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Evaluation of elastic and adhesive properties of
solids by depth-sensing indentation

To describe properly interactions between contacting solids at micro/nanometre
scales, one needs to know both adhesive and mechanical properties of the solids.
Borodich and Galanov have introduced an e�ective method (the BG method) for
identifying both characteristics from a single experiment on depth-sensing indenta-
tion by a spherical indenter using optimal �tting of the experimental data. Unlike
traditional indentation techniques involving sharp indenters, the Borodich-Galanov
methodology intrinsically takes adhesion into account. It is essentially a non-
destructive approach. These features extend the scope of the method to important
applications beyond the capabilities of conventional indentation. The scope of the
original BG method was limited to the classic JKR and DMT theories. Recently,
this restriction has been overcome by introducing the extended BG (eBG) method,
where a new objective functional based on the concept of orthogonal distance curve
�tting has been introduced. In the present work, questions related to theoretical de-
velopment of the eBG method are discussed. Using the data for elastic bulk samples,
it is shown that the eBG method is at least as good as the original BG method. It is
shown that the eBG can be applied to adhesive indentation of coated, multilayered,
functionally-graded media.

Keywords: the BG method, depth sensing indentation (DSI), mechanical properties of

adhesives, analytical models, non-destructive testing, coatings.

1 Introduction

To solve many problems of modern nanomechanics, one needs to consider not only
the mechanical interactions between solids but also to take into account e�ects
caused by various physical and chemical e�ects of interacting surfaces. In particu-
lar, one needs to consider adhesion between contacting solids. The e�ects of adhesion
become increasingly signi�cant as the contact size decreases [1] and hence, evalua-
tion of adhesive characteristics of solids is extremely important for describing their
interactions at micro- or nano-scales. Subjects and specimens in the modern Materi-
als Science and Nanotechnology are often of very small dimensions, e.g. membranes
of biological cells, many surface coatings and layers deposited on solids are very thin.
Clearly, one cannot employ the conventional tests such as the uni-axial tensile tests
of macroscale samples [2] or the tape peeling tests [3] for evaluation the mechanical
and adhesive properties of such tiny solids. Therefore, various indentation tests of
materials are often employed. The depth-sensing indentation (DSI) tests became es-
pecially popular in the last decades for studying properties of materials of very small
volumes. The experimental data of a DSI test is presented as arrays of measure-
ments of the force P applied to the indenter and the corresponding displacements
� of the indenter. These measurements can be presented as the force-displacement
curve or the P � � curve [4]. If one associates the P � � curve with a mathematical
model of the indentation process, then the material properties may be evaluated by
solving an inverse problem of �tting the model to the experimental data.

Usually adhesive and mechanical characteristics of contacting solids are evaluated
employing two independent and rather di�erent indentation tests: (i) DSI of sharp
pyramidal indenters for extraction of the e�ective contact modulus E� from the



unloading branch of the P � � curve; and (ii) extraction of work of adhesion w from
direct measurements of the pull-o� force (the adherence force Padh which is assumed
to be negative) of a spherical indenter from the material sample and sometimes
using in the calculation few other points of the indentation P � � curve [5,6]. Both
of the above techniques have several drawbacks that will be brie
y discussed in the
next section (see also discussion in [7, 8]). Hence, for many modern materials, both
characteristics, especially the work of adhesion, are not well known quantities [9].

After analysis of the experimental techniques based on the use of pyramidal
indenters, Chaudhri and Lim [10] suggested to determine elastic constants of mate-
rials from the Hertz formulae using the initial elastic stage of the force-displacement
curves when the material samples are loaded by spherical indenters. However, the
P � � curves of such tests may be greatly in
uenced by adhesion of materials. In
turn, Borodich and Galanov [11] introduced an e�ective method (the BG method)
for identifying both elastic and adhesive characteristics from a single DSI experi-
ment employing optimal �tting of the experimental curve by an appropriate well-
established model of adhesive contact of spheres.

The evaluation of adhesive properties of contacting materials is possible by solv-
ing an inverse problem using the ideal theoretical P � � curve corresponding to a
chosen mathematical theory of the indentation process. In other words, if a math-
ematical model of the indenter-specimen interaction is speci�ed, then one can �t
experimental data points with the expected theoretical P � � curve via adjustment
of model parameters related to unknown material properties. However, each experi-
mental measurement is a�ected by variation of properties of the material tested and
other sources of experimental noise. That is why, in contrast to other methods of
mechanics of materials, the BG method uses the entire set of data points of unload-
ing branch of the force-displacement curve rather than some speci�c points on it.
The BG method allows the researchers to extract simultaneously both the adhesive
and elastic characteristics from the experimental DSI diagrams by employing a non-
direct approach. The BG method is based on a simple idea that at low loads the
P � � curves noticeably re
ect not only elastic properties but also adhesive prop-
erties of the contact. Therefore, one can simultaneously identify from experiments
both elastic characteristics of contacting materials and characteristics of molecular
adhesion. It was observed that the compressive part of the adhesive P � � diagram
is much less sensitive to roughness than its tensile part. The BG approach suggests
to �t the experimental data on the stable stages of the indentation diagrams by a
theoretical curve of the appropriate model of adhesive contact, i.e. by solving an
inverse problem. The experimental data �tting is supposed to be done through ad-
justment of the values of characteristic scales of the contact problem (the quantities
needed to re-write the theoretical force-displacement dependency in a dimensionless
form). Once the values of the characteristic scales have been extracted from the
reliable data, mechanical and adhesive parameters can be calculated. In particular,
the values of the pull-o� force, the minimum value of the displacement, the work
of adhesion, and the reduced elastic modulus of the materials. It was shown by
Borodich et al. [12{14] that the BG method is robust at least within the range of
applicability of the JKR theory.

It is noteworthy, that the scope of the BG method extends to a number of im-
portant cases in which the use of common indentation techniques (e.g. the one by
Oliver and Pharr [15]) is undesired or impossible:



(i) it can be used for determination of adhesive properties in the �rst instance,
or whenever adhesion during DSI cannot be neglected (i.e. micro/nanoindentation
of soft solids);

(ii) it is espesially suitable for the use together with the Colloidal Probe technique
[16{18], which uses cantilever-mounted spherical particles as probes;

(iii) it is a non-destructive technique. This provides bene�ts in terms of: (a) the
ability to test living biological samples (e.g. cell membranes); (b) the ability to do
repetitive tests at exactly the same location (e.g. to do statistical averaging of the
results, or to investigate surface physics under changing environment conditions);
(c) non-destructive control of the quality and properties of protective coatings [19],
including those working in aggressive environment.

Recently, Perepelkin et al [20] have announced an extension of the BG method.
The main di�erence between the original BG method and its extended version is
that the latter is based not on the known versions of the JKR or DMT theories
that are strictly speaking applicable only to elastic half-spaces, but on the use of
parametrically de�ned force-displacement curves. It is shown below that the ex-
tended BG (eBG) method can be applied not only to elastic half-spaces but also to
thin and thick layered systems. Another speci�c feature of the eBG method is the
use of the orthogonal distance �tting approach. This leads to a di�erent objective
functional of data �tting. The paper [20] should be considered as an announcement
of the eBG method and a proof-of-concept because the eBG method was presented
"as is", without thorough justi�cation of the particular work
ow of the method and
the new objective functional used. The work [20] has presented a direct experimen-
tal validation of the new approach, which constitutes the main part of that paper.
In particular, it has been shown there, that the values of the elastic contact mod-
ulus extracted from indentation tests by the extended BG method are in a good
agreement with the values obtained by standard macroscale tensile tests.

In contrast, the present work is focused on theoretical development of the eBG
method. It demonstrates two di�erent implementations of this method as a frame-
work that consists of (a) experimental part (DSI by spherical indenters), and (b)
data processing part (orthogonal data �tting for a parametrically de�ned force-
displacement curve). One of these implementations was earlier used in [20], but
practically no detail was given. Here we show exactly how and why the proposed
modi�cations of the original BG method follow from the use of the orthogonal dis-
tance �tting concept and the attempt to avoid unnecessary large scale optimization.
Apart from di�erent implementation of the eBG method, the following questions are
presented below: (i) the discussion and simulations related to convergence and accu-
racy of the new approach, (ii) matters related to the determination of the unknown
coordinate origin for the measured indenter displacement are discussed in detail,
(iii) generalized variance as the measure of goodness of �tting related to the settings
of the �tting algorithm is introduced. As a demonstration of capabilities of the eBG
method, it is shown that it can be applied to adhesive indentation of coated, multi-
layered, or functionally-graded media. All these additional details are of interest for
scienti�c community and enable the reader to understand better the scope of the
eBG method, performance-related matters in terms of speed and accuracy, and the
complete work
ow of the method.

The paper is organized as follows. Section 2 contains brief discussion regarding
commonly used DSI techniques, and the importance of accounting adhesion phenom-



ena in DSI. Further, in section 3, the speci�c features of the original BG method
are described. Then the theoretical aspects of the extended BG (eBG) method are
discussed.

