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Abstract. Greening of Data Centers could be achieved through energy savings 

in two major areas namely: compute systems and cooling systems. A reliable 

cooling system is necessary to produce a persistent flow of cold air to cool the 

servers due to increasingly demanding computational load. Servers’ dissipated 

heat effects a strain on the cooling systems. Consequently, it is imperative to 

individual servers that frequently occur in the hotspot zones. This is facilitated 

through the application of data mining techniques to an available big data set 

with thermal characteristics of HPC-ENEA-Data Center, namely Cresco 6. This 

work involves the implementation of an advanced algorithm on the workload 

management platform produces hotspots maps with the goal to reduce data 

centre wide thermal-gradient, and cooling effectiveness. 

Keywords: Data Center, HPC, Data Mining, Big Data, Thermal, Hotspot, 

Cooling, Thermal management. 

1   Introduction 

A large volume of electricity is generated worldwide through the burning of 

hydrocarbons. This causes a rise in carbon emission and other Green House Gasses 

(GHG) in the environment, contributing to global warming. Data Center (DC) 

worldwide was estimated to have consumed between 203 to 271 billion kWh of 

electricity in the year 2010 [1]. According to [2], unless steps are taken to save energy 

and go-green, global DC share of carbon emission is estimated to rise from 307 

million tons in 2007 to 358 million tons in 2020. Servers consume energy which is 

eventually converted to heat, and is proportional to the allocated computing loads. 

Cooling machines are deployed to maintain the computing servers at the vendor 

specified temperature for consistent and reliable performance. Koomey [1] showed 

that electricity is primarily spent on cooling and computer systems (comprising 

servers in chassis and racks). Hence, these two systems have been critical focal points 

for energy savings. Computing-load processing entails jobs and IT tasks management. 

DC cooling encompasses the installation of cooling systems and involvement of 
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hot/cold aisle configurations.  Incompetent thermal management is the underlying 

cause of inefficiency of the IT infrastructure within a data center. Microprocessors in 

servers are the primary electricity consumers and heat generators [4]. Generally, the 

vast amount of waste heat generated a high performance-oriented microprocessor 

architecture is beyond efficient air cooling capability. Thus, it is necessary to 

efficiently disperse the waste heat to avoid overheating. All this while, DCs have been 

spending an equal amount of electricity on cooling and computing [1]. A more 

effective energy savings strategy would be to reduce electricity consumption by 

minimising the load on the cooling system for keeping servers (in the computer 

system) cool. Thermal-aware scheduling is a computational workload scheduling 

based on waste heat. Thermal-aware schedulers adopt different thermal-aware 

approaches. Heat modelling provides a model that links power consumed by servers 

and their associated waste heat. Thermal-aware monitoring acts as a thermal-eye for 

the scheduling process and entails recording and evaluation of heat distribution within 

DCs. Thermal profiling is based on useful monitoring information on workload-

related heat emission and it is used to predict the DC heat distribution. Our analysis 

explores the relationship between thermal-aware scheduling and computer workload 

scheduling. This is followed by selecting an efficient solution to evenly distribute heat 

within a DC to avoid hotspots and cold spots.In this work, a data mining technique is 

chosen for a deeper analysis of hotspots prediction and thermal-profiling to avoid 

them. The dataset employed for this analysis is a big dataset of ENEA-HPC-

CRESCO6 nodes. The analysis encompasses the following: hotspots localisation; 

categorisation of users according to the job that usually submit on CRESCO6 cluster; 

categorisation of nodes behaviour based on internal and surrounding air temperatures 

with a cause-effect study on heat produced by certain workloads This analysis aims to 

minimise thermal gradient taking into account different level of available thermal data 

consumption such as nodes, CPU, IT room environment. Unsupervised learning has 

been employed due to the variability of thermal data and uncertainties in defining 

temperature thresholds for hotspots identified. In this analysis phase, the optimal 

workload distribution to clusters nodes is determined and available thermal 

characteristics (i.e. exhaust temperature, CPUs temperatures) are inputs to the 

clustering algorithm. Subsequently, a series of clustering results are intersected to 

unravel nodes (identified by IDs) that frequently fall into high-temperature areas of 

the cluster racks. The paper is organised as follows: Section I – Introduction; Section 

II – Background: Related Works; Section III – Methodology; Section IV – Analysis 

and Results; Section V – Conclusions and Future Works. 

