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Autonomous System via Equivalent
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Nikolay V. Perepelkin

National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine.
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Rauscher method becomes the matter of interest because in combination with the method of

nonlinear normal vibration modes it allows to calculate steady forced vibrations in the system with

multiple degrees of freedom (DOF) via reduction of the number of DOFs. However modern

realizations of that approach have drawbacks such as iterative nature and the need to have initial

approximation for the solution. The primary principle of Rauscher method is in obtaining periodic

solutions of a non-autonomous system via studying some equivalent autonomous one.

In the paper a new non-iterative variant of Rauscher method is considered. In its current statement

the method can be used in analysis of forced harmonic oscillations in a nonlinear system with one

degree of freedom. The primary goals of the study were to find out what kind of equivalent

autonomous systems could be built for a given non-autonomous one and how they can be used for

the construction of periodic solutions and/or periodic phase plane orbits of the initial system.

It is shown that three different types of equivalent autonomous dynamical systems can be built for

a given 1-DOF non-autonomous one. The system of 1st type is a 4th order dynamical system.

Technically it can be considered as a 2-DOF system where additional “DOF” is explicitly

“responsible” for forced oscillations. The system of 2nd type is a 3rd order dynamical system. Its

periodic orbits are exactly the same as in the initial system. Using the invariant manifold of the

system of 1st type the system of 2nd type can be reduced to the form W(x,x')=0 (which is called

here the equivalent system of the 3rd type).

It is important that the function W(x,x') can be built a priori. Once W(x,x') is found: (i) one can

obtain different periodical orbits corresponding to forced oscillations in the initial system; (ii) one

can estimate amplitudes of vibrations for these regimes; (iii) one can track bifurcations of

periodical regimes of the initial system with respect to change of amplitude of external excitation f.

As shown in the paper, periodical orbits of the initial non-autonomous system can be obtained via

two different approaches: (i) as set of points on phase plane satisfying the conditionW(x,x')=0;

(ii) via the application of harmonic balance method to the equivalent system of 1st type using

system’s energy level as a continuation parameter. This approach has advantage over application

of harmonic balance method to initial system because the latter requires good initial guess for

expansion coefficients while the new approach does not and always starts from zero initial guess.

mailto:nickv.perepelkin@gmail.com
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Introduction

The key principle of Rauscher method is that in certain modes non-autonomous

dynamical system may behave like an autonomous one. So instead of studying a

non-autonomous system one can study some equivalent autonomous system.

Despite its concept was proposed in late 1930s [1] for 1-DOF nonlinear system

and later extended [2], this method did not have much attention until recently,

when it was combined with the concept of nonlinear normal vibration modes

(NNMs) and therefore effectively extended for the case of multiple DOF system

in the works by Yu. Mikhlin, L. Manevich et al and K. Avramov [3-8] for

studying steady near-resonance vibrations.

Modern realizations of Rauscher method incorporate reduction of the number of

DOFs which is important for studying systems with large number of DOFs. But

despite the present concepts of Rauscher method are already ready to studying

multiple-DOF systems, they all have major drawbacks: (i) – iterative nature, (ii) –

initial approximation for solution for one of DOFs (which is not always known) is

required (see Section 1). So making this method iteration-free would become a

significant improvement.

In fact, when this approach is applied, at certain stage the initially non-

autonomous dynamical system undergoing forced oscillations is substituted with

some equivalent (“pseudoautonomous”) one. This substitution is done in such

way that some periodic solution(s) of the initial system satisfy the equations of the

new autonomous one. So it appears that a non-autonomous dynamical system can

be studied using some methods and approaches designed for studying autonomous

dynamical systems (in the case above it is the NNM method used for reduction of

the number of DOFs). This remarkable fact became another motivation for the

present study.

The current paper is a proof-of-concept work which shows that periodic solutions

corresponding to forced oscillations in a dissipative dynamical system can be
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obtained via studying an equivalent autonomous system without using iterative

procedures (as opposed to existing approaches).

Please note that in the framework of this paper a non-autonomous (initial) and

corresponding autonomous system are called equivalent if some (or all)

periodic solutions of the initial system satisfy the equations of the equivalent

autonomous one. The equivalent system, on the other hand, may be of different

order and may have periodic solutions which do not satisfy the initial system.

The primary points of interest in this study were the following:

i. What are the possible variants of equivalent autonomous systems that

preserve forced periodical solutions of the initial system?

ii. Is it possible to construct equivalent system in such way that it does not

introduce new periodic solutions (or at least periodical orbits on the phase

plane) apart from existing ones?

iii. How can one construct periodic solutions of initial system and/or

corresponding periodic orbits via studying an equivalent system without

usage of iterative techniques?

In the framework of the current paper these questions were answered for the case

of 1-DOF dissipative nonlinear system. Nevertheless, the author believes that the

proposed approach, when used together with NNM concept can be extended to

multiple-DOF case and may become a new method of studying forced oscillations

in such systems. Thus, the present work can be considered a first step on this way.

The 1-DOF mechanical system under consideration is the following:

   2 cosx hx x x f t       (1)

The system (1) is supposed to have single equilibrium position at 0x  , the

function  x is supposed to be an analytical function in the neighborhood of the

equilibrium position and contain only nonlinear terms. Damping is considered to

be small (h << ω2).

The paper is organized as follows. In the Section 1 current implementations of

Rauscher method developed to date are considered and discussed. The concept of

how one can create autonomous system from non-autonomous one is introduced.