Two implementations of the extended BG method are given. In the �rst version,
the theoretical force-displacement curve given by two parametric functions is �tted
directly to the experimental data in the framework of orthogonal distance �tting
(ODF) approach. This approach emerges naturally as the result of �nding the curve
parameter values corresponding to a selected data points located o� the theoretical
curve, i.e. the projections of the data points onto an ideal theoretical curve are
considered. Due to the non-linear nature and high computational cost of ODF, the
ODF algorithms for explicit functions began to emerge only in 1980s [21] while the
algorithms for parametric and implicit functions and surfaces have been the matter
of recent studies (e.g. [22{26]). In the �rst variant of the extended BG method,
the data points projections and the characteristic scales of the BG method are
determined iteratively from a series of interleaved minimizations of the objective
functional. The problem dimension in the ODF approach is rather high because
both the characteristic scales of the BG method and projection points are unknown.

The second version of the eBG method implies that noisy experimental data is
initially smoothed (pre-�tted) with some auxiliary curve formulated as an explicit
function. Then, the theoretical DSI curve is \�tted" to the auxiliary one. The pur-
pose of doing so is twofold. Firstly, this approach allows one to use some advanced
�tting techniques since the auxiliary curve is supposed to have very simple mathe-
matical form. This auxiliary curve also acts as a �lter greatly reducing the amount
of measurement noise present in the experimental data. Secondly, the objective
functional can now be formulated in such a way that there is no need in �nding pro-
jections of the data points onto theoretical curve since the corresponding values of
the parameter along the curve are excluded from the functional. This modi�cation
essentially reduces the problem's dimension and computation time while maintain-
ing good precision. This allows one to use complex mathematical models of adhesive
contact to e�ectively identify material properties from DSI results. In the present
study the asymptotic model by Argatov et al. [27] is used for numerical testing of
the proposed eBG method. It is shown here that the eBG can be applied to adhesive
indentation of coated, multilayered, or functionally-graded media; as an example, a
problem of adhesive indentation of an elastic coating is described in detail.

In Section 4 accuracy, robustness and convergence speed of the proposed ap-
proaches are examined. The results of a number of numerical simulations and the
results of processing a real experimental data are presented. Some speci�c aspect
related to the adhesive DSI tests are also discussed, e.g. problems related to un-
known origin of coordinates related to the P � � curve. The algorithm of extraction
of the sought values from real experimental data are described in detail. Using the
data for elastic bulk samples, it is shown that the eBG method is at least as good
as the original BG method.

2 DSI as an adhesive contact problem

To explain the advantages of the BG and eBG methods, we need �rst to brie
y
discuss the common usage and the respective drawbacks of the traditional DSI tech-
niques, as well as the in
uence of adhesion in DSI experiments.



First DSI techniques were described in late 1960s [4]. Shortly, Bulychev et al. [28]
would realize that the slope of the P � � curve could be linked to the value of the
e�ective (reduced) contact elastic modulus E� of the pair "indenter-specimen". As
long as DSI techniques were originally applied using sharp pyramidal indenters, like
the Berkovich indenter [29], Bulychev et al. suggested to use a known exact relation
for the slope S of the P � � curve S = dP=d� = 2E�a for axisymmetric indenters in
an altered way [28] (the so-called BASh relation):

S = dP=d� = 2E�
p
A=�: (1)

In fact, the contact radius a was replaced with the expression
p
A=�, where A is the

current contact area, thus making the formula not exact, but rather an approximate
relation. Here E� denotes the e�ective (reduced) contact elastic modulus: (E�)�1 =
(1��2)=E+(1��2i )=Ei, where the elastic moduli and Poisson's ratios of the specimen
and the indenter are denoted as E, �, and Ei and �i respectively (if the indenter is
rigid, i.e. Ei = 1, then E� = E=(1 � �2)).

The BASh relation (1) was then applied to the case of pyramidal indenters
and has become the corner stone of modern instrumented indentation. However,
there are various complications in clearly interpreting the indentation results, e.g.,
a complication arises from the \pile-up" or \sink-in" of the material around the
indenter (see, e.g. [30]). Indeed, one would need to solve a very complex contact
problem to calculate the current contact area A analytically. Therefore, various
semi-empirical procedures for estimations of A have been introduced, for instance,
the one described by Oliver and Pharr [15].

Despite its popularity and being de facto an industrial standard [31], the Oliver
and Pharr (OP) approach has such intrinsic drawbacks as destructive nature and
inability to account adhesion. We have to underline that the derivation of the
BASh formula (1) and the OP approach are based on the assumptions of non-
adhesive Hertz contact theory and even if the area of the current contact region is
calculated exactly, they cannot be used for determination of the adhesive properties
of contacting materials. As it is mentioned in the Introduction, there is a number of
important cases in which the OP approach is undesired, or cannot be used properly.
See also discussions in [7, 10,32,33].

Inevitable presence of adhesion in every DSI experiment has two aspects. The
�rst aspect of the presence of adhesion in DSI is that DSI can be speci�cally used
to determine adhesive properties of materials [5, 6, 34{36].

In spite of considerable e�orts applied to studies of adhesive contact problems,
only the classic theories of adhesive frictionless contact are well established, including
the JKR [37], DMT [38] and Maugis (see e.g. [39]) theories. These classic theories
allow explicit representation of the P � � curve only if an elastic half-space is loaded
by a spherical indenter. The latter fact allows the identi�cation of the work of
adhesion w based on the use of direct methods [5, 6]. The discussed methods vary
depending on the device and the theory employed. Apparently, the most popular
approach for estimations of the work of adhesion is based on the direct experimental
measurements of the adherence force Padh between a sphere of radius R and an
elastic half-space in combination with the use of the JKR model. Assuming that
the surfaces of the tested sample and the probe are ideally smooth, and applying
directly the JKR model, one obtains



w = �2

3

Padh

�R
: (2)

However, the values of Padh obtained by direct measurements have usually poor
reproducibility because the tensile (adhesive) part of the P � � diagram may be
greatly in
uenced by surface roughness of the specimen. Grierson et al. [40] argue
that pull-o� measurements can be in
uenced by a number of factors (especially at
nano-scale) such as the roughness of contacting surfaces (see also [9]) and surface
chemistry, wear of DSI probe and chemical modi�cation of its surface (in case of
DSI by means of atomic force microscopy (AFM)) etc. Therefore, the tensile part
of DSI load-displacement diagram can be considered unstable and less trustworthy.

Hence, one needs to have a large number of experimental measurements to esti-
mate w properly using Eq. (2) or using a similar method based on direct measure-
ments of the force of adhesion. In addition, techniques, which have been developed
for determination of work of adhesion from direct measurements of the adhesive
force, are valid mostly for experimental conditions when the JKR theory is applica-
ble [39].

The second reason to study DSI as an adhesive contact problem is that adhe-
sion can distort the results of a DSI experiment, if the experimental approach does
not take adhesion into account [11]. This point is supported by other authors, e.g.
Kohn and Ebenstein [41] stated that "although adhesion leads to overestimation of
the modulus of compliant samples when analyzing nanoindentation data using tra-
ditional analysis techniques, most studies of biomaterials have ignored its e�ects".
The same reference suggests that "compliant, hydrated materials exhibit very dif-
ferent mechanical behaviors relative to mineralized tissues, and require signi�cant
modi�cations to traditional indentation methods to measure accurate modulus val-
ues".

As long as the base indentation method is based on a non-adhesive contact
theory, introduction of some extra correction steps are needed [41, 42]. However, if
adhesion cannot be neglected, the entire methodology should be rather built around
an approach that takes adhesion into account intrinsically. This was the main
motivation that lead to the creation of the BG method described in the following
subsection.

3 The BG method and its extensions

It is important to mention that, broadly speaking, we see the BG method not just
as a �tting procedure, but rather as a framework that combines various techniques
in a single procedure, similarly to the well-known instrumental indentation method
introduced by Oliver and Pharr [15,31]. The �rst step of both the BG and extended
BG (eBG) methods, presented here, is indentation by a spherical indenter (although
the spherical shape is not necessary for the methods, this shape provides a number
of advantages that are discussed above, such as non-destructive nature, etc.) The
second step consists of preliminary choice of the theory of adhesive contact to be
used (JKR, Maugis, DMT, etc.), and �tting the corresponding mathematical model
of the indentation process to the experimental data, thus evaluating unknown mate-
rial properties. The third step is the validation of the initial choice of the theory of
adhesive contact used in step two. It is done via calculation of the Tabor-Muller pa-



rameter using the estimated material properties. The Tabor-Muller parameter sep-
arates the domains of applicability of di�erent theories of adhesive contact. Hence,
if the calculated value does not correspond to the initially used theory of adhesive
contact, another theory and a di�erent mathematical model should be chosen and
the �tting procedure should be repeated.

In the present section the developments related to �tting experimental data in
the framework of the BG method are discussed, whereas section 4.3 demonstrates
what the complete work
ow of the BG/eBG method may look like, including the
validation of the initial choice of the theory of adhesive contact used for computa-
tions.