2 Background: Related Work  

In the context of HPC-DC operations and management, energy efficiency comprises 

cooling and IT equipment utilisation optimised to maintain recommendable IT room 

conditions and to satisfy service level agreements with minimal energy consumption. 

Pursuing DC energy efficiency is a challenging task due to a large number of factors 

affecting DC productivity and energy efficiency. A trade-off between colder locations 

for the free air-cooling and sunny places for solar power plants is an issue yet to be 
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critically analysed [8]. Another challenge concerns thermal equipment: raising the 

setpoint of cooling equipment or lowering the speed of CRAC (Computer Room Air 

Conditioning) fans to save energy used by thermal equipment may in the long-term, 

decrease the IT systems’ reliability and thus, a balance is yet to be found [8]. 

Furthermore, an ongoing challenge of power overprovisioning and causing energy 

waste for idle servers has brought about research works on energy storage in UPS 

(Uninterruptible Power Supply), optimal allocation of PDUs (Power Distribution 

Units) with respect to servers, and multi-step algorithms for power monitoring and 

on-demand provisioning reviewed in [8]. Other challenges encompass workload 

management, network-level issues as optimal routing, VM allocation, balance 

between power savings and network QoS (Quality of Service) parameters as well as 

choice of appropriate metrics for DC evaluation. One standard metric used by a 

majority of industrial DCs is Power Usage Effectiveness (PUE) proposed by Green 

Grid Consortium [2]. It shows the ratio of total DC energy utilisation with respect to 

the energy consumed solely by IT equipment. A plethora of metrics currently under 

development evaluates thermal characteristics, a ratio of renewable energy use, 

energy productivity of various components and other parameters. DCs experience an 

urgent need for a holistic framework that would thoroughly characterise them with a 

fixed set of metrics and find potential pitfalls in their operation. Although such 

attempts have been found in existing research work, thus far, no framework has been 

standardised [9]–[13]. Viewing the fact that IT is the major energy consumers within 

a DC, its thermal characteristics should be the primary focus of an energy efficiency 

framework. To address this, researchers have proposed various methods for reduce 

the thermal production in a DC. Sungkap et al. [11] proposed an ambient temperature‐
aware capping to maximize power efficiency while minimising overheating. Authors 

analysed the composition of the energy consumption of a cloud computing DC. They 

put forward that the energy consumption of the DC is composed of about 45% of the 

computing energy consumption and 40% of the air conditioning refrigeration energy 

consumption. The remaining 15% of energy consumption is mainly consumed by 

storage and power distribution systems. This means that about half of the energy 

consumption of the DC is consumed by non‐computing devices. In [6], Wang et al. 

put forward an analytical model describing DC resources with heat transfer properties 

and workloads with thermal features. Thermal modelling and temperature estimation 

from thermal sensors should consider that the increase in inlet air temperature may 

cause some servers hotspot states and thermal solicitation. This could be attributed to 

an inappropriate positioning of a rack or even inadequate room ventilation. This 

emerging problem is unravelled by thermal-aware location analysis. Thermal-aware 

server provisioning approach to minimise the total power consumption of DC 

calculates the value power taking into consideration of the maximum working 

temperature of the servers. Such calculation should also consider that the inlet 

temperature rise may cause the servers to reach the maximum temperature and cause 

thermal stress and severe damage in the long run. The thermal-aware scheduling types 

were identified as reactive, proactive and mixed. However, there was no mention of 

heat-modelling or thermal-monitoring and profiling. Kong et al. [4] discussed the 

concepts of thermal-aware profiling, thermal-aware monitoring and thermal-aware 

scheduling. Thermal-aware techniques were linked to the minimisation of heat 

production, heat convection to adjacent cores, task migrations, thermal-gradient 
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across the microprocessor chip and power consumption in microprocessors. 