The rest of the paper represents the results obtained by the author and can be split

into two main parts. In Section 2 of the paper different types of equivalent

autonomous systems are considered and their properties are studied analytically. It
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is shown that one can develop three different types of equivalent systems. The

system of 1st type is a 4th order dynamical system (technically it can be considered

as a 2-DOF system where additional “DOF” is “responsible” for forced

oscillations in (1)). The periodic orbits of this system correspond to all possible

variations in amplitude of external excitation in the initial system. The system of

2nd type is a 3rd order dynamical system whose periodic orbits are exactly the same

as in the initial system. Due to its complexity it is rather hard to build periodic

orbits using the system of 2nd type as it is. However, using invariant manifolds of

the system of 1st type the order of the system of 2nd type can be reduced to 1 which

creates equivalent system of 3rd type. Its equation can be written as W(x,x')=0.

The most remarkable is that this system provides only periodic orbits of the initial

system and can be clearly represented geometrically: if one plots the surface

W(x,x'), its zero levels become periodic orbits of the initial system. In fact, it is

shown in Section 2 how to build the surface W(x,x') analytically.

Section 3 contains alternative approach to building the whole surfaceW(x,x')

analytically. It is shown that the surface W(x,x') can be built section-wise via

application of harmonic balance method to the equivalent system of 1st type using

system energy level as a continuation parameter. This approach has advantage

over application of harmonic balance method directly to initial system because the

latter requires good initial guess for expansion coefficients while the new

approach does not.

Since the paper is focused mostly on theoretical aspects, Section 4 contains two

simple examples – Duffing equation with pure cubic and cubic-quadratic

nonlinearity – working as proof-of-concept for the theoretical results presented

here.

1. Iterative variants of Rauscher method

In this Section current implementations of Rauscher method developed to date are

discussed. In its modern realization Rauscher method is developed for studying

multiple-DOF systems and is, in fact, original Rauscher’s concept of eliminating

time from equations of motion combined with the method of nonlinear normal

vibration modes (NNMs).

Let us consider, for example, non-autonomous dynamical system (1) which has N

degrees of freedom (DOFs):
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  1 2 1 2, ,.., , , ,.., , 0, 1...i i n nx F x x x x x x t i N      (2)

If the dependency  k kx x t is somehow inverted to a form  kt t x ( kx is some

pre-selected generalized coordinate), then the system (1) can be transformed into

autonomous form:

   1 2 1 2, ,.., , , ,.., , 0, 1...i i n n kx F x x x x x x t x i N      (3)

This idea of eliminating explicitly present time from equations of motion was

presented by Rauscher in [1]. Originally the Rauscher method could be applied

for 1-DOF systems only, namely, for finding steady forced oscillations. However,

it was generalized for multi-DOF systems [2-8] by means of theory of nonlinear

normal vibration modes (NNMs).

The dependency  kt t x is constructed in such way that the systems (2) and (3)

have the same solutions corresponding to steady forced oscillations (in this sense

(2) can be called an equivalent system to (1)). For conservative systems (or close

to conservative ones) the dependency  kt t x can be represented in the form of

quadratures (see for example [3,4]).

In the papers [6,7] another approach for elimination of time t is proposed.

Equations of motion are supposed to be:

     1 2, ,.., cos , 1...i i n ix F x x x f t i N    . (4)

Then time t can be eliminated, according to [6,7], by means of constructing a

dependency

  2 3
0 1 2 3cos ...k k kt a a x a x a x      (5)

or    cos kt C x  . Such expansion can be constructed if some initial

approximation for kx is known in form    0 1 2cos cos 2 ...kx A A t A t      It is

proposed in [6] to rewrite the latter using trigonometric transformations as

       2 3
0 2 1 3 2 33 cos 2 cos 4 cos ...kx A A A A t A t A t         Once (5) is

substituted into this expression, coefficients of the same orders of kx are equated,

which leads to a system of algebraic equations that can be solved for unknowns

0 1 2, , ,..a a a
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Once current approximation for 0 1 2, , ,..a a a is known, expression (5) is substituted

into (4). The new system does not contain time t explicitly:

     2 3
1 2 0 1 2 3, ,.., ... , 1...i i n i k k kx F x x x f a a x a x a x i N       (6)

It is analyzed via invariant manifolds methodology. If state space variables of a

nonlinear system undergo coherent changes, one can speak of what is called

nonlinear normal mode (NNM). NNM in the system (6) can be expressed as a set

of such dependencies:

 
 

,
, 1,.. 1, 1,..

,
i i k k

i i k k

x x x x
i k k N

x x x x
      

. (7)

These dependencies are invariant manifolds of the autonomous system (6) (they

are also called NNMs by Shaw and Pierre). Geometrically they represent a set of

surfaces (or a single hyper-surface) in the state space. In order to find NNM the

autonomous system should be transformed into a system of partial differential

equations taking kx and kx as couple of independent variables. This approach was

developed by S. Shaw and C. Pierre in [9,10]. Comprehensive overview of

different NNM theories can be found in [11,12].