3.1 The BG method

First we consider the original BG method as the ground for our subsequent consid-
erations. The BG method was developed for simultaneous evaluation of elastic and
adhesive properties of bulk isotropic material samples in the framework of either
Johnson-Kendall-Roberts (JKR) or Deriaguin-Muller-Toporov (DMT) theories of
adhesive contact. In fact, it is a model-based method, i.e. a pre-built mathematical
model of the indentation process in the form of P�� curve is used where an expected
relation between the measured force and displacement values can be written as the
following function F :

F

�
P

Pc
;
�

�c

�
= 0: (3)

The exact form of this relation depends on the assumed physical model of ad-
hesive contact (JKR, DMT, etc). Note that equation (3) represents the P � �
curve using dimensionless force P=Pc and dimensionless displacement �=�c. The
parameters Pc > 0 and �c > 0 are so-called characteristic (or scaling) parameters of
the problem. They are connected to unknown material properties via dependencies
which are known a priori in the framework of the chosen contact model.

For example, for the JKR theory of adhesive contact in the case of a spherical
indenter of radius R equation (3) can be written in the form of piece-wise dependency
[39]: 8>>>>><

>>>>>:

(3�� 1)

�
1 + �

9

� 1

3

� �

�c
= 0 for � � 0;

�

�c
� �3�2=3;

(3� + 1)

�
1 � �

9

� 1

3

� �

�c
= 0 for

2

3
� � � 0; �3�2=3 >

�

�c
� �1

(4)

where � =
q

1 + P
Pc

. The characteristic parameters Pc and �c are connected to the

reduced Young's modulus of material E� and work of adhesion w by means of the
following formulae:

Pc =
3

2
�wR; �c =

3

4

�
�2w2R

E�2

�1=3

: (5)

The above scaling parameters were also used to construct dimensional form of the
JKR force-displacement relation in the papers by Borodich et al. [11{14,20].



In the case of the JKR theory the parameters Pc and �c have clear physical
meanings, e.g. Pc is the maximum possible absolute value of the pull-o� force during
unloading phase of indentation. If another theory of adhesive contact is used, then
one needs to write other equations instead of (4) and therefore, Pc and �c are just
scaling parameters that have a di�erent physical meaning than discussed above.

Let us consider the outcomes of N measurements (�i; Pi) ; i = 1 : : : N of the
indentation depth �i and indentation force Pi during DSI. If the measurements are
error-free, then each data point (�i; Pi) belongs to the theoretical P � � curve.
Therefore, one has a system of N exact equalities�

F

�
Pi

Pc
;
�i
�c

�
= 0; i = 1 : : : N : (6)

Hence, any two of equations (6) could be picked and solved to �nd the unknowns Pc

and �c, and we can use three equations if we add to the sought values the unknown
shift �s of coordinate origin of the P � � curve.

In fact, the real experimental data contains measurement errors and therefore,
all the expressions in (6) cannot be true simultaneously. This means that (6) is an
overdetermined system of non-linear equations with respect to Pc and �c that has no
solution in classical sense. However, one can �nd some optimal values of Pc and �c
by means of minimization of a certain measure of the total "error" produced in (6).
Such measure can be a norm of the set of residuals in (6). If one selects the mean
square residual as the measure of the total "error" in (6), then the optimal values
of the characteristic parameters P �c ; �

�

c can be found as the result of minimization of
the objective functional of the problem �(Pc; �c):

fP �c ; ��cg = arg min �(Pc; �c); (7)

where

�(Pc; �c) =
NX
i=1

�
F

�
Pi

Pc
;
�i
�c

��2
: (8)

As the result, the optimal values of the characteristic parameters allow one to
best �t the theoretical force-displacement curve to the experimental data in the
sense of the metric (8). In comparison to other �tting approaches, the BG method
(7)-(8) has its own distinctive features:

(i) The metric (8) di�ers from the one normally introduced in least-squares curve
�tting (LSF), therefore producing di�erent optimum point. In fact, the LSF ap-
proach minimizes the �tting residual with respect to only one variable. Therefore, it
is implicitly supposed that the second variable is error-free which is not the case in
any real experiment. The original BG method does not have the above assumption.

(ii) The method uses �tting curve written in dimensionless form which allows to
treat quantities of di�erent orders of magnitude in the same way.

(iii) The �tting process is performed through adjusting characteristic scales Pc

and �c but not the material properties.
In addition, the method successfully allows to estimate E� and w using only

compressive part of the load-displacement data if needed, hence, using only stable
measurements [12, 13].

In the general case of models of contact adhesive interactions, the external load
and the indenter displacements may be presented only through parametric func-
tions with the contact radius as the parameter [8]. In particular, such parametric



dependencies may arise as the result of extension of a force-displacement relation-
ship from non-adhesive case to adhesive one in the framework of the JKR theory.
As an important example, one can consider mathematical models of indentation of
layered and coated medium. Even in the simplest case of indentation of a thin layer
bonded to a rigid support the adhesive force-displacement relationship cannot be
reduced to explicit form unless indenter has a spherical shape [43]. Analytical JKR
force-displacement curves for the frictionless contact of an indenter and a coated
elastic medium may have very complex representation which cannot be reduced to
explicit form for any indenter shape [27,44]. The same is valid for the cases in which
other contact theories of adhesive contact are used to study coated, multilayered, or
functionally-gradient medium (e.g. the Maugis theory [45, 46], or the double-Hertz
theory [47]). In addition, it is fundamentally impossible to reduce semi-analytical
models which contain correction functions computed numerically by means of the
Finite Elements Method to explicit form [48{50]. The above examples are presented
in more detail in Appendix A.

Nevertheless, all the above mentioned mathematical models can be utilized for
simultaneous determination of elastic and adhesive properties of elastic structures
using the approach presented in this work. Apparently, equation (3) is not the
only possible representation of theoretical force-displacement curve. In some impor-
tant cases, e.g. described above, the force-displacement curve is represented as a
parametric function, and it is rather impossible to exactly convert it into the form
(3).

Thus, in its initial formulation the BG method cannot utilize mathematical
models which describe force-displacement curve as a parametric function. In the
following subsections we address this issue by extending the concept and applica-
bility scope of the BG method. The extended BG method allows one to use force-
displacement relations formulated in the parametric form, so that the DSI plots
are represented by parametric curves. The eBG method can be applied to a wide
number of important complexly formulated problems of Materials Science which
cannot be exactly reduced to explicit or implicit functions, and this is demonstrated
in the present work by means of both numerical simulations and processing real
experimental data.

3.2 The BG method in the context of orthogonal data �tting approach

Let us re-formulate the concept of the original BG method using di�erent de�nition
of the �tting residual. The purpose of such re-formulation is to be able to use the
theoretical force-displacement curve in the form of a parametric function:8>><

>>:
�

�c
= f1 (�a; �c; Pc) ;

P

Pc
= f2 (�a; �c; Pc) :

(9)

Here, �a is the dimensionless parameter, which may have physical interpretation, e.g.
dimensionless contact radius. However, this meaning is not mandatory.

If the force-displacement curve is represented in the form (9), one can develop
a measure of �tting residual that has clear geometrical meaning. Consider an i-th
data point in dimensionless force-displacement coordinates (using some arbitrary



characteristic scales Pc and �c). If the measurements are absolutely exact, then the
data point belongs to the theoretical force-displacement curve and has a correspond-
ing value of the parameter �a = �ai (Figure 1). It this ideal situation the equations
(9) are fully satis�ed.
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Figure 1: Ideal situation: a data point belongs to the theoretical force-displacement
curve (9) in dimensionless force-displacement coordinates.

Let us introduce the following expression as the measure of mis�t of the i-th
data point and the theoretical curve:

�i(Pc; �c; �ai) =

�
�i
�c
� f1 (�ai; �c; Pc)

�2

+

�
Pi

Pc
� f2 (�ai; �c; Pc)

�2

: (10)

Clearly, �i = 0 in the above ideal situation due to (9).
Now consider a real measurement. Due to measurement errors the i-th data

point does not belong to the theoretical curve. In fact, one has two points: the �rst
one is the data point which is located o�-curve and the second one is the point on
the curve that corresponds to the value of the parameter �a = �ai (Figure 2a). In this
case the value of �i becomes square of the distance between the two points. If �i is
then minimized with respect to �ai, the value of �i becomes square of the shortest
possible distance between the two points. That is, the point corresponding to �a = �ai
is the projection of the i-th data point onto the theoretical curve and the value of
�i is square of the orthogonal distance from the data point to the theoretical curve
(Figure 2b).

Now, recalling that the overall number of measurements is N one can introduce
the following metric to de�ne the total �tting residual of N data points:

�(�c; Pc; �a1; ::�aN) =
NX
i=1

�i =
NX
i=1

"�
�i
�c
� f1 (�ai; �c; Pc)

�2

+

�
Pi

Pc
� f2 (�ai; �c; Pc)

�2
#
:

(11)
When minimized with respect to all the variables f�c; Pc; �a1; ::�aNg, this functional

allows one to �nd the load-displacement curve which best �ts experimental data
in terms of minimal averaged value of squared orthogonal distance from the data
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Figure 2: Relative position of the i-th data point (solid circle) and the point on the
theoretical curve that corresponds to the value of the parameter �a = �ai (circle) in
real situation. (a) The value of �ai is arbitrary. (b) The value of �ai is optimal.

points to the curve (so-called orthogonal distance curve �tting (ODF) approach [21,
25]).This approach is useful when both abscissas and ordinates of the data points are
subject to measurement errors. The optimal values of the characteristic parameters
P �c ; �

�

c can be found as the result of minimization of the objective functional in the
form (11) with respect to all of its variables:

fP �c ; ��cg = arg min
�c;Pc;ai

�(�c; Pc; �a1; ::�aN): (12)

Thus, the BG method has been re-formulated in the framework of the ODF
approach and the new objective functional (11) has been introduced.