Microprocessor dynamic thermal management (DTM) techniques encompasses the 

following techniques: Dynamic Voltage, and Frequency Scaling (DVFS), Clock 

gating and task migration and Operating System (OS) based DTM and scheduling. In 

[5], Parolini et al. proposed a heat model and a brief overview of power and thermal 

efficiency that progresses from microprocessors to DCs. Due to the reasons discussed, 

it is essential for the energy efficiency of DCs to include the thermal awareness to 

provide insights into the relationship between the thermal part and the IT part in terms 

of workload management. In this work, the authors incorporate thermal-aware 

scheduling, heat modelling, thermal-aware monitoring and thermal profiling using a 

big thermal dataset of a HPC-Data Center. This research involves quantification, 

measurement, and analysis of compute nodes and refrigerating machines. The aim of 

the analysis is to uncover underlying causes that brings about temperatures rise that 

leads to the creation of thermal hotspots. 

Overall, effective DC management requires energy use monitoring, particularly, 

energy input, IT energy consumption, metering of supply air temperature and 

humidity at room level, metering of air temperature as well as more granular metering 

at CRAC/CRAH unit level. Measurements taken should be further analysed to reveal 

energy use and economisation levels for the improvement of DC energy efficiency 

level.  DC efficiency metrics will not be discussed in this paper. However, in the 

ensuing section will primarily mainly focus on thermal guidelines from ASHRAE [7]. 

3   Methodology 

Our research goal is to reduce DC wide thermal-gradient, hotspots and maximise 

cooling effects. This would entail the identification of individual nodes of the server 

that frequently occur in the hotspot zones through the implementation of an advanced 

algorithm on workload management platform.  The big dataset on thermal 

characteristics of ENEA Portici CRESCO6 computing cluster is employed for the 

analysis. It has 24 variables (or features) – Table 1 -  and comprises measurements for 

the period from May 2018 to January 2020.   Briefly, the cluster CRESCO6 is a High-

Performance Computing System (HPC) consisting of 434 nodes for a total of 20832 

cores. It is based on Lenovo Think System SD530 platform, an ultra-dense and 

economical two-socket server in a 0.5 U rack form factor inserted in a 2U four-mode 

enclosure. Each node is equipped with: 2 Intel Xeon Platinum 8160 CPUs, each with 

24 cores with a clock frequency of 2.1 GHz; A RAM of 192 GB, corresponding to 4 

GB/core; A low-latency Intel Omni-Path 100 Series Single-port PCIe 3.0 x16 HFA 

network interface. The nodes are interconnected by an Intel Omni-Path network with 

21 Intel Edge switches 100 series of 48 ports each, bandwidth equal to 100 GB/s, 

latency equal to 100ns. The connections between the nodes have 2 tier 2:1 no-

blocking tapered fat-tree topology. The consumption of electrical power during 

massive computing workloads amounts to 190 kW. 
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Table 1. Thermal dataset – description of features. 

Node Name server ID, integer from 1 to 434; 

Timestamp timestamp of a measurement; 

System, CPU, 

Memory Power 

one server instantaneous system, memory, CPU 

power use in three corresponding columns, W; 

Fan 1a, Fan1b, 

…,  

Fan 5a, Fan 5b 

speed of a cooling fan installed in the node, RPM; 

System, CPU, 

Memory, I/O 

utilisation 

ratio of component utilisation, %, missing data; 

 

Inlet, CPU1, CPU2, 

Exhaust temperature 

temperature at the front, inside (CPU1 and CPU2) 

and at the rear of every node; 

 

SysAirFlow speed of air traversing the node, CFM; 

DC Energy 
total energy that the server has used by the 

corresponding timestamp, kWh 

 

 

     3.1 Saving Energy Approach 

 