When (7) is constructed from (6), the system (4) can be reduced to 1-DOF with

respect to kx . This allows one to obtain more precise trigonometrical

approximation for kx and therefore iterative process is constructed. This approach

was extended by the author for more general case:

      1 2 1 2, ,.., , , ,.., , cos sin , 1...i i n i ix F x x x x x x t f t g t i N         (8)

In order to make the system (8) non-autonomous one needs here to build such

dependencies:

   
   

cos ,

sin ,
k k

k k

t C x x

t S x x

 

 
(9)

In the papers [13-16] the latter are represented in the form of power series. It also

should be noted that different forms and various applications of the Rauscher

method are discussed in [11, 17]. Among recent works where the Rauscher

method is used one can find the following ones: [18, 19].

Thus, appealing feature of Rauscher method in its modern variants is reduction of

number of DOFs due to usage of NNMs. But as it clear from the above the
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methods described in this Section have a major drawback – iterative nature. So the

goal of the present paper is to find a non-iterative approach which corresponds to

the primary idea of the Rauscher method: eliminating time from non-autonomous

equations of motion in order to construct an equivalent autonomous system of

equations which has the same periodic solutions as the initial one.

The present paper addresses this issue only for the case of 1-DOF dynamical

system so far. Further developments will be required.

2. Equivalent Autonomous Systems and Their
Properties

2.1. A linear system

As a starting point for all considerations the linearized system (1) is discussed

here. If the system (1) is linear (   0x  ), then finding Rauscher approximations

is quite an easy task.

In such case one has:  2 cosx hx x f t     and  2 sinx hx x f t        .

If only periodic solutions are considered then the following relations take place:
2 2,x x x x      since    cos sinx A t B t    for such case. Thus x and

x can be eliminated which yields the following Rauscher approximations:

         2 2 2 2 21 1cos ; sint hx x t x h x
f f

           


(10)

It should also be noted that expression 2 0x x    is true for every value of

amplitude or phase of external load if one considers only periodic solutions. So

this expression can be considered as some kind of equivalent autonomous system

which shares solutions with initial non-autonomous one. Though this equation

does not allow one to find particular periodic solution  x t , Rauscher

approximations (10) allow that.

Periodical solution  x t can be found only by means of the Rauscher expansions

when they are solved for x and x as a system of linear algebraic equations.

Moreover, if one substitutes (10) into trigonometric identity
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   2 2cos sin 1t t    it results in equation of periodical orbit on the phase plane

which corresponds to forced oscillations:

   222 2 2 2 2 2
2 0

x
h x f

             
(11)

or

 , 0W x x  (12)

One can note that:

1. Higher derivatives of displacement can be evaluated via displacement and

corresponding velocity in the regime of forced oscillations;

2. The latter can be used for the reduction of the system’s order and for the

construction of Rauscher expansions in the form (9);

3. It is possible to transform dynamical system to the form  , 0W x x  and in

fact, it appears that trajectory corresponding to forced oscillations is the line

of intersection of surface W and coordinate plane (Fig. 1);

4. The W surface can be built a priori without calculation of any solution of

non-autonomous system.

In the subsequent sections these remarkable statements are extended to nonlinear

systems of type (1).

2.2. Equivalent dynamical system of 1st type

If the system (1) is nonlinear (   0x  ), the relations 2 2,x x x x     

require some correcting function  y t to be introduced:

2 2,x x y x x y         .

Therefore an additional equation for  y t is required. In order to find it let us

differentiate (1) twice with respect to time t and then add term-wise equation (1)

multiplied by 2 to the result:

     22 2 2 2 2 0IV
xx xx x h x x x x x x                     (13)

After change of variables this equation can be written in another way:
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 

2

2 , , 0

x x y

y hy y x x y

   

     

(14)

where      22 2, , xx xx x y x y x             .

It should be noted that (13) and (14) are essentially the same and share exactly the

same solutions. Both (13) and (14) represent a dynamical system which is

equivalent to the initial system (1). Technically the system (14) can be considered

as a 2-DOF system where the additional “virtual” degree of freedom corresponds

to oscillations occurring with driving frequency Ω.

Since this new system has higher order than the initial one, it has more solutions

than the initial one. Let us analyze these solutions.

Initial equation (1) can be represented in the following form:

   , , cosF x x x f t    (15)

Therefore (13) can be written as 2 0F F    . This equation can be easily solved

for F :    , , cosF x x x a t      where a and  are arbitrary constants. Thus it

can be concluded from this solution that all possible solutions of equivalent

systems (13) and (14) correspond to various possible combinations of amplitude

and phase of external excitation. Among others the solutions of autonomous

system  , , 0F x x x   are also included in that set (case 0a  ).

It can be noted that changes in  do not affect shape of periodical orbits of the

solutions of the equation    , , cosF x x x a t      . Thus, even more important

conclusion arises:

▲ Statement 1. All possible periodic orbits on the phase plane  ,x x and in

the state space  , , ,x x y y  found by means of equivalent systems (13) or (14)

correspond to various values of a single parameter - amplitude f of external

excitation.

For convenience equivalent systems (13) or (14) will be called equivalent systems

of 1st type in the subsequent considerations.
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2.3. Equivalent dynamical system of 2nd type

Differentiating (15) with respect to time t yields:    , , sinF x x x f t       .

Taking both this equation and (15) one can obtain:  2 2 2 2 2F F f     (via

relation    2 2cos sin 1t t    ) or in extended form :

    2 22 2 2 2 2
xx hx x x x hx x x f                    (16)

Equation  2 2 2 2 2F F f     can be solved for F as

   , , cosF x x x f t      where  is an arbitrary constant. It can be concluded

from such solution that all possible solutions of the equivalent system (16)

correspond to all possible variations of the phase of external excitation. Thus this

new system has the same periodic orbits as the initial one.

