-interference instruction) transition to 0°. 

These characteristics were first identified by Cohen (1971) and Yaminishi et al (1979, 1980) and then 

studied in detail by Kelso (Kelso, 1995). The HKB model (Haken et al, 1985) produces these 

characteristics using an abstract potential function, which describes the amount of ‘energy’ required 

to obtain a given relative phase. The model has been extremely influential, but Kelso never intended 

it to be anything like a causal mechanistic model (Kelso & Engstrom, 2006). That said, the HKB model 

motivated a large number of experiments that revealed many of the key nonlinear dynamical 

features of coordinated rhythmic movement.  

The Perception-Action Approach to Coordinated Rhythmic Movement 

The task dynamics of bimanual coordinated rhythmic movement is two oscillating human limbs 

moving so as to maintain a mean relative phase with respect to one another. Maintaining any state 

entails control, and control entails perception; relative phase must be perceived. The dynamic 

environmental property of interest is relative phase, the dynamic behaviour to be explained is the 
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pattern of stable coordinations between the two limbs, and these are connected via a kinematic 

perceptual variable specifying relative phase.  

The Dynamics of Rhythmically Moving Limbs 

Two perturbation studies (Kay, et al 1987, 1991) demonstrated that a rhythmically moving human 

limb exhibits five specific properties which identify the kind of dynamical device it is. The two key 

properties are limit cycle stability and phase resetting. If you perturb a rhythmically moving limb (e.g. 

forcing it to briefly speed up or slow down) it settles back down into a periodic motion dynamically 

described as a limit cycle. It also settles back onto the limit cycle at a phase that is different from 

where it would be at that time if it hadn’t been perturbed. Limit cycles mean that the overall 

dynamic of the limb is nonlinear; phase resetting means this dynamic is autonomous (phase is not an 

explicit function of time, but of the oscillators’ own behaviour). The other three properties are an 

inverse frequency/amplitude relation, a direct frequency/velocity relation, and a rapid relaxation 

time post-perturbation, independent of frequency. These are emergent properties of the dynamic 

and are not directly imposed by components that have this feature as their purpose. Kay et al (1987) 

combined two well-known systems (the Rayleigh and the van der Pol oscillators) into a hybrid 

oscillator that behaved this way; it fits the data, but it is not a representation of an actual oscillating 

human limb.  

Bingham (2004a) instead started with the λ-model of actual human limbs in which movements are 

generated by controlling the equilibrium point of a damped mass-spring (Feldman, 1986). A mass-

spring is literally a mass bouncing on the end of a spring; a damped one includes friction and so, 

unless driven, it will eventually come to rest at an equilibrium point where the pull of the mass is 

balanced by the pull of the spring. Feldman’s hypothesis is that a) human limbs are softly assembled 

into controllable synergies that act as damped-mass springs, and that b) you could easily move and 

control such a synergy by simply controlling the equilibrium point (a single degree of freedom). 

There is now extensive neurophysiological and behavioural evidence for the λ-model as the 
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mechanism used to enable cheap and stable control of limbs (Feldman, 2011) so this is the 

appropriate dynamical characterisation of human limbs in this task6. 

The basic form of a damped mass spring is  

�̈�𝑥 + 𝑏𝑏�̇�𝑥 + 𝑘𝑘𝑥𝑥 = 0 

where 𝑥𝑥, �̇�𝑥 and �̈�𝑥 are state variables (position, velocity and acceleration) and b and k are parameters 

(damping and stiffness). Such a damped mass-spring eventually comes to rest because it is equal to a 

static value (here, 0). You keep such a spring moving by driving it (setting the equation to be equal to 

a value that changes over time). If the driver’s value changes as a function built only from the state 

variables (rather than as a function of time) then the dynamic is autonomous.  

Bingham (2004a, b) proposed that limbs engaged in rhythmic movements are phase driven 

damped mass-springs. Specifically, the model is 

�̈�𝑥 + 𝑏𝑏�̇�𝑥 + 𝑘𝑘𝑥𝑥 = 𝑐𝑐 sin[𝛷𝛷] 

where 𝛷𝛷 = arctan[
𝑥𝑥�̇�𝑛
𝑥𝑥

],  �̇�𝑥𝑛𝑛 =
�̇�𝑥
√𝑘𝑘

, k =  𝑘𝑘𝑖𝑖 + γ|𝑒𝑒𝑡𝑡  𝑒𝑒𝑖𝑖|, 𝑒𝑒𝑛𝑛 =  �𝑣𝑣𝑛𝑛2 + 𝑥𝑥2 and 𝑐𝑐 = 𝑐𝑐(𝑘𝑘) 

Φ is the phase angle, which changes over time but not as a function of time. It is composed solely of 

(real) state variables. The stiffness, k, varies in proportion to the perceived deviation from the limit 

cycle (en is the radius of the limit cycle on the phase diagram; perturbations of the limb move the 

trajectory off the cycle and change the current value of that radius). c scales the amplitude of the 

limit cycle attractor for a given movement. We can now take two of these oscillators and couple 

them together via the perception of their relative phase. 