This work incorporates thermal-aware scheduling, heat modelling and thermal-aware 

monitoring and thermal as well as user profiling. Thermal-aware DC scheduling could 

be designed based on results of data analytics conducted on real data that obtained 

from running cluster nodes in a real physical DC. This work is based on 

approximately 20 months of data collection, which include data relating to the 

parameters of each node, environmental parameters that measure temperatures and 

humidity in both the hot and cold aisles, parameters that concern cooling machines 

and finally, the data about individual users who use cluster nodes for their work. Data 

for each node relates to energy consumption of CPU, RAM, memories and internal 

temperatures of each node. This research focuses on the effect of dynamic workload 

assignment on energy consumption of both the computing and cooling systems, as 

well as performance. The constraint is that each arrived job must be assigned 

irrevocably to a server and without any information about future arriving jobs. Once 

the job has been assigned, no pre-emption or migration is allowed, which is typically 

assumed for HPC applications since they tend to incur a high cost in terms of data 

reallocation. In this research, we particularly look for an optimised mapping of nodes 

that needs to be physically and statically placed in advance to one of the available 

rack slots in the DC forming a matrix made of computing units with specific 

characteristics and certain availability of resources in a given time t. The idea is to 

create a list of candidate nodes to deliver “calculation performance” required by a 

user’s job. In choosing the candidate nodes, the job-scheduler will evaluate, among 

the thermally cooler nodes, which at the instant t, possess the appropriate 

characteristics to satisfy the calculation requested by a user. To improve and facilitate 
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the choices made by the scheduler, it is essential to try to understand in advance, what 

type of work will be required from the node/s by a user. Based on this fundamental 

observation, starting from the study of several years’ worth of data and through 

machine learning algorithms, we code user profiles into 4 large macro-categories:  

1. CPU_intensive 

2. MEMORY_intensive 

3. CPU&MEMORY_intensive 

4. CPU&MEMORY_not intensive 

This behavioural categorisation will provide an opportunity to save energy and 

better allocate tasks on cluster nodes to affect even temperatures across the cluster and 

reduce AC costs in DCs. Though the primary aim is to reduce the overall node 

temperatures, it is essential to better distribute the jobs to avoid thermal hotspots, cold 

spots and averaging the temperature of the calculation nodes in a DC. 

 

3.2 Users and workload understanding: profiled log 

 

Based on thermal data, it is necessary to better understand in depth what users do and 

how they manage to solicit the calculation nodes with their jobs.The three main 

objectives of understanding users’ behaviour are as follows: Identify parameters 

based on the diversity of submitted tasks to describe user behaviour; Analyse the 

predictability of various resources (CPU, Memory) and identify the presence of time 

patterns in the usage of various resource types; Implement models for prediction of 

future CPU and memory usage based on historical data carry out Load Sharing 

Facility (LSF) platform which provide accounting. Identification of behavioural 

patterns in the task submission and resource consumption to is necessary to predict 

future resource requirements. This is exceptionally vital for dynamic resource 

provisioning in a DC. Gathered profiling information can be utilised to categorise 

each job task based on the previous 4 macro categories: 1) CPU-intensive, 2) disk-

intensive, 3) both CPU and MEMORY- intensive, or 4) neither CPU- nor MEMORY 

-intensive. We set a utilisation threshold, beyond or below which an application can 

be marked as one of the job types. For instance, if the CPU load is high (e.g., larger 

than 90%) during almost 60% of the job running time for an application, then the job 

can be labelled as a CPU-intensive one. The idea of job-scheduler optimises task 

scheduling when a job with the same AppID or same username is submitted to a 

cluster again. In case of a match with the previous AppID or username, utilisation 

stats from the profiled log are retrieved. Based on the utilisation patterns, this 

user/application is categorised as one of these: CPU-intensive, memory-intensive, 

neither CPU or memory intensive, and both CPU- and memory-intensive ones. Once 

the tasks of a job are categorised, search for a node where CPU nor disk load is 

sufficiently light to handle the next task. A task with high CPU and memory 

requirement will not be immediately processed until the node temperatures are well 

under a safe temperature threshold. Node temperature refers to the difference between 

the temperature of the outlet air and the temperature entering the node (it generally 

corresponds to the air temperature in the aisles cooled by the air conditioners). 
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3.3 Real-time workload management based on Thermal awareness: Cluster 

evaluation 

It is necessary to have a snapshot - with all thermal parameters such as temperatures 

of each component inside the calculation nodes - the cluster to allow the job-scheduler 

to allocate jobs in efficiency manner. Generally, a snapshot is obtained by directly 

interrogating the nodes and all the sensors installed near the DC or inside the 

calculation nodes. For each individual node, the temperatures of the CPUs, memories, 

instantaneous consumption and the speed of the cooling fans are evaluated.  