▲ Statement 2. All possible periodic orbits on the phase plane  ,x x found

by means of equivalent system (16) are exactly the same as in the initial

system (1).

For convenience the equivalent system (16) will be called the equivalent system

of 2nd type in the subsequent considerations.

Since the equation of the equivalent system of 2nd type is of higher order than (1)

and has complex structure, it is rather hard to use it as it is for construction of

periodic orbits of initial system. However, this type of equivalent systems does

not introduce additional periodic orbits to those existing in initial system. So this

important fact must be used.

Since the study is focused only on finding periodic regimes, it can be noticed that

in such case expressions x, x', x'', x''' change in time in coherent manner.

Therefore, they are interconnected and can be expressed via one another. This will

allow to eliminate x'', x''' from (16) while preserving its important property

declared in Statement 2. Functional dependency between x'', x''' and x, x' can be

established by means of the analysis of the equivalent system of 1st type (14).

Indeed, since 2 2,x x y x x y         , then one needs to uncover

dependency of y and y' on x, x' in forced oscillations mode. This can be done via

application of invariant manifolds methodology to the equivalent system of 1st

type because technically it is a 2-DOF system.
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2.4. Equivalent system investigation via invariant manifolds
methodology

When investigation of system (1) is focused on periodical solutions only, it can be

noted that the solution itself and all its derivatives change in time in a coherent

manner. Therefore one may expect to find the following dependencies in (14):

 
 
,
,

y y x x
y z z x x


   

(17)

Finding these would allow one to exclude auxiliary function  y t . Following [10]

these dependencies can be constructed using invariant manifolds methodology. It

can be applied to the equivalent system of 1st type because it consists of two

ODEs of 2nd order.

Let us denote ,x u x v  . The system (14) is now written in standard form:

  

2

2 , ,

u v

v u y
y z

z hy y u v y

 
    
  

     


(18)

Differentiation with respect to time t now becomes a partial differential operator:

d v v
dt u v

  
 

, which leads to the following PDEs:

 

    

2

2 2 , ,

y yu y u z
u v
z zu y u hz y u v y
u v



      
        
  

(19)

Such PDEs can be solved in different ways (the solution can be written in form of

power series [10] or found via Galerkin method [20]). Here the solution is found

in power series form:

2 2
1 2 3 4 5

2 2
1 2 3 4 5

...
...

y a u a v a u a uv a v
z b u b v b u b uv b v

      


     
(20)

Solution (20) is substituted into (19). (At this stage the functions  , ,u v y and

 x are considered to be polynomials or they should be expanded in power
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series otherwise). When terms of the same power of u and v are equated in the

obtained equalities this leads to a recurrent system of algebraic equations with

respect to unknown coefficients ,i ia b . Among others there exists a closed

subsystem of nonlinear equations with respect to 1 2 1 2, , ,a a b b .

All other equations in the recurrent system are linear with respect to unknowns of

current step but nonlinear with respect to quantities, evaluated previously. That is,

there can be found system of linear algebraic equations with respect to

3 4 5 3 4 5, , , , ,a a a b b b (coefficients of quadratic terms). Its matrix is constant but right

hand side depends on previously evaluated 1 2 1 2, , ,a a b b . The same for coefficients

of cubic terms and so on. This means that once 1 2 1 2, , ,a a b b are found, all other

coefficients are evaluated in a unique way.

Equations with respect to 1 2 1 2, , ,a a b b are:

2
1 2 2 1

2 2
2 1 2 1 1

2
1 2 2

2
1 2 2 2 2

a a a b

b a b hb a

a a b

b b a hb a





  


   


 
    

(21)

Consecutive elimination of unknowns produces an equation of the 6-th degree

with respect to 1a :

   
    

2 2 4 2 3 2 2 2 2 2
1 1 1 1 1

24 2 2 2 4 2 2 2 2
1

4 6 2

2 2 0

a a a a h a

h a h

 

 

        
            

When solved, this equation allows one to find two real roots (in the small

damping case 2h  ):

 2 2
1a   This is a parasitic solution. After all necessary transformations

and back-substitutions it produces the expansion  2 2y hx x x x      .

Taking into account that 2y x x   this leads to equation

 2x hx x x      which is the initial system (1) with zero external load.

So this solution corresponds to free oscillations, not forced ones.

 1 0a  - when substituted into other equations this root leads to the trivial

solution of the system (21):  1 2 1 2 0a a b b    – when substituted further,

but this solution allows one to find nonzero 3 4 5 3 4 5, , , , ,a a a b b b and so on.
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The above analysis leads to an important conclusion:

▲ Statement 3. In the state space  , , ,x x y y  there exist unique hypersurface

(17) which corresponds to forced oscillations in the initial system (1) and

passes through the equilibrium position of that system in the space of

variables  , , ,x x y y  .

Consider now periodic solutions of the initial system (1) and their connection with

the above-mentioned hypersurface. If amplitude of external excitation f is varied,

periodic orbits form some hypersurface in the space of variables  , , ,x x y y  . This

surface passes through the equilibrium position (see Figure 2). Taking into

account that periodic solutions of (1) are at the same time the solutions of the

equivalent system (14) one can conclude that hypersurface formed by periodic

orbits is exactly the same hypersurface that is mentioned in Statement 3. That is:

▲ Statement 4. For each point on the surface (17) which satisfy equations

(19) there exist a closed trajectory in the space of variables  , , ,x x y y  which

passes through that point and corresponds to a periodic solution of (1) under

some value of external excitation f.