Note that there exist other works on the determination of material properties by
means of direct �tting the theoretical DSI curve to experimental data, in particular,
obtained by atomic force microscopy (AFM) technique. For instance, Domke and
Radmacher [51], Dimitriadis et al. [52] determined the apparent Young's modulus
of thin organic �lms by means of �tting AFM data to a Hertz-like analytical model.
Recently, a number of authors [53{55] determined elastic and adhesive properties
of living cells using mostly the JKR contact model; Notbohm et al. [56] identi�ed
properties of a silicone rubber by means of DSI with small sphere by AFM technique.
Lin et al. [57,58] developed algorithms of the evaluation of material properties using
the Hertz non-adhesive and the Pietrement{Troyon adhesive models of frictionless
contact. However, it should be emphasized that except the latter two works in most
cases a little or no information is provided about �tting methods and procedures.
Neither mathematical aspects of the employed �tting approaches (contrary to the
paper [11]), nor readiness to utilize highly noisy experimental data are discussed.
This aspect is very important as demonstrated in the present paper. Also, in all
the above mentioned papers the mathematical models of contact interaction (P � �
curves) are supposed to be explicit functions which can be achieved only in simplest
cases. Thus, the eBG method has an advantage because it can be applied to rather
complex problems (e.g. contact with coated medium).

The main issue of the optimization problem (11)-(12) is the large number of
problem variables which is equal to N + 2: f�c; Pc; �a1; ::�aNg. Hence, the ODF prob-



lems are known to be computationally intensive and complex [21,25]. Although the
simultaneous minimization of (12) with respect to all its variables is possible, is not
desirable because normally N is large (up to a few thousands).

In the subsequent subsections we discuss two approaches that address the above
issue. In the former one, all the N + 2 variables of (12) are kept in place, however
the minimization process is performed for di�erent variables separately. In the latter
one, the ODF approach is used for preliminary �tting the experimental data with an
auxiliary non-parametric curve. The theoretical curve is then �tted to the auxiliary
one using the objective functional in the form of integral. As the result, there is
no need in evaluation of parameter values ai and hence, the number of problem
variables is greatly reduced.

3.3 Direct data �tting

In the present subsection we consider the problem of search for the optimal values
of Pc and �c in the form (11)-(12). In fact, the theoretical curve is �tted to the data
points directly without any auxiliary steps.

Despite the fact that the simultaneous minimization of the functional (11) with
respect to all N + 2 unknowns is possible, it can be noted that minimization with

respect to �ai can be done separately for each �ai when �c; Pc are �xed since
@�

@�ai
contains only �ai:

@�

@�ai
= �2

��
�i
�c
� f1 (�ai; �c; Pc)

�
@f1
@�ai

+

�
Pi

Pc
� f2 (�ai; �c; Pc)

�
@f2
@�ai

�
: (13)

Due to (13) the optimization problem can be solved by means of two-level
iterative minimization process that is also referred to as the variable-separation
method [25,26]):

min� = min
�c;Pc

min
�a1::�aN

�: (14)

The 
ow of this two-level interleaving minimization process can be expressed as the
following algorithm.

1. Assign initial values (guess) to Pc and �c.

2. Update the values of �ai.

(a) Lock the assigned values of Pc and �c.

(b) For each �ai minimize the objective functional with respect to �ai while
keeping the rest of the variables constant.

(c) Update the values of �ai with the found optimal ones.

3. Update the values of Pc and �c.

(a) Lock the assigned values of all �ai.

(b) Minimize the objective functional with respect to Pc and �c while keeping
the rest of the variables constant.

(c) Update the values of Pc and �c with the found optimal ones.



4. If the global optimality condition is not met, then go to step 2. Otherwise,
end cycle.

5. The current values of Pc and �c become the globally optimal ones P �c and ��c .

At any given step, the number of variables engaged in minimization process does
dot exceed two. This reduces greatly computational complexity. On the other hand,
this approach is similar to coordinate descent optimization method and is expected
to be rather slowly convergent. For this reason, an approach that uses not only the
idea of orthogonal distance �tting but also reduces greatly the number of variables
and computational time is considered in the next subsection.

3.4 The extended BG method with preliminary �tting

As actual expressions (9) may be very complex, multiple re-evaluation of values
�ai may become very time-consuming. On the other hand, the researcher is not
interested in obtaining these values since only �c; Pc are the matter of interest. The
approach presented in the present subsection allows one to exclude evaluation of �ai
during the identi�cation of Pc and �c.

Clearly, the aim of �tting data points with the theoretical curve is not the �tting
itself but rather �nding the unknown material properties evaluated from optimal
values of Pc and �c with reasonable accuracy using reasonable amount of computation
time. Hence, some additional steps may be introduced into �tting the theoretical
curve to the data points to speed up computations.

Here we present the concept of preliminary �tting (pre-�tting) of the experi-
mental data. The main idea is to �t experimental data with some auxiliary curve
P = 	 (�) (Figure 3) on the �rst stage of evaluation of �c; Pc. Mathematical expres-
sion of this new curve must be simple enough to make �tting the data quick and
easy process. Due to its simplicity, the auxiliary curve may be constructed using
some advanced �tting techniques like ODF. Alternatively, the pre-�tting curve may
be the result of some kind of post-processing/�ltering of the experimental data.

On the second stage the values of Pc and �c are adjusted in such way that
the theoretical curve becomes closest to the auxiliary one in certain sense. It can
be done without calculation of individual values of �ai even if the theoretical load-
displacement curve is represented in parametric form. This speeds up computation
drastically while maintaining good accuracy of the �nal result. The objective func-
tional of the BG method can be constructed as follows.

Consider the theoretical force-displacement curve in the form(
� = �cf1 (�a; �c; Pc) ;

P = Pcf2 (�a; �c; Pc) :
(15)

Let the experimental data be pre-�tted with an auxiliary curve P = 	 (�) on the
interval [�min; �max] where �min = min (�i) ; �max = max (�i) ; i = 1 : : : N . Then in
order to approximate the initial data well the norm of di�erence of the two functions
(the theoretical P � � curve and the auxiliary one) must be minimized which leads
to minimization of the following functional:
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Figure 3: Pre-�tting the experimental data with an auxiliary curve 	 (�).

�̂(Pc; �c) =

�maxZ
�min

[P (�) � 	 (�)]2 d�: (16)

Here P = P (�) is the theoretical force-displacement curve, and P = 	 (�) is the
auxiliary one.

Expression P (�) cannot be written explicitly. The only known expression for P
(equation (15)) contains �a. Therefore, �a becomes new independent variable in (16)
by means of change of variables � = �cf1 (�a; �c; Pc) which is the �rst expression from
(15).

As the result of this, the objective functional of the problem becomes

�̂(Pc; �c) = �c

�amaxZ
�amin

[Pcf2 (�a; �c; Pc) � 	 (�cf1 (�a; �c; Pc))]
2 @f1 (�a; �c; Pc)

@�a
d�a: (17)

Since �a has become a new independent variable, the problem of �nding �c; Pc now
has dimension two:

fP �c ; ��cg = arg min �̂(Pc; �c): (18)

The expressions (17)-(18) establish the optimization problem of the extended
BG method with pre-�tting.

In the Appendix A the reader can �nd a number of mathematical models known
in the literature, which describe indentation of coated medium, and therefore have
important practical applications. One of those models, developed by I. Argatov
et al. [27] is used in the present work to numerically simulate the performance of
the extended BG method. the model was chosen for benchmarking purposes, as a
complex and computationally intensive one, yet simple enough to quickly implement
it in a code for the Matlab software (MathWorks, Inc., Natick, MA, USA).



4 The extended BG method: numerical simulations and processing ex-

perimental data

Here the results of a number of numerical simulations and the results of processing a
real experimental data are presented. The purpose of the calculations shown here is
to examine accuracy, robustness and convergence speed of the proposed approaches.

In the recent years a number of papers regarding depth-sensing indentation of
elastic medium covered with layers of another material has been published (see the
previous subsection). In view of practical importance of this kind of the problems,
the proposed extensions to the BG method were �rst tested in application to the
model of contact between a spherical indenter and an elastic layer bonded to an
elastic half-space [27]. In the case of spherical indenter the smallness of the ratio
of the contact radius to the coating thickness necessary leads to the requirement of
small indentation depth. Hence, in Appendix B we demonstrate that even at small
indentation depths the substrate e�ect, that emerges due to the di�erence in the
properties of the layer and the half-space, is not negligible.

In numerical simulations, the theoretical force-displacement curve obtained using
expressions (33) and the characteristic parameters (37) was contaminated by noise
and the data obtained were used to simulate the noisy experimental readings.