Obviously from these data, the amount of effort that the calculation node is making 

can be obtained on the fly. Undoubtedly, the parameter with more weight is the 

difference between the temperature of the air entering the node and that which exists. 

A very marked difference provides evidence that the node is very busy (jobs that 

require a lot of CPU or memory). Therefore, for each calculation node, every useful 

data is detected on the fly, and the data is virtually stored in a matrix that represents 

the entire cluster. In each cell of the matrix, there is the node corresponding to that 

position. The general idea is to include the parameters of the nodes among the 

selection criteria in the scheduling algorithm, in order to allow the allocation of new 

jobs in the most recent and distant nodes. In this way, the heat is distributed evenly 

over the entire "matrix" of calculation nodes and the creation of hotspots is 

significantly reduced. Obviously, user profiling is equally important since user 

profiles provide insights into user consumption patterns and also the type of job that 

will be run and other type of associated parameters. For example, if we know that a 

user will perform CPU-intensive jobs for 24 hours, we will allocate the job in a "cell" 

(calculation node) or a group of cells (when the number of resources requires many 

calculation nodes) far away among them, with an antipodal choice. The main goal is 

to share the cooling load by spreading high-density nodes around. This will help to 

minimise DC hot spots and ensure efficient cooling without additional costs. 

4   Results and Discussion 

As previously discussed, we have extracted information on the users’ behaviour. 

Undeniably, classification based on the listed 4 categories improves every time a user 

proposes jobs to the cluster. This implies that the outcome of a user's classification is 

not permanent, and if for example, a user has been classified as "CPU intensive" and 

for a certain period, the user’s work is no longer CPU intensive, the user will certainly 

be placed in another category. With our scheduler in place, we aim to reduce the 

overall CPU/memory temperatures in general, and outlet temperatures of cluster 

nodes in particular. The following design principles enable us to design and 

implement our schedulers: 1)Job categories. Classify tasks into 1 of these 4 

categories: CPU-intensive, memory-intensive, neither CPU nor memory-intensive, 

and both CPU- and memory-intensive tasks; 2) monitoring utilisation. Monitoring 

CPU and memory utilisation while making scheduling decisions;3)Controlling redline 

temperature. Operating CPUs and memory under threshold temperatures always 

updated and improved over time; 4) Maintaining average temperatures. Keeping track 



 

 8 

of average CPU and memory temperatures in a node; managing an average outlet 

temperature across a cluster. We consider maintaining a log profile of both CPU and 

memory usage for every job that has been processed on the cluster, thereby, making it 

possible to categorise the users into CPU-intensive, memory-intensive, either CPU or 

memory intensive, and both CPU- and memory-intensive ones. Every user recorded in 

a log file could have the following attributes: (1) user ID; (2) Application 

identification; (3) the number of tasks submitted; (4) CPU utilization; (5) memory 

utilisation. 

 

4.1 Data Analysis: Results & Discussion 

 

A list of important terms used in the thermal management formulation of a DC and 

throughout these manuscripts is as follows: 1)CPU-intensive. Applications that spend 

a vast majority of time doing computations; 2)Memory-intensive. A significant 

portion of these applications is spent in processing RAM and disk operations;3)Max 

(redline) temperature. The maximum allowed operational temperature specified by a 

device manufacturer or a system administrator. 4)Inlet temperature. The temperature 

of the air flowing into the data node (temperature of the air sucked in from the front of 

the node). 5)Outlet temperature. The temperature of the air coming out from a node 

(the temperature of the air extracted from the back of the node). By applying these 

evaluation criteria, we have built an automated procedure that provides insight into 

the 4 user associated categories (based on present and historical data. Obviously, the 

algorithm will always make a comparison between a job just submitted by the user 

and the time series (if any) of the same user. If the application launched or the type of 

job remains the same, then the user will be grouped into one of the 4 categories. 