It follows from the above that the dependencies (17) can be built by means of

finding periodical solutions for different values of f and interpolation through the

obtained results (Figure 2). However, there exist more convenient approach which

is described in Section 3.

2.5. Rauscher expansions construction. Equivalent dynamical
system of 3rd type.

It can be derived from (1) that    2cos t x hx x f       and

   2sin xt x hx x x f             . Taking into account dependencies (17)

obtained via the equivalent system of 1st type one has the following Rauscher

approximations:

      
         

2 2

2 2 2

1cos ,

1sin , , x

t y x x hx x
f

t z x x h y x x x x x
f

 

 

       

             
 

(22)

which exactly corresponds to the form (8) used by other Rauscher-like methods.
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In fact, the system (22) can be considered as a couple of algebraic equations with

respect to x and x .The solution of this couple of equations - x and x - depends

on t as it is a parameter which is introduced in (22) through periodical functions.

This leads to a remarkable conclusion that x and x can only be periodical

functions if the dependencies (22) take place simultaneously.

Taking into account the identity    2 2cos sin 1t t    one can obtain from (22):

       
    

22 2 2
2

22 2 2

1 , ,

,

xz x x h y x x x x x

y x x hx x f

 

 

          


      
(23)

This expression is not changed if the phase of external load is varied by an

arbitrary constant.

This equivalent system of a new type can be also considered as the result of

substitution of (17) into the system of 2nd type (16) and division of the latter by
2 . Thus, the Statement 2 is correct for this new system (23) as well: all possible

periodic orbits on the phase plane found by means of equivalent system (23) are

exactly the same as in the initial system (1). Moreover, due to the considerations

above all possible solutions of the equivalent system (23) are exclusively periodic

solutions of the initial system (1) which correspond to various values of the phase

of external load.

▲ Statement 5. The only trajectories on the phase plane  ,x x which can be

found by means of the equivalent system (23) are periodic orbits of the initial

system (1).

The equivalent system (23) will be called the equivalent system of 3rd type. In the

next Section the system (23) receives clear geometrical interpretation.

2.6. Geometrical interpretation of the equivalent system of 3rd type.

Let us denote left hand side of (23) as 0W and left-hand side minus right-hand

side of (23) as W:

       
    

22 2 2
0 2

22 2

2
0

1 , ,

,

xW z x x h y x x x x x

y x x hx x

W W f

 

 

           


     

 

(24)
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In such case it is clear that equation (23) is true only when 0W  . Therefore

periodic orbits of the system (1) are the lines of intersection of function W and

coordinate plane (Fig. 3,a).

On the other hand, it is clear from (24) that equation (23) is true when 0W f .

Therefore level curves of the surface 0W are periodic orbits of the system (1)

corresponding to different levels of external excitation (Fig. 3,b). Similar

statement is correct for W too.

The conditions 0W  and 0W f can be treated as a certain type of periodicity

conditions for the solutions of the initial system. It also should be noted here that

surfaces W and W0 possess certain invariance properties with respect to forced

periodic motions in (1). In particular, while all parameters of the system are fixed,

different periodic motions of the system correspond to the same set of level curves

of these surfaces (of the same level).

It is clear that once W and W0 are carefully computed:

 one can obtain different periodical orbits which correspond to forced

oscillations in (1);

 one can estimate amplitudes of vibrations for these regimes;

 one can track bifurcations of periodical solutions of (1) with respect to change

of amplitude of external excitation f.

 when represented graphically, the condition  0 ,W x x f  shows exact

correspondence between the amount of the external excitation f and the

number and shape of existing periodical orbits of the system.

Thus the functions W and W0 may be very useful visual aids that help to

understand behavior of the dynamical system under investigation. These

functions can be constructed a priori via invariant manifold of the equivalent

system of 1st type.

3. Investigation via harmonic balance method.
Construction of W and W0 via level curves.

The current Section provides alternative view on how the surfaces W and W0 can

be constructed and how periodic solutions of initial system can be obtained using

equivalent autonomous systems.
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If the surfaces (17) are obtained analytically one can use expressions (24) to fully

specify W and W0. However, if some periodic solution  x t in (14) is found then

one can build a single corresponding section (level curve) of W and W0 since

   0, , ,W x x const W x x const   for every such solution (Fig. 4). So W and W0 can

be obtained section by section via their level curves. One can then interpolate

through the obtained sections. This is an alternative approach to solving the

problem of W and W0 construction.

Such approach can be useful if one desires to study large-amplitude motions. In

this case evaluation of (17) via power series may not be accurate enough while

other methods of solving PDEs (19) may require some sophisticated

computations.

Since the level curves ofW and W0 are closed curves corresponding to various

periodic orbits of the equivalent dynamical system of 1st type (14), harmonic

balance method can be engaged to calculation of such orbits in many cases.

It will be shown further that application of harmonic balance method to the

equivalent system of 1st type (14) has advantage over application of this method

directly to initial system because the latter requires good initial guess for

expansion coefficients while the new approach does not. When multiple solutions

are to be found the usage of equivalent system also provides benefits (see Remark

1 in the next Subsection).