Clearly, the choice of particular model has in
uence on the overall result, when
a real experiment is carried out. However, building su�ciently accurate model is
not the part of the BG method, and is beyond the scope of the manuscript. To
avoid the in
uence of the possible inaccuracy of the model, we used the model itself
to generate the test data for simulations, thus testing only the ability of the BG
method to re-create the initially set values of simulation parameters, while feeding
a noisy data to it. In this case the simulation work
ow was as follows:

1. Set the values of E� and w.

2. Calculate the corresponding values of Pc and �c, and build the theoretical
load-displacement curve.

3. Introduce noise into the theoretical data.

4. Apply the BG method to contaminated data, identify Pc and �c.

5. Re-calculate E� and w from the identi�ed Pc and �c, compare to the initially
set values.

When numerical simulations were carried out, calculation of the Tabor-Muller
parameter was done immediately after setting the simulation parameters. Hence,
we had a priori knowledge that the JKR theory was valid for these simulations,
and no further checks were performed. However, it was not the case when the real
experimental data was processed (Section 4.3). In that study the choice of the JKR
theory to describe the experiment was validated a posteriori. See Section 4.3 for the
details.

4.1 Convergence speed and accuracy of the proposed approaches

In order to investigate accuracy and the convergence speed of the both extended
formulations of the BG method in the form (11) and (17), a data set of 100 data



points was generated using the above mentioned mathematical model for adhesive
contact between a rigid spherical indenter and a coated elastic medium (Appendix
A). The P and � values were contaminated by means of adding zero-mean normally
distributed noise with standard deviations equal to 0.03 of maximum values of P
and � in the data set. The model parameters were taken as follows: R = 3mm,
h = 1 mm, E2 = 100 MPa, �1 = 0:3; �2 = 0:25.

Both the re-formulated BG approaches (11) and (17) were applied and the values
of E�1 and w were identi�ed twice: (i) all the data points were used (including those
corresponding to the tensile part of the P � � curve), (ii) only the "compressive"
part of the noisy data (P > 0) was used. The expected values were: w = 106:1
mJ/m2, E�1 = 7:906 MPa.

The results of application of the direct �tting approach (11) are illustrated in
Figure 4, where dots represent noise-contaminated data points, solid line is the
reference force-displacement curve corresponding to the initially set values w = 106:1
mJ/m2, E�1 = 7:906 MPa. The dashed line is the re-constructed force-displacement
curve corresponding to the values of E�1 and w identi�ed by means of the BG method.
Figure 4a shows application of the BG method (11) to the full set of data points
(the identi�ed material properties are w = 109:2 mJ/m2, E�1 = 7:939 MPa). Figure
4b shows application of the BG method (11) to the compressive part of the data
only (the identi�ed material properties are w = 125:7 mJ/m2, E�1 = 8:347 MPa).

The similar results of application of the BG method with pre-�tting (17) are
illustrated in the Figure 5. Pre-�tting was done using a 5-segment polygonal chain
(that is, a linear piece-wise polynomial) in the framework of the orthogonal distance
�tting approach. Figure 5a illustrates application of the BG method (17) to the
full set of data points (the identi�ed material properties are w = 105:1 mJ/m2,
E�1 = 7:832 MPa). Figure 5b illustrates application of the BG method (17) to the
compressive part of the data only (the identi�ed material properties are w = 88:3
mJ/m2, E�1 = 7:758 MPa).

The choice of the pre-�tting line as simple as a polygonal chain allowed us to
explicitly program a Matlab function that evaluated sum of squared orthogonal
distances from individual data points to the pre-�tting line. Minimization of that
function led to optimal orthogonal �tting the polygonal chain to the data points
(Figure 6). In particular, the polygonal chain was supposed to have NS segments
and NS + 1 vertices. The �rst vertex had abscissa �min = min(�1; : : : ; �N), the last
one had abscissa �max = max(�1; : : : ; �N) (see Figure 3). The abscissas of the vertices
were uniformly spaced: the j-th vertex abscissa was �V j = �min + (�max � �min)(j �
1)=NS. The ordinates of the vertices PV j were subject to ODF �tting in the space
of dimensionless quantities as follows.

Since the indenter displacement and the indentation force are quantities of dif-
ferent physical nature and orders of magnitude, one needs to use their dimensionless
equivalents when distance-based �tting approaches are used. Hence, to do pre-�tting
in the framework of the ODF approach, the following normalized quantities were
used (i; n = 1; : : : ; N):

�n =
�n � h�ii

max (�i) � min (�i)
;

Pn =
Pn � hPii

max (Pi) � min (Pi)
:

(19)



Here, N is the overall number of measurements in the data set, and h� i is the
averaging operator:

hxii =
1

N

NX
i=1

xi:

The coordinates of vertices of the pre-�tting polygonal chain were computed in the
space of the dimensionless quantities �n and Pn. Afterwards, they were recalculated
back to the space of dimensional quantities by inverting the formulae (19) (Figure
6).
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Figure 4: Numerical simulation. Reconstruction of the load-displacement curve from
noisy data using the variant of the BG method (11). (a) Full unloading branch used.
(b) Only compressive stage used.
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Figure 5: Numerical simulation. Reconstruction of the load-displacement curve from
noisy data using the variant of the BG method (17). (a) Full unloading branch used.
(b) Only compressive stage used.

The above numerical simulations allow us to conclude that both approaches (11)
and (17) are very accurate when high enough number of data points is provided, and
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Figure 6: Numerical simulation. Preliminary �tting data points with a 5 segment
polygonal chain. (a) Full unloading data used. (b) Compressive stage only used.

they cover su�ciently wide ranges of values of P and �. A somewhat lower accuracy
in the case of compressive data usage can be explained by two factors: (i) smaller
range of P and � values, which makes the slope of the �tting curve more sensitive
to the introduced noise, (ii) relatively small number of data points used in the sim-
ulation and their relatively high dispersion in comparison to the dimensions of data
point clouds. The number of points has certain in
uence too because at relatively
low number of points the data point cloud becomes less statistically representative,
and, hence, 
uctuations in individual points have greater in
uence on the result.

The more important conclusion is that introduction of an additional stage (pre-
�tting) in data processing does not in
uence the accuracy level of the method much.
However the analysis of convergence speed shows that the BG method with pre-
�tting is tens to hundreds times faster than the direct �tting approach (11).

Consider Figure 7 in which convergence of the values of Pc and �c is illustrated
with respect to the number of iterations in the direct �tting approach (as described
in the subsection 3.3). Figure 7a corresponds to the case when the full data set was
used, while Figure 7b corresponds to the case when only compressive data was used.

Given that the interleaving minimization algorithm explained in subsection 3.3
is similar to the coordinate descent method, such slow convergence is rather an
expected and inevitable behaviour. At the same time the use of the BG method
with pre-�tting required less than 20 iterations in each case.

Thus, the extended BG method with pre-�tting can be considered a robust,
accurate and fast approach that can be recommended for processing large amounts
of experimental data. This variant of the BG method is used in the rest of the
present paper. In the next subsection the problem of unknown coordinate origin in
experimental data is discussed. The performance of the BG method with pre-�tting
is examined in the case when initial noisy data has an unknown coordinate origin.
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Figure 7: Numerical simulation. Convergence speed of the direct �tting approach
(11). (a) Full unloading branch used. (b) Compressive stage only used.

4.2 Processing experimental data: the problem of unknown coordinate

origin

Usually, the indentation equipment records position of the indentation tool using its
own hardware-related reference point in which the displacement is considered to be
zero. On the other hand, from a mathematical point of view the reference points
(coordinate origins) of indentation curves in adhesive (the JKR theory) and non-
adhesive (the Hertz theory) cases coincide and correspond to such a hypothetical
position of the indenter in which the indenter and the sample touch at a single point
and no intermolecular forces are taken into account (Figure 8a). Such a di�erence
between the hardware coordinate origin and the theoretical one requires some shift
value �s to be subtracted from the raw experimental data (or added to the abscissas
of the theoretical curve) in order to obtain the right position of the indentation tool
and correct data �tting (Figure 9).

(a) (b) (c)

Figure 8: Relative positioning of the indenter and the specimen. (a) Position cor-
responding to theoretical coordinate origin P = � = 0. (b) The real position when
P = 0. (c) The real position when � = 0.

However, identi�cation of such a shift value �s may be problematic. Indeed, the
location of the point of initial contact between the indenter and the specimen is a
priori unknown as well as the actual distance between the specimen surface and the
indenter surface at any given moment of time. Moreover, in reality the con�guration



depicted in (Figure 8a) cannot be achieved for micro-/nanoindentation due to the
action of adhesive forces. If one measures zero indentation force, then the indenter
already has some unknown displacement (Figure 8b). On the other hand, when
indenter is in the right position, it is subject to some nonzero adhesive forces (Figure
8c). Measurement noise and specimen surface imperfections also mask the moment
of initial contact and make estimation of �s even harder.
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Figure 9: Illustration of the coordinate origin shift concept.

Hence, �s is an additional unknown variable in the data �tting process. The
simplest way to identify this unknown quantity is as follows. For each experimental
data set it is suggested to solve a number of trial problems of type (17)-(18). In the
k-th trial problem the following data set is used for �tting:

�
(k)
i = �Mi � �(k)s ; P

(k)
i = PMi; (i = 1 : : : N) (20)

where �Mi and PMi denote the i-th pair of measured values of displacement and
force correspondingly, and �

(k)
i and P

(k)
i stand for the i-th pair of displacement and

force values in the k-th trial problem. The correct value of �s is supposed to give
absolute minimum of the cost functional (17) among all the trial problems.