During each job execution, the procedure records the temperature variations of the 

CPUs and memories at pre-established time intervals. Finally, it continuously 

improves in the appreciation of a user, particularly, the length of time a user keeps the 

job on average. In doing so, we get a distinct picture of each user, with a reasonably 

reliable estimate of the type of work that the calculation node will perform and for 

how long it will do it. This information will be beneficial for the job scheduler which 

will be able to better place a job in the ideal array of calculation nodes of the cluster.  

A preliminary study was conducted on the functioning of the clusters by carrying out 

a series of experiments. For months, we have observed the various temperature and 

power consumption responses of the nodes that were subjected to workloads 

(figure1,2,3). 
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Figure 1. The representative shape of Power profile’ portion on average for all available nodes 

consumption dataset for a subset of 200days. 

 
 

Figure 2. Temperature profiles (subset of 1 month) on average for all available nodes. Nodes are 
sorted in the order of exhaust temperature increase. 

 

 
 

Figure 3. Energy partioning parts on average for all nodes of cluster CRESCO6. 

 

 
 

Figure 4. Energy consumption in idle and active nodes (subset of 8 months). 
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For each load of the node, the temperature increases between incoming air and 

outgoing air from the calculation nodes were considered. In Fig. 5 average 

temperature observed at the inlet of the nodes – blue segment- (in the cold aisle), and 

exhaust temperature at their rear side - amaranth segment - (in the hot aisle). The 

temperature measurements were also taken next to two CPUs of every node. The 

setpoints of the cooling system were fixed approximately 18°C at the output and 24°C 

at the input of the cooling system, which is represented in Fig. 5 as blue and red 

vertical lines respectively. It is subsequently unravelled that the lower setpoint is 

variable and provides supply air at 15-18°C as well as high setpoint varies between 

24-26°C. 

 
Figure 5. Temperature observed on average in all nodes during 9 months with vertical lines 

corresponding to cold and hot aisle setpoints. 
 

 
 

As observed from the graph, cold aisle preserves the setpoint temperature at the inlet 

of the node, which affirms the efficient design of the cold aisle (i.e. supported by 

existing plastic panels isolating cold aisle from other spaces in the IT room of the 

DC). However, the exhaust temperature is registered on average at 10°C higher level 

than the hot aisle setpoint. Notably, exhaust temperature sensors are directly located 

at the rear of the node (i.e. in the hottest parts of the hot aisle). Therefore, the air in 

the hot aisle is distributed in such a way that the hotspots are immediately located at 

the back of server racks, and the hot aisle air is cooled down to the 24-26°C input 
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level of the cooling system at the CRAC intake due to air circulation and mix in the 

hot aisle. Meanwhile, the previously mentioned difference of 10°C between the 

hotspots and the ambient temperature unravels the cooling system weak points, since 

it does not account for hotspots directional cooling. In the long term, the constant 

presence of the hot spots might affect the servers’ performance which should be 

carefully addressed by the DC operator.  Remarkably, although the hotspots are 

present at the rear of the nodes, the cooling system does influence temperature around 

the nodes. Cold air flows through the node and is measured at the inlet, then at CPU 2 

and CPU 1 locations and finally at the exhaust point of the server. The differences 

between observed temperature ranges in these locations are averaged for all the nodes. 

Following the airflow, inlet air temperature is heated by 30℃ inside the servers until 

it reaches CPU sensors. It continues to increase by 4-6℃ while moving from CPU 2 

to CPU 1 sensors and, due to internal server fans, drops by 15-20℃ by the moment it 

reaches the rear of the nodes. The study of observed temperature values distribution 

contributes to the overall understanding of the thermal characteristics, as it gives a 

more detailed overview of the prevailing temperature shown in Fig. 5 and Fig. 6. For 

every type of thermal sensors, the temperature values are recorded as an integer 

number, so the percentage of occurrences of each value is calculated. The inlet 

temperature is registered around 18°C in the majority of cases and has risen up to 

28°C in around 0.0001% of cases. The inference is that cold aisle temperature stays 

around the 15-18°C setpoint within most of the monitored period. Ranges of the 

exhaust temperature and those of CPUs 1 and 2 are in the range 20-60°C with most 

frequently monitored values in the intervals of 18-50°C, 35-75°C and 30-70°C 

respectively. Although these observations might contain measurement errors, they 

reveal the possibility of servers’ risks as they are frequently found to be overheated. 