3.1. Application of harmonic balance method to equivalent dynamical
system of 1st type

The solution of the equivalent dynamical system of 1st type (14) can be written as

a truncated Fourier series taking into account harmonics up to n-th order:

     

      

0 1
2

2 2
0

2

cos cos sin

1 cos sin

n

k k
k

n

k k
k

x A A t A k t B k t

y A k A k t B k t





      

 
       

 




(25)

Note that due to arbitrariness in choosing time reference point for (14) the

expression (25) is chosen is such way that it does not contain term  1 sinB t .

The first equation of (14) is satisfied by (25) automatically. If relations (25) are

substituted into the second equation of (14), one can obtain 2n-1 algebraic
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equations of harmonic balance method with respect to unknowns ,k kA B . The

number of equations is 2n-1, not 2n as it may be expected.

An additional equation is required here in order to select some particular periodic

trajectory in the state space  , , ,x x y y  among others. It is proposed here to

construct this additional equations in the following way:  ,h x x   taking into

account (25). Supposing that value of λ differs from trajectory to trajectory one

can apply some continuation techniques for obtaining sections ofW surface.

It was discussed above that varying amplitude of external excitation f allows

construction of W surface section-wise. However, making f a continuation

parameter is not convenient. Consider the following example.

Three sample amplitude-frequency responses which correspond to different values

of f are presented on Fig. 5a. If one fixates frequency value at 0  seven

periodical regimes can be found here. Plotting the corresponding trajectories on

the  ,x x plane (Fig. 5b) shows that transfer from innermost to outermost

trajectory requires one to change f in non-monotonic way: increase, decrease,

increase again. This causes inconvenience if some continuation techniques with

respect to f are used.

Therefore in the present work it is proposed to build expression  ,h x x  

considering h as averaged total energy of the system per period which can be

written in the following form:

       
2

2

t

t

h t T x x d



  



      (26)

where T and  - are kinetic and potential energy respectively. If periodic motion

 x t with period 2


is considered then  h t const t  . So the particular value

 of averaged total energy per period h can be taken as a continuation parameter

for evaluation of periodic trajectories.

Complete system of algebraic equations of harmonic balance method can be

written as follows:

    
 

0 2... , ... 0 , 1... 2 1

,
i n nA A B B i n

h x x 

   


 
(27)
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Equations (27) can be written in general form as      , 0, 1... 2i A i n   where

     0 2 1 2... , ... ,...,T T
n n nA A A B B a a  - vector of unknowns.

Now some continuation technique can be applied to (27) in order to find the

solution  A . Or equations (27) may be transformed into differential form with

respect to independent variable  and solved via numerical integration.

Once 0 2... , ...n nA A B B are obtained for some fixated value of  , one can evaluate

 x t and then build corresponding section of theW and W0 surfaces.

Remark 1. Please, note that continuation via  applied to equivalent system of 1st

type has advantage over direct application of harmonic balance method. Consider

amplitude-frequency response, depicted on Fig. 6a,b. At some particular value of

excitation frequency Ω* there exist three periodic regimes. In order to obtain them

via just harmonic balance method one may need to use continuation along the

whole frequency response curve (Fig. 6a) since initial approximations for

amplitudes of these three regimes are unknown. Due to bifurcation points and

turning points that type of continuation may not be easy. On the other hand, if one

applies continuation with respect to  as described above, the starting value for

continuation parameter and unknown amplitudes are always known - zeroes.

Gradually increasing  from zero one can find all three periodic regimes

subsequently (Fig. 6b).

It also should be noted that during continuation via  all the intermediate

solutions found using this method belong to the invariant manifold of equivalent

system (Fig. 6d). This is not correct for application of harmonic balance method

to the initial system (Fig. 6c).

Remark 2. Since  x t obtained via (25-27) is an approximate periodic solution of

(14), the conditions    0, , ,W x x const W x x const   are not fully satisfied. The

result of substitution of an approximate solution  x t into (24) produces constant

plus some small oscillating function (residual). Therefore instead of real level

curves one obtains a set of “wavy” closed curves (see for example Fig. 14,a).

If large enough number of harmonics n is taken, then residual becomes

sufficiently small and the obtained results can be simply averaged over

oscillations’ period for each section of the surface (Fig. 14,b).

Let us denote averaged values ofW and W0 as w and 0w respectively.
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3.2 Calculation of solutions of the initial system

Each section on theW surface has corresponding periodic solution  x t of the

system (14). In turn, each such solution has corresponding value of continuation

parameter  . On the other hand each section on theW surface has corresponding

constant value w . Therefore there exists dependency between w and  :

 w w  . This dependency has the same major property as function W: if the

periodic orbit corresponding to  x t is at the same time a periodic orbit of the

initial system (1), then   0w   .

This means that there is no need in actual construction and plotting of theW

surface. Once continuation process with respect to  is applied to (27), it is

nesessary to calculate corresponding value of w for each new value of  . When

zero value of w is found, it means that corresponding solution  apprx t of

equivalent system forms on the phase plane a periodic orbit which is at the same

time periodic orbit of initial system.

However,  apprx t is a solution of equivalent system (14) but it is not an actual

solution of the initial system (1). They are represented by the same periodic orbit

in phase space but have different time reference points. This happens due to

arbitrariness in choosing time reference point for (14) because that system is an

autonomous one.