To verify this approach a set of six data sets (Figure 10) was generated using
the asymptotic mathematical model of contact between an elastic layer bonded to
an elastic half-space and a rigid punch (Appendix A).

Each of the sets emulates experimental data obtained from a single experimental
test. According to the algorithm described above, the theoretical load-displacement
curve (the reference curve) was calculated, then normally-distributed noise was
added to the reference curve so that six di�erent data sets were obtained. The
added noise was zero-mean with standard deviations equal to 7.5% of jmin(�)j and
jmin(P )j for displacement and force values respectively. A random shift was intro-
duced into the values of � as well.

The values of E�1 and w were identi�ed using the approach (17)-(18) with pre-
�tting performed independently for each set (5-segment polygonal chain was used
for preliminary �tting). Expected values were w = 106:1 mJ/m2, E�1 = 7:906 MPa,
the same as in the previous simulation. The results of identi�cation were as follows.
The values of E�, in MPa: 7.905, 7.731, 7.896, 7.896, 7.821, 7.846; the values of w,
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Figure 10: (a)-(f) Data sets (dots) with introduced random shifts in displacement
readings � which were used to simulate real experimental data. The solid line rep-
resents the reference theoretical curve used to obtain the data sets.

in mJ/m2: 110.2, 111.2, 109.8, 109.1, 107.7, 108.6. After averaging the following
identi�ed values of work of adhesion and e�ective elastic modulus were obtained:
w = 109:4 mJ/m2, E�1 = 7:849 MPa. Relative errors therefore were 3.13% and
0.72% respectively. Standard deviations were �w = 1:233 mJ/m2, �E� = 0:06651
MPa.

The shift value for each data set was identi�ed during a two stage process. On
the �rst stage the vicinity of the minimum of the objective functional with respect
to shift in � was found by means of the usage of linearly spaced set of the values
of �s. Then the value of �s was re�ned using the method of golden section. During
each of these trial calculations the chosen value of �s was subtracted from the values
of the data set (as suggested by (20)) and the functional (17) was minimized using
built-in routines of Matlab software which resulted in the corresponding values of
Pc and �c. The latter values were used for evaluation of E�1 and w after the global
minimum in the functional values with respect to �s had been reached.

4.3 Identi�cation of material properties from real experimental data

To test the two-stage approach to identi�cation of elastic and adhesive properties
of materials with pre-�tting (see Eqs. (17)-(18)) and determination of unknown
coordinate origin we used experimental data from the work by Borodich et al. [14].

In the paper [14], the BG method was used to identify properties of polyvinyl
syloxane (PVS), a soft elastomer widely used as an impression material, in particular,
in dentistry. Two series of six specimens were studied (with and without extra
cleaning of the surface) using a custom-built force measurement device Basalt-1
(TETRA GmbH, Ilmenau, Germany). Each of the specimens was made of a thick



PVS layer e�ectively considered as a half-space. Schematic of the experimental set-
up is depicted in Figure 11a. Indentation was carried out by means of sapphire balls
of two di�erent radii (1 and 3 mm balls used for each specimen) installed on the
end of a cantilever beam of known sti�ness. The position of the opposite end of the
cantilever beam was controlled electronically by means of a piezo-drive. Positions
of the both ends of the cantilever were measured by means of optical sensors. These
readings were then converted into the values of applied indentation force and the
displacement of the indenter ball (Figure 11b). The values of the reduced contact
modulus E� and the work of adhesion w identi�ed in [14] are used here (see Figure
14, Table 1) as the reference data to con�rm accuracy of the extended BG method.
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Figure 11: (a) Schematic of the DSI setup. (b) An example of experimental force-
displacement curve.

Two series of six specimens each tested with 1 and 3 mm balls produced 24 data
sets in total. In the present work, each individual data set was processed using the
extended BG approach (17)-(18) as follows.

Due to small indentation depth, the classical JKR theory of adhesive contact
interaction between a rigid sphere and an elastic half-space was used. The particular
representation of the theoretical force-displacement curve was chosen in the present
work in the form (4). The stable branch of (4) was re-written in parametric form as8><

>:
� = �c

�
3
p

1 + �a� 1
��1 +

p
1 + �a

9

� 1

3

;

P = Pc�a:

(21)

These expressions became particular form of the formulae (15) used to process exper-
imental data. The characteristic parameters Pc and �c were de�ned using formulae
(5).

Preliminary �tting of experimental data was done by means of polygonal chain
which was used as the pre-�tting function P = 	(�) in (17). Since the number
of segments in the pre-�tting polygonal chain has some in
uence on the identi�ed
values of E� and w, the number of segments was varied from 3 to 10. Every time
the material properties were identi�ed separately for each of the 24 data sets. As
the result of statistical post-processing, the averaged values hE�i i and hwii as well
as the standard deviations �E� and �w were computed.



The dependency of the averaged values of the reduced elastic contact modulus
and the work of adhesion on the number of segments is shown in Figure 12a. The
averaged values of E� vary from 2.248 to 2.274 MPa, the averaged values of w vary
from 55.18 to 59.56 mJ/m2. The dependency of the values of standard deviations
�E� and �w on the number of segments is shown in Figure 12b.
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Figure 12: The results of processing of the raw experimental force-displacement DSI
data after the paper by Borodich et al. [14]. (a) Averaged values of reduced elastic
contact modulus and the work of adhesion versus the number of segments in the
pre-�tting curve. (b) Standard deviations of the identi�ed PVS properties values
versus the number of segments in the pre-�tting curve.

To identify the optimal number of segments in the pre-�tting line, the following
dimensionless measures can be used. The goodness of identi�cation of individual
material properties can be described by the corresponding relative standard devia-
tions (coe�cients of variation) de�ned as

cv E� =
�E�

hE�i i
; cv w =

�w
hwii (22)

where cv E� and cv w are relative standard deviations for E� and w correspondingly.
Optimal settings should produce minimal scatter of the identi�ed values of ma-

terial properties. However, in the present study the computed values of cv E� and
cv w reached minimum at di�erent number of segments in the pre-�tting line (Fig-
ure 13). Hence, generalized variance was used as a single scalar measure of overall
multidimensional scatter of points corresponding to identi�ed values of E� and w
on the (w;E�) plane. Generalized variance j�j is de�ned as the determinant of the
covariance matrix � (E�i ; wi) of random quantities E� and w [59, 60]:

j�j = det (� (E�i ; wi)) : (23)

In the present study generalized variance was computed using normalized data
thus producing a dimensionless metric of goodness of �t:

j�j� = det

�
�

�
E�i
hE�i i

;
wi

hwii
��

: (24)
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segments in the pre-�tting curve: relative standard deviations cv E� , cv w and gener-
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The dependency of j�j� on the number of segments NS in the pre-�tting line is
shown in Figure 13. It reached minimum at NS = 8. Thus, NS = 8 was considered
as the optimal number of segments producing best �t for the data used.

In Figure 14a the results of identi�cation are shown for pre-�tting with 8-segment
line. These results were considered optimal and compared with the values of E� and
w obtained in [14] by means of the original BG method (Figure 14b). In Table 1 the
statistical measures corresponding to the two cases are presented: the averaged value
of the reduced contact modulus hE�i i, the averaged value of the work of adhesion
hwii, and the corresponding standard deviations �E� and �w. The relative di�erences
in Table 1 were computed as

�rel =

��Qext
BG �Qorig

BG

��
Qorig

BG

(25)

where Q denotes one of the physical quantities listed above, superscripts "ext"
and "orig" denote the extended implementation of the BG method (17)-(18) and
the original one [14] correspondingly. The complete result set for the number of
segments varied from 3 to 10 is shown in Appendix C.

Comparison of the results produced by the original and the extended BG methods
leads to an important conclusion that at optimal settings the extended BG method
produces very similar averaged values of the material properties, and yet it has better
performance in terms of lesser scatter of the identi�ed values (i.e. lower standard
deviation values).

Indeed, the considered DSI tests fall within the range of applicability of the JKR
theory. Tabor [61] and Muller et al. [62] (see also [39]) introduced a dimensionless
parameter:

� =

�
Rw2

E�2z30

�1=3

(26)

where R is the e�ective curvature radius of contacting bodies (if a spherical indenter
is in contact with a plane, R is equal to the radius of the sphere); z0 is the equilibrium



distance between atoms of the contacting bodies, usually assumed to be 0.3...0.5 nm.
This parameter is suitable for clear distinction of applicability boundary between
the JKR and DMT theories of adhesive contact.

Assuming z0 = 0:4 nm and using the identi�ed total maximum and minimum
values of the reduced elastic modulus (2.69 and 1.85 MPa correspondingly), the
work of adhesion (63.3 and 39.8 mJ/m2 correspondingly), and the indenter radii,
one can estimate the range of the Tabor-Muller parameter as 1506 � � � 3800
which is much greater than the threshold value � = 1. This justi�es the use of the
JKR theory.

Remark. In the recent work by Perepelkin et al. [20] the proposed extended
variant of the BG method with pre-�tting has been experimentally validated. Two
types of specimens were made of the same charge of PVS, and two di�erent experi-
ments were carried out: (i) depth sensing indentation using the experimental set-up
shown in Figure 11a (including post-processing of the experimental data by means
of the extended BG method), (ii) tensile testing of dumbbell-shaped specimens as a
reference experiment. Values of the reduced elastic modulus E� estimated in both
experiments were in good agreement. Note that these values di�er from presented in
Table 1 because mechanical properties of PVS may vary between di�erent charges
of the material.