 
6 It would make a nice extension of Bingham’s research to explicitly model the neural scale of control during 
this task using Feldman’s equilibrium point work. Right now, Bingham’s behavioural scale model is the 
equivalent of the biochemical level analysis of fermentation. It is a necessary step to guide decomposition and 
localisation work but critically it is one that still trades in real components; limb dynamics in this task are 
literally those of a damped mass-spring and it’s those dynamics that matter to explaining the phenomena of 
interest. 
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The Perception of Relative Phase 

Being able to maintain a mean relative phase implies being able to perceive relative phase. Bingham 

set about identifying the kinematic information variable(s) specifying relative phase.  

Schmidt et al (1990) showed that the basic HKB phenomena persist when the limbs being 

coordinated belonged to two different people coordinating via vision. Bingham et al (1999) 

therefore presented participants with coordinated rhythmic movements in the form of a simple 

point light display moving side-to-side or in depth (using both simulated movements and the 

kinematics from Schmidt et al). Participants judged coordination stability or phase variability in these 

displays (see also Zaal et al, 2000). The results were that the HKB pattern emerged, even with no 

movement required. 0° was judged as maximally stable and the various levels of phase variability 

were clearly discriminated there. 180° was judged as stable but less so, and phase variability 

discrimination was also poorer, while 90° was judged to be maximally unstable and the added 

variability was not discriminated at all. The effects of frequency also appear in the judgment task, 

both visually (Bingham et al, 2001) and proprioceptively (Wilson et al, 2003). The symmetry between 

relative phases that is the HKB pattern is broken at the level of information, not movement 

dynamics. 

Wilson et al (2005a) then reconnected these perceptual results to the movement task and showed 

that movement stability followed perceptual stability: movements at a variety of relative phases 

were stabilised by 0° visual feedback, and destabilised by non-0° visual feedback. Wilson et al (2010) 

showed that training people to become expert perceivers of 90° led to immediate improvement in 

the production of 90°, with no training on that movement. Snapp-Childs et al (2015) showed that 

movement training leads to improved perceptual thresholds with no training on the perceptual task. 

These demonstrated a causal link between the perception and production of coordinated rhythmic 

movements. 
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There is therefore extensive evidence that the form of coordinated rhythmic movement behaviour 

comes from the perception of relative phase. This evidence was then used constrain the form of the 

perceptual coupling to implement in the model. Although it would be possible to implement the 

coupling using an abstract component that simply successfully matched the data, Bingham and 

colleagues used the empirical evidence to guide the search for a specific variable that matched the 

following criteria. The information variable must be kinematic, it must specify relative phase, it must 

be made of state variables (to preserve autonomy), it must break the symmetry between relative 

phases in a manner that matches the phenomena catalogued above, and it must be detectable by 

both vision and proprioception.  

There was some prior evidence that relative direction of motion was important to the perception of 

relative phase. The HKB effects disappear when the movements are orthogonal to each other (i.e. 

when relative direction is not uniquely defined; Swinnen et al, 1998; Wimmers et al, 1992), and 

coordinated rhythmic movements are most stable with parallel feedback displays (Bogaerts et al, 

2003). Learning a novel coordination only transfers to that coordination’s symmetry partner (e.g. 

learning 90° only transfers to 270°); these states are identical at the level of relative direction and 

only differ in which limb leads or lags (Zanone & Kelso, 1992, 1997). Finally, Wilson et al (2005b) 

showed that orthogonal components of motion simply added noise to coordination and had no 

relative phase-specific effects.  

A Mechanistic, Perception-Action Model of Coordinated Rhythmic Movement 

With all the evidence in place, Bingham (2001, 2004a, b) proposed that bimanual coordinated 

rhythmic movement consists of two phase-driven damped mass-springs, each driven by the 

perceived phase of the other with this driver modified by the perceived relative phase. He 

hypothesised that relative phase is perceived using the relative direction of movement (rho, Ρ), 

conditioned by the relative speed. The model takes the form  

�̈�𝑥1 + 𝑏𝑏�̇�𝑥1 + 𝑘𝑘𝑥𝑥1 = 𝑐𝑐 sin (𝛷𝛷2)𝛲𝛲𝑖𝑖𝑖𝑖  
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�̈�𝑥2 + 𝑏𝑏�̇�𝑥2 + 𝑘𝑘𝑥𝑥2 = 𝑐𝑐 sin (𝛷𝛷1)𝛲𝛲𝑖𝑖𝑖𝑖  

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛲𝛲𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠(sin(𝛷𝛷1) sin(𝛷𝛷2) + 𝛼𝛼��̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖�𝑁𝑁𝑡𝑡 

Judgments are modelled by integrating perceived relative phase over time (Bingham, 2004a) while 

unimanual coordination is modelled by simply setting one driver to 0 (Snapp-Childs et al, 2011).  