 

Figure 6. Distribution of monitored temperature values taken for all nodes and 

months. 

 

  

a)      b) 

  

c)      d) 



 

 12 

 

Further, the study focuses on variation between subsequent thermal measurements 

with the aim to explore stability of the temperature around the nodes. All temperature 

types have distinct peaks of zero variation which decreases symmetrically and 

assumes a Gaussian distribution. It could be concluded that temperature tends to be 

stable in the majority of monitored cases. However, the graphs for exhaust and CPUs 

1 and 2 temperature variation (Fig. 6 reveal that less than 0.001% of the recorded 

measurements show an amplitude of air temperature changes of 20°C or more 

occurring at corresponding locations.  Sudden infrequent temperature fluctuations are 

less dangerous than long periods of constant high temperature stabilization. 

Nevertheless, further investigation is needed to identify causes of abrupt temperature 

changes so that measures could be undertaken by DC operator to maintain longer 

periods of constant favourable conditions. We propose a scheduler upgrade which 

aims to optimise CPU, memories, and outlet temperatures without relying on the 

profile information. 

 

Table 2. Schema with prefixed target for improved scheduler. 
 

 Proposed scheduler 

Strategy Schedules task based on utilisation and 
temperature information gathered at 

run-time 

Task Assignment Assigns tasks to the coolest node in a cluster at any 

point 

Task Scheduling Schedules tasks on the coolest node in a cluster 

Temperature control Maintains uniform temperate across a cluster 

Node Activity At least 50% are active nodes at any given time in a 

cluster 

Pros Works better with a large cluster 

Cons Overhead of communication of temperature and 
utilisation information 

 

During the design of the scheduler, we address the following four issues. 

1)Differentiate between CPU-intensive tasks and memory-intensive tasks; 2) 

Consider CPU and memory utilisation during the scheduling process; 3)Maintain 

CPU and memory temperatures under the threshold redline temperatures; 4) Minimise 

the average outlet temperature nodes to reduce cooling cost. The scheduler receives 

feedback of node status through queried Confluent (monitoring software installed on 

each node) value. The scheduler (when all the nodes are busy) will manage the 

temperatures, embarks on a load balancing procedure by keeping track of the coolest 

nodes in the cluster. In doing so, the scheduler continues job executions even in hot 

conditions. The scheduler maintains the average cluster CPU and memory utilisation 

represented by U- CPU- avg and U-MEM-avg and CPU, memory temperatures 

represented by T-CPU-avg, T-MEM-avg, respectively. The goal of our “upgraded” 

scheduler is to maximise the COP (coefficient of performance). Below are the 7 

constraints that are subjected to our upgraded scheduler: 

1. check constraint T
i
CPU <TCPUAvg 

2. otherwise, check constraint T
i
Mem<TMemavg 
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3. TMemavg <TMemMax & TCPUavg <TCPUMax 

4. T
i
out⩽ (∑ 𝑇𝑜𝑢𝑡𝑁

𝑖=1 ) / N 

5. Each NodeManager is assigned only one task at a time 

6. Each task is assigned to utmost one node 

7. Minimise response time of job 
 

With the first and second constraints in place, it is ensured that memory and CPU 

temperatures should always stay below the threshold temperatures. If a cluster’s 

nodes exceed the redline threshold, then optimise the temperature by assigning tasks 

to the coolest node in the cluster. The third constraint specifies that if the average 

memory or CPU temperature rises above the maximum temperature, then the 

scheduler should stop scheduling tasks as it might encounter hardware failures. The 

fourth constraint signifies that the outlet temperature of a node should be the same as 

the average outlet temperature of the cluster. The fifth and sixth constraints ensure 

that a node gets utmost one task and a task is running on utmost one node at a time. 