Table 1: Comparison of the experimental results from Borodich et al. and the
present work

Quantity Borodich et al. (2013)
The present work
(at optimal �tting

settings)

Relative
di�erence, %

hE�i i, MPa 2.39 2.25 5.86
hwii, mJ/m2 57.6 55.2 4.16
�E� , MPa 0.204 0.201 1.47
�w, mJ/m2 8.51 6.62 22.2
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Figure 14: Comparison of the experimental results after Borodich et al. [14] and
the present work. (a) The values of E� and w identi�ed in [14]. (b) The set of
identi�ed values of material properties extracted using pre-�tting with polygonal
chain. Number of segments in chain: 8 (optimal value).



Conclusions

To identify correctly material properties from micro- or nano-indentation, the cor-
responding mathematical models should take into account adhesion between the
indenter and the specimen. Here we have extended the BG method to a general
class of mathematical models of adhesive contact when the external load and the
displacement of the indenter are de�ned as parametric functions of the contact ra-
dius. In particular, one can use any well-established model (e.g. [49]) of adhesive
contact for an elastic layer and apply the extended BG method to experimental data
obtained by DSI of layered/coated medium in order to extract physical properties
such as the work of adhesion, contact elastic modulus, and so on.

To �t experimental data with a parametric force-displacement curve we have
introduced a new objective functional of the BG method based on the concept of or-
thogonal distance curve �tting (ODF). However, �tting a parametric P � � curve to
a set of points normally requires to determine the unknown values of the parameter
corresponding to individual data points which increases the number of unknowns
drastically and slows down computations. To address this issue of the above direct
�tting approach the following additional extension of the BG method has been sug-
gested. It has been proposed to carry out �tting of the theoretical force-displacement
curve to experimental data points by means of a two-stage process. On the prelimi-
nary �rst stage (the pre-�tting stage) data points are �tted with an auxiliary curve.
The auxiliary curve is supposed to have simplest possible mathematical form which
allows to implement advanced data �tting/�ltering techniques like ODF quickly
and e�ectively. The pre-�tting curve has been taken as simple as a polygonal chain
which is �tted to experimental data using the ODF technique. On the second stage
the theoretical force-displacement curve is �tted to the auxiliary one by means of
minimization of the square of the norm of di�erence of the two functions. The ob-
jective functional has been formulated in a way that does not require computation
of unknown values of the parameter. Numerical simulations showed that the pre-
�tting stage does not have signi�cant in
uence on the accuracy of identi�cation of
the values of the reduced contact modulus and the work of adhesion.

The extended BG method with pre-�tting was tested using real experimental
data from DSI experiments [14] in which the original BG method was used. The
values of the reduced contact modulus E� and the work of adhesion w of polyvinyl
siloxane samples were identi�ed using the extended BG method in the framework of
the classic JKR theory and compared to the previously published ones. Comparison
showed that the averaged values of material properties obtained by means of the
extended BG method at the optimal pre-�tting settings di�er insigni�cantly from the
values obtained by means of the original BG method. This means that the extended
BG method is at least as good as the original BG method, while the individual
values of material properties produced by the eBG method were less scattered and
therefore, having lower standard deviation values in the resulting data set.

The parametric models of adhesive contact include such important cases as in-
dentation of thin and ultra-thin layers and coatings, cell membranes, etc. The
applications of the extended BG method to many of these models have been dis-
cussed. Numerical simulations were carried out using an asymptotic mathematical
model for adhesive contact between a rigid axisymmetric indenter and a thick elastic
layer bonded to an elastic half-space developed by Argatov et al. [27]. Numerical



simulations con�rmed the accuracy and robustness of the proposed extensions of the
BG method against data contaminated by normally-distributed noise.

Thus, the BG and eBG methods may be considered as a framework for extracting
mechanical and physical characteristics of contacting solids based on a combination
of indentation techniques and numerical approaches to processing experimental data.
From this point of view, the BG method is much more than just a �tting procedure.
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Appendix A. The scope of the extended BG method in application to

parametric P � � curves. Coated medium

In this Appendix we brie
y list a number of models, which have important practical
applications, all have similar structure, and thus can be used in the same manner
with the extended BG method. Here we focus on the models that a mathematically
formulated in the form of parametric functions.

The classic JKR theory considers contact between a sphere and an elastic half-
space. In the case of sphere the JKR theory leads to an explicit relation P (�).
However, if one considers more general shapes of the indenters [8] the P � � curve
may be presented only in the parametric form (P (a); �(a)) where a is the contact
radius. This type of representation is very important. In particular (but not limited
to), such parametric dependencies may arise, for example, as the result of extension
of a P � � dependency from non-adhesive case to adhesive one in the framework of
the JKR theory of adhesive contact. As an important case in which the proposed
extensions of the BG method can be used one may consider indentation of a coated
or layered medium.

It is important to emphasize that di�erent sets of characteristic parameters are
used by di�erent authors to represent the force-displacement relations in dimension-
less form (see e.g. discussion in [8, 63]). These parameters ac; Pc; �c are used to
construct the dimensionless contact radius �a = a=ac, indentation force �P = P=Pc,
and indenter displacement �� = �=�c.

Apart from the above mentioned formulae (5), one can �nd the following exam-
ples of characteristic parameters. In the works by Johnson [64], and Maugis [39] the
following set of parameters is suggested:

ac =

�
3�wR2

4E�
�1=3

; Pc = �wR; �c =

�
9�2w2R

16E�2

�
: (27)



The paper by Johnson and Sridhar [49] suggests slightly di�erent set of characteristic
parameters:

ac =

�
9�wR2

4E�
�1=3

; Pc = �wR; �c =

�
9�2w2R

16E�2

�
: (28)

The above examples suggest that reader should be careful while considering various
force-displacement dependencies, as the used characteristic parameters may di�er
from one dependency to another.

Indentation of a thin elastic layer bonded to a rigid base. It is known
[65{68] that a thin elastic layer in a contact problem can be e�ectively reduced in
leading-term approximation to the spring-bed foundation (the Winkler foundation)
de�ned through its elastic constant K which in isotropic limit can be expressed
as K = E (1 � �)=[h (1 + �) (1 � 2�)] where E is the elastic modulus and � is the
Poisson's ratio of the layer material, and h is the layer thickness. Hence, the JKR
adhesive solution for a contact problem for an arbitrary convex rigid axisymmetric
indenter and a thin elastic layer bonded to the rigid substrate can be expressed
as [43]:

P = �Ka2

 
f(a) �

r
2w

K

!
� 2�K

Z a

0

f(r)rdr (29)

and

� = f(a) �
r

2w

K
: (30)

The function f(r) is an arbitrary function de�ning indenter shape in cylindrical
coordinates. Clearly, the parameter a (the contact radius) can be eliminated from
(29)-(30) only in some particular cases.

Indentation of an elastic layer bonded to an elastic half-space. Semi-

analytical approach. Adhesive solutions of contact problems become even more
complex if a coated elastic medium is considered. To address this issue, a semi-
analytical approach to solving the contact problem for a coated elastic medium and
an axisymmetrical indenter was developed in [48{50]. For instance, Johnson and
Sridhar [49] represent JKR force-displacement curves in dimensionless form as

�� = 32=3�a2

 
B (x; k) � 2

p
2

3
�a�3=2D (x; k)

!
(31)

and
�P = �a3F (x; k) �

p
2�a3H (x; k) (32)

where �� and �P the dimensionless variables obtained using the characteristic param-
eters (28). They represent the indentation depth and force respectively. The dimen-
sionless radius of the contact region �a serves as the parameter along the P �� curve.
B (x; k) ; D (x; k) ; F (x; k) ; H (x; k) are numerically computed correction functions
that depend on the ratio of contact radius to coating thickness x and the ratio of
Young's moduli of substrate and coating k. Clearly, this kind of force-displacement
curve cannot be exactly reduced to explicit/implicit function.



Indentation of an elastic layer bonded to an elastic half-space. Asymp-

totic approach. Another example of parametrically formulated force-displacement
curve is an analytical asymptotic model for adhesive contact between a spherical in-
denter and a thick elastic layer bonded to an elastic half-space. This asymptotic
model was developed by Argatov and Sabina [44] for non-adhesive case and ex-
tended for JKR-type adhesive contact by Argatov et al. [27] (see also [69]). Let us
consider this model in more detail as it is used in the present paper as the base for
mathematical modelling.

Let a rigid spherical indenter of radius R be in contact with an elastic medium
covered with an elastic layer of thickness h (Figure 15). Elastic modulus and Pois-
son's ratio for elastic medium are considered to be known (E2; �2) as well as the
Poisson's ratio of the layer �1. Indenter is subject to force P , indentation depth �
is considered to me small in comparison with layer thickness h. Radius of contact
area is denoted as a.

P
R

δ h

a

E1, ν1

E2, ν2

Figure 15: Indentation of an elastic layer bonded to an elastic half-space.