Relative direction of motion behaves in a manner that maps directly onto the HKB coordination 

phenomena. At 0°, relative direction is always the same (in terms of the behaviour of the optic array, 

all the local flow is common motion); this is maximally stable and easy to detect. At 180°, relative 

direction is always different (all the local flow is relative motion). This is easy to detect, but less so 

than all common motion. At 90°, relative direction is maximally variable (half the time the same, half 

the time different, and constantly switching) making it intrinsically unstable, difficult to detect and 

therefore unable to support stable behaviour. 

The analysis of the task that underpins the model also revealed that behaviour is controlled with 

respect to information, and not directly with respect to the dynamics of relative phase. This resolves 

a long-standing question in the field about rates of learning. Zanone & Kelso (1994) predicted (on 

the basis of their attractor dynamical analysis) that learning novel relative phases close to 0° should 

be more difficult than learning those close to 180°. This is because the attractor at 0° is stronger and 

would therefore compete more effectively against the to-be-learned relative phase. Two studies 

found that the opposite is true; it’s easier to learn novel coordinations near 0° (Fontaine et al, 1997; 

Wenderoth et al, 2002, who explicitly noted that this result best makes sense in light of the 

perceptual results). Movement is not stable at 0° because there is an attractor there, it is stable 

because 0° and the relative phases around it are clearly perceived and discriminated because the 

optic flow is dominated by common motion. This clear perception then supports stable action. 

The current version of the model represents many of the real components involved in the 

production and judgement of bimanual or unimanual coordinated rhythmic movements. The model 
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is the result of an empirical research programme very similar in form to work on circadian rhythms 

used by Bechtel and Abrahamsen (2010) as an exemplar of the kind of programme cognitive science 

should adopt in order to develop mechanisms. The model accounts for existing phenomena and 

predicted several details of the mechanism that have since been empirically confirmed (movement 

stability is a function of perceptual stability, Wilson et al, 2010; relative direction is the information, 

Wilson & Bingham, 2008; relative speed acts as a noise term, Snapp-Childs et al, 2011). There 

remains much to do, but the model also provides the framework for the next round of mechanistic 

empirical research, on learning (e.g. Leach et al, 2019; Snapp-Childs et al, 2015), changes in the 

perception-action system with ageing (Coats et al, 2013, 2014; Ren et al, 2015) and the interplay 

between visual and haptic perception of relative phase (Pickavance et al, 2018).  

Summary 

Bechtel and Abrahamsen (2010) detailed what it takes to develop truly mechanistic explanations of 

dynamical phenomena and challenged cognitive science to find a way to develop such explanations 

of cognition and behaviour. The goal of this paper was to rise to that challenge. Dynamic causal 

mechanistic explanation and modelling requires a clear understanding of the real parts and 

processes underlying the phenomenon of interest, as well as a suitable scale from which to begin 

this analysis. Here we have argued that the ecological approach to perception-action provides the 

appropriate scale for understanding human behaviour (the ecological scale) and that the 

identification of this scale leads to the use of real components (environmental properties, kinematic 

information specific to these properties, action systems) in ecological research programmes. We 

demonstrated this by reviewing the empirical programme and resulting model of coordinated 

rhythmic movement developed by Bingham and colleagues, which acts as a proof of concept that 

the ecological approach can lead to the development of mechanistic explanations.  

The cognitive sciences do not have to take a mechanistic turn, and our goal has not been to force a 

mechanistic approach onto an ecological approach that may not suit such a turn. Quite the contrary; 
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we simply identified a match between how philosophers of science describe mechanisms and the 

ontology of the ecological approach, which contains real parts and processes. Bingham’s program of 

research then shows that you can, in fact, do meaningful decomposition and localization research at 

the behavioural level, and when you do, you gain the many explanatory benefits of a mechanistic 

approach. Bingham’s model works better as an explanation than dynamical models such as the HKB, 

for example. So our proposal is simply this: if we do want mechanistic accounts in cognitive science, 

the ecological approach can support these, and they can be productive and successful.   
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