So actual solution of (1) is    a appr corrx t x t t  where corrt is some correcting

timeshift.  ax t satisfies initial equation (1) (written here in form (15)):

   , , cosa a aF x x x f t    .

It follows from the above that:

        , , cosappr appr appr corrF x t x t x t f t      (28)

where corr corrt  . Let us introduce mean square residual of the equation (28):

           
2

2

0

, , cos
2corr appr appr appr corrF x t x t x t f t dt



  


      (29)

so
( , ]

arg mincorr
  

 
 

 . Necessary minimum condition of (29) 0
corr

d
d


 

yields:
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 
        

        

2

0
2

0

, , sin
tan

, , cos

appr appr appr

corr

appr appr appr

F x t x t x t t dt

F x t x t x t t dt









  

 

  





(30)

Thus the actual solution can be fully reconstructed.

4. Examples
As an example Duffing equation is considered:

 2 3
1 2 cosmx x cx x x f t          .

It can be written in the form (1):

 2 2 3
1 2 cosx hx x x x f t         (31)

where 2 1 2
1 2, , , , fch fm m m m m

        
 

Two cases are considered: pure cubic and quadratic-cubic nonlinearity. The first

example has simpler dynamic behavior, so all the transformations were purely

analytical to demonstrate how the approaches proposed in Section 2 work. The

second model with quadratic-cubic nonlinearity demonstrates more complex

behavior. It was studied using the approach proposed in Section 3. These models

are simple enough to be good proof-of-concept for the present studies.

4.1. Example 1

Parameters of the system are taken as follows:

1 21, 1, 0.05, 0, 0.3, 0.1, 1.2m c f           .

Equivalent system of the 1st type for such system is the following:

   
2

22 2 2 2 3
2 2 26 3 0

x x y

y hy y x x x y x x   

    
          

(32)

Invariant manifold corresponding to forced oscillations can be built for this

equivalent system by means of the following PDEs:
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 

    

2

2 2 2 2 2 2 36 3

y yu y u z
u v
z zu y u hz y uv u y u u
u v

   

      
            
  

(33)

where ,u x v x  .

The invariant manifold corresponding to forced oscillations is calculated using

power series (terms up to 5th degree were kept):

3 2 2 3 5 7 4

3 2 2 3 4 5

3 2 2 3 5 4

0.072224 0.002717 0.150468 0.000629 0.002751 7.86463210

0.007306 0.000378 0.006466 0.000053

0.003913 0.650020 0.008152 0.150468 0.000197 0.014442

0.0

y u u v uv v u u v

u v u v uv v

z u u v uv v u u v

      

   

      

 3 2 2 3 4 500265 0.013890 0.000660 0.006467u v u v uv v  

(34)

The surfaces  ,y u v and  ,z u v obtained analytically are plotted on the Figure 7.

Having (34) calculated one can construct functions W and W0 according to the

formulae (24):




3 2 2 3
0

25 7 4 3 2 2 3 4 5

3 2

0.440000 0.050000 0.227776 0.002717 0.150468 0.000629

0.002751 7.86463210 0.007306 0.000378 0.0064 66 0.000053

0.694444 0.440000 0.072000 0.000302 0.249844

W u v u u v uv v

u u v u v u v uv v

v u u u v



       

      

    


2 3

25 4 3 2 2 3 4 5

0

0.000629 0.150499

0.000060 0.014442 0.000101 0.013909 0.000337 0.006470 ;

0.01

uv v

u u v u v u v uv v

W W

  

     

 

Graphical representation ofW and W0 is given on the Figure 8.

Condition 0W  results in periodic orbits of the system (31) on the phase plane.

They are shown on the Figure 9a.

When expressions (34) are known, Rauscher expansions can be built via formulae

(22). Their correctness may be checked in the following way. If values of t , x

and x are taken from the results of numerical integration and substituted into the

Rauscher expansions        cos , , sin ,t C x x t S x x     , these expressions must

be satisfied. Such check is illustrated on the Figure 9b. Solid lines correspond to

the left-hand side of the Rauscher expansions and dots correspond to the right-

hand side. Calculations are done for the maximum amplitudes regime on Fig.9a.

If the system (32) is investigated semi-analytically by means of harmonic balance

approach (Section 2), the results of that study confirm analytical ones. For
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example, on the Figure 7 the surfaces  ,y u v and  ,z u v obtained semi-

analytically are shown (as concentric lines). When plotted together with

analytically obtained results, these graphs fit well.

Graphical presentation of W and W0 obtained semi-analytically section-wise is

given on the Figure 10.

4.2. Example 2

As the second example a Duffing equation with nonlinear restoring force of more

general type (quadratic-cubic nonlinearity) is considered. Parameters of the

system are taken as follows:

1 21, 1, 0.02, 0.35, 0.04, 0.1, 0.8m c f           . This system is studied via

harmonic balance approach as described in Section 3.

Even for such simple with quadratic-cubic nonlinearity it is rather hard to predict

the exact number of periodic solutions for a given value of excitation frequency.

This example shows how it can be done using the approach described in

Section 3.

First, equations of harmonic balance method (27) were formulated for the

equation (35). Continuation parameter was considered to be averaged total energy

per period. Then these algebraic equations were differentiated with respect to 

and thus transformed into differential ones where  was independent variable and

harmonic balance coefficients 0 2... , ...n nA A B B - unknown functions.

These relations were integrated numerically starting from zero values (all

variables) to certain value of energy λ*which was chosen arbitrary but high

enough for finding as many regimes as possible.