According to Argatov et al. [27], the load-displacement curve for spherical in-
denter can be expressed as an asymptotic expansion:

�� ' 3�a2
�

1 � "
4a0
3�

� "3
16a1
5�

+ "4
32a0a1

9�2

�

�2
p

2�a

�
1 � "

2a0
�

� "3
16a1
3�

+ "4
16a0a1

3�2

�
; (33)

�P ' �
1 � 3a1�

9=2�a3
� �

�a3 �
p

2�a3=2
�
:

One can see that the relation between the dimensionless variables �P and �� is
formulated again in the parametric form, where the dimensionless contact radius �a
is used as the parameter. Other coe�cients can be expressed as follows:

� =

�
2wR2

E�1h
3

�1=2

; am =
(�1)m

22m (m!)2

1Z
0

L (u)u2mdu (34)



where

L (u) =
2KLe�4u � (L + K + 4uK + 4u2K) e�2u

1 � (L + K + 4u2K) e�2u + KLe�4u
;

K =
1 � n

1 + n (3 � 4�1)
; L =

(3 � 4�2) � n (3 � 4�1)

(3 � 4�2) + n
; n =

E2 (1 + �1)

E1 (1 + �2)
:

Small parameter " can be introduced as " = a=h or can be evaluated using the other
model parameters as [27]:

" =
3
p

9�

2
�2=3�a: (35)

Unknown elastic modulus E1 can be eliminated using expression E�1 = E1=(1 � �21),
therefore, the expressions above contain two unknown quantities: e�ective elastic
modulus E�1 and the work of adhesion w.

As it was stated earlier, the BG method uses scaling relations to connect unknown
material properties and characteristic scaling parameters Pc and �c . Mathematical
model (33) was developed using the following scaling relations [27]:

�P =
P

3�wR
; �� = �

�
4E�1p
3R�w

�2=3

; �a = a

�
4E�1

9�wR2

�1=3

: (36)

i.e. the characteristic parameters Pc and �c can be expressed as:

Pc = 3�wR; �c =

 p
3R�w

4E�1

!2=3

: (37)

Please note that Pc and �c di�er from the examples presented above in formulae (5),
(27), and (28).

Therefore, once Pc and �c are obtained via BG method, E�1 and w can be evalu-
ated:

w =
Pc

3�R
; E�1 =

Pcp
3R�

3=2
c

: (38)

This means that optimization problems (11) and (17) can be fully formulated in
terms of Pc and �c.

Indentation of a functionally-graded half-space. Clearly, parametric rep-
resentation of the solution of the adhesive contact problem is not limited to the
scope of the JKR theory. E.g., Jin et al. [47] used the double-Hertz analytical model
of adhesive contact by Greenwood and Johnson [70] to study the contact problem
for a rigid spherical punch and a functionally graded elastic half-space with the
elastic modulus E varied through the depth z as E = E0(z=c0)

k. According to [47],
the solution of the contact problem was presented using the contact radius a as the
parameter as

P =
2��1

3 + k

E�

ck0R

�
a3+k � �(c3+k � a3+k)

�
; (39)

� =
a2 � �(c2 � a2)

R(1 + k)
; (40)



w = �(1 + �)
�1E

�

ck0R

(1 + k)c3+k � (3 + k)a2c1+k + 2a3+k

(1 + k)(3 + k)
: (41)

The latter equation establishes the relation between the work of adhesion w, the
outer radius of the cohesive zone c, and the rest of the parameters of the system.

Indentation of a coated elastic half-space. The Maugis-Dugdale ap-

proach. In their work, Sergici et al. [45] considered an adhesive contact problem
for a spherical indenter and a coated half-space in the framework of the Maugis-
Dugdale theory. In dimensionless form the expressions for the total applied force
and the indendter displacement were de�ned as

P = ���a2

0
@ 1Z

0

G(�")�"d�" + m2�

2

1
A (42)

and

� =
�a2

2
+

8�a

3�

1Z
0

�"G(�")K(�")d�"+
4

3
�a
� �a

H

� 1Z
0

�"G(�")k8(�"; 1)d�"+
8�a

3�
�mE(1=m)+

8�a

3
�mk9(1)

(43)
where dimensionless quantities �a, P , and � were obtained using the characteristic
parameters (27), and m is ratio of outer radius of the cohesive zone c to the contact
radius a. G is the dimensionless distribution of the normal stresses in the contact
area, and k8; k9 are auxiliary functions depending on the particular geometry of the
problem and material properties. Note the dimensionless contact radius A which
is used as the parameter in both of the above expressions. An additional integral
equation (solved numerically) is used in [45] to establish connection between the
radius of the contact area and the radius of the cohesive zone. Further, the above
approach was extended in [46] to a multilayered medium.

The above examples represent variety of approaches and mathematical models
which cannot be exactly reduced to explicit P � � functions. A the same time, they
can be used in conjunction with the proposed extensions of the BG method.

Appendix B. Substrate e�ect in DSI at small depth

In the present work, a model of asymptotically thick layer is used in numerical
simulations and the benchmarking of the BG method. This means that in the
case of spherical indenter the smallness of the ratio of the contact radius to the
coating thickness necessary leads to the requirement of small indentation depth.
It is commonly assumed that at small indentation depth the substrate e�ect is
negligible. However, it is not always so.

As Johnson ans Sridhar showed [49], the substrate e�ect during indentation
of a coated medium can be taken into account by means of the introduction of
dimensionless correction functions into the classical equations of the JKR theory.
These correction functions show that the substrate e�ect depends on the interplay
between the model geometry, and the elastic properties of both the coating and the
substrate, which is not always straightforward.

Experimental studies demonstrate the substrate e�ect at small indentation depths.
Consider, for example, the experiments on the indentation of coal samples by E.



Kossovich et al [71]. In that work elastic moduli of coal were obtained by means
of the Oliver-Pharr approach and nanoindentation with varying depth of maximum
indentation (150. . . 400 nm) of a 14 micrometer �lms attached via a glue �lm to
a rigid substrate. These moduli varied considerably depending on the maximum
depth of indentation.

To assess the signi�cance of the substrate e�ect numerically, in the present Ap-
pendix we use Finite Element Method (FEM) by means of ANSYS 18 Mechanical
APDL (ANSYS, Inc., Canonsburg, PA, USA), and simulate non-adhesive inden-
tation of a coated medium at small depth, using the values of material properties
similar to those used in Section 4. Three cases were considered: (i) indentation of
a half-space made entirely of the coating material (Material 1) using the analytical
solution of the Hertz contact theory (the reference solution), (ii) indentation of a
large �nite specimen made entirely of the coating material (Material 1) modelled
using FEM to validate the accuracy of the FEM model itself, (iii) indentation of a
large �nite specimen of the same size made of a coating (Material 1) and a sti�er
substrate (Material 2), modelled in ANSYS as well.

FEM simulations were carried out in axisymmetric formulation. The �nite-size
specimen was modelled to have thickness HFEM = 41 mm, and radius RFEM = 200
mm (Figure 16a). When the coated medium was modelled, the coating thickness
was set to h = 1 mm, and the substrate thickness was set to HFEM � h = 40 mm.
The coating elastic properties (Material 1) were set as E1 = 7:906 MPa and �1 = 0:3
(Young modulus and the Poisson's ratio correspondingly), the substrate elastic prop-
erties (Material 2) were E2 = 100 MPa and �2 = 0:25. The following element types
were used: PLANE183 for modelling the substrate and the coating, TARGE169 and
CONTA175 for modelling the contact pair. The indenter was assumed to be rigid.

The results shown in Figure 16b demonstrate that exact analytical Hertz solu-
tion (solid line) and the FEM solution for the large �nite specimen (circles) have
negligible di�erence. This con�rms the accuracy of the FEM model.

Now consider the same FEM model with introduced substrate e�ect via the
di�erence in the properties between Material 1, occupying the top 1 mm layer, and
Material 2, occupying the rest of the model. The maximum simulated indentation
depth was 1% of the coating thickness. The corresponding results (triangles in
Fig. 16b) demonstrate di�erence up to 15% at indentation depth 1% of the coating
thickness. Thus, the substrate e�ect is noticeable in this case.
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Figure 16: The substrate e�ect at small indentation depth: (a) the FEM model,
(b) the comparison of force-displacement curves: the reference analytic Hertzian
solution for a half-space (solid line), the FEM model without the substrate e�ect
(circles), the FEM model with the substrate e�ect (triangles).

Appendix C. Complete set of results obtained from the experimental DSI

data by means of the extended BG method

In this Appendix we present the complete set of results obtained by means of appli-
cation of the extended two-stage BG method (17)-(18) with pre-�tting to the raw
experimental data used earlier in the paper [14]. The details of the experiment and
data processing is presented in the section 4.3 above.

In Figure 17-18 the complete set of results of identi�cation of the properties
of polyvinyl siloxane (PVS) is shown as the number of segments in the pre-�tting
polygonal chain varies from 3 to 10. The values of E� and w were identi�ed sep-
arately for each of the 24 available data sets. The result of each identi�cation is
represented as a dot in the �gures.
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Figure 17: Material properties extracted using pre-�tting with polygonal chain.
Number of segments in chain are correspondingly: 3 (a), 4 (b), 5 (c), 6 (d).
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Figure 18: Material properties extracted using pre-�tting with polygonal chain.
Number of segments in chain are correspondingly: 7 (a), 8 (b), 9 (c), 10 (d).
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