For each value of  corresponding value of  w  was calculated via substitution

(25) into (24) and subsequent averaging. Whenever  w  became zero,

corresponding set of coefficients 0 2... , ...n nA A B B allowed to build periodic orbit of

the initial system and its periodic solution (as described in Subsection 3.2). Since

the results depend on the number of harmonics taken, the whole calculations were

repeated several times while increasing the number of harmonics. On the
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Figure 11 the dependency  w  is shown for different number of harmonics and

convergence with respect to the number of harmonics can be clearly observed.

The above a priori calculation predicts 5 periodical solutions for the given

parameter set. This is confirmed when one constructs amplitude-frequency

response of the system (Fig. 12a). Thus, the proposed approach can be used for

finding forced periodical response of the system without building its amplitude-

frequency dependencies.

Corresponding periodic orbits are depicted on Figure 12b (circles) and compared

with the results of numerical simulation (lines).

On Figure 13 the surfaces  ,y u v and  ,z u v are shown.

Surface W obtained section-wise is shown on Figure 14. The results on Fig. 14a

are obtained without averaging values for each section. The results on Fig. 14a are

obtained after averaging. The sections with too much ‘waviness’ on Fig. 14a

indicate that the number of harmonics taken into account may become insufficient

if one desires to investigate regimes with higher amplitudes.

Conclusions

Rauscher method becomes the matter of interest because in combination with

NNM method it allows to calculate steady forced vibrations in multi-DOF

mechanical systems via reduction of the number of DOFs. However modern

realizations of that approach have significant drawbacks such as iterative nature

and the need to have initial approximation for the solution.

The present paper is the first stage on the way of creation similar but non-iterative

approach. Currently a new non-iterative variant of Rauscher method is developed

for 1-DOF nonlinear dissipative system having analytical nonlinearity.

It is shown that three different types of equivalent autonomous dynamical systems

can be built for a given 1-DOF non-autonomous one. The system of 1st type is a

4th order dynamical system. Technically it can be considered as a 2-DOF system

where additional “DOF” is explicitly “responsible” for forced oscillations. This

system has wider set of periodical orbits than the initial system. The system of 2nd

type is a 3rd order dynamical system whose periodic orbits are exactly the same as

in the initial system. Using the invariant manifold of the system of 1st type the

system of 2nd type can be reduced to the form W(x,x')=0 (which is called the



24

equivalent system of the 3rd type). The latter is the most remarkable one. It

provides only periodic orbits of the initial system and can be clearly represented

geometrically: if one plots the surfaceW(x,x'), its zero levels become periodic

orbits of the initial system. Once W(x,x') is found: (i) one can obtain different

periodical orbits which correspond to forced oscillations in the initial system; (ii)

one can estimate amplitudes of vibrations for these regimes; (iii) one can track

bifurcations of periodical solutions of the initial system with respect to change of

amplitude of external excitation f. It is important that the function  ,W x x can be

built a priori via finding the invariant manifold of the equivalent system of 1st

type. The same is correct for the Rauscher expansions that can be constructed in

the form        cos , , sin ,t C x x t S x x     .

As shown in the paper, periodical orbits of the initial non-autonomous system can

be obtained via two different approaches: (i) as set of points on phase plane

satisfying the condition W(x,x')=0; (ii) via the application of harmonic balance

method to the equivalent system of 1st type using system’s energy level as a

continuation parameter. This approach has advantage over application of

harmonic balance method directly to initial system because the latter requires

good initial guess for expansion coefficients while the new approach does not.

Despite the domain of applicability of the proposed approaches is the matter of

further investigations, the results of the current studies are promising, especially if

this approach is generalized for multi-DOF systems.
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Figure 1. The W surface

Figure 2. Invariant manifold of the system (18) is fully covered with periodic orbits of the initial

system.



27

(a) (b)

Figure 3. Geometrical interpretation of surfaces W – (a) and W0 – (b).

Figure 4. Level curves of the W surface.
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(a) (b)

Figure 5. Amplitude-frequency responses - (a) and different periodic orbits

corresponding to frequency value 0  - (b)

(a) (b)

(c) (d)
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Figure 6. Continuation after application of harmonic balance method to initial (a,c) and equivalent

(b,d) systems.

(a) (b)

Figure 7. Comparison of the invariant manifold surfaces of the equivalent system of the 1st type

(32) obtained analytically (grey surfaces) and semi-analytically (concentric lines):  ,y u v - (a),

 ,z u v - (b).

(a) (b)

Figure 8. Graphical representation of W – (a) and W0 – (b) obtained analytically
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(a) (b)

Figure 9. (a) - Periodical orbits obtained analytically (thin lines) are compared with the results of

numerical integration (dots); (b) - Rauscher expansions quality check

(a) (b)

Figure 10. Graphical representation of W – (a) and W0 – (b) obtained semi-analytically.
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Figure 11. The dependencies  w  obtained for the case  is the averaged total energy h .

Numbers show the number of harmonics used.

(a) (b)

Figure 12. Amplitude-frequency response of the system (1st harmonic) – (a); closed trajectories

corresponding to 0.8  - (b)
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(a) (b)

Figure 13. Dependencies  ,y u v - (a),  ,z u v - (b) obtained semi-analytically.

(a) (b)

Figure 14. Sections of the W surface obtained without (a) and with (b) averaging the results.
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