The last point aims at reducing the completion time of a job to achieve optimal 

performance. The algorithm feeds into the node matrix considering the physical 

arrangement of every single node inside the racks. Obtain the profile of the user who 

requested for resources by retrieving the user’s profile from a list of stored profiles.  

The algorithm passes through all the nodes to understand the level of use and the 

respective temperatures for each node. If the profile does not exist, then when a user 

executes a job for the first time, the algorithm calculates a profile on the fly. All the 

indicated threshold values are operating values calculated for each cluster 

configuration and are periodically recalculated and revised according to the use of the 

cluster nodes. Subsequently, some temperature calculations are made from the current 

state of the cluster (through a snapshot of thermal status). Finally, the last step is to 

assign the job to the node based on the expected type of job expected. In this way, the 

algorithm avoids hotspot and coldspots situations by distributing the jobs uniformly in 

the cluster, so that the temperature remains more or less constant for all the nodes. 

5.   Conclusions and Future Works 

In DCs scenario, energy efficiency represents the essential goal for a sizeable high-

performance computing facility to operate within society.  In terms of DC operations, 

energy efficiency could be interpreted in a number of ways. This work primarily 

focuses on two of major aspects: IT equipment energy productivity (workloads) and 

thermal characteristics of an IT room and equipment. The findings of this work are 

based on analysis of available monitoring thermal data characterising the ENEA-HPC 

DC, CRESCO6. This analysis has unravelled possible improvements for thermal 

design and load management. In this work, using the big dataset for CRECO6 IT 

room temperature measurements, sequential clustering has been performed to group 

nodes based on thermal ranges in which they reside most frequently during the period 

of observations. Moreover, a data mining algorithm has been employed to locate the 

hotspots. Several measures to mitigate risks associated with the issue of hotspots have 

been recommended: directional cooling, load management, and continuous 
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monitoring of the IT room thermal conditions. This research brings about two positive 

effects in terms of DC energy efficiency. Firstly, being a thermal design pitfall, 

hotspots pose as a risk of local overheating and deterioration of servers exposed to 

high temperature for prolonged periods of time. In this regard, localisation of hotspots 

is crucial for better overview and control of the IT room temperature distribution. It 

provides a direction of future thermal management improvement that would mitigate 

the specified risk. Secondly, with less computational power (and thus energy 

consumption) analysis techniques has brought about sufficient information to 

incentivise improvement of thermal conditions. Finally, the results imply that the 

majority of the servers operated in the medium and hot temperature ranges. Given that 

8% of all cluster servers have been most frequently labelled as hot range nodes, a list 

of recommendations is suggested below to address the issue of hotspots. 

References 

 
1. J. Koomey: Growth in Data Center Electricity use 2005 to 2010. Analytics Press., 1–24. 

https://doi.org/10.1088/1748-9326/3/3/034008, 2011. 

2. Greenpeace: How Dirty Is Your Data? A Look at the Energy Choices That Power Cloud 

Computing, 2011. 

3. V. D. Reddy, et al: Metrics for Sustainable Data Centers, IEEE Trans. Sustain. Comput., 

vol. 2, no. 3, pp. 290–303, Jul. 2017.  

4. J Kong, S. W. Chung, k. Skadron: Recent thermal management techniques for 

microprocessors. ACM Computing Surveys, vol. 44, no 3. 

https://doi.org/10.1145/2187671.2187675, 2012. 

5. L. Parolini, B. Sinopoli, B. H. Krogh, Z. Wang: A Cyber-Physical Systems Approach to 

Data Center Modeling and Control for Energy Efficiency. Proceedings of the IEEE. 100. 

254-268. 10.1109/JPROC.2011.2161244, 2012. 

6. L. Wang, et al:  Thermal aware workload placement with task‐temperature profiles in a 

datacenter. J. Supercomput. 2012, 61, 780–803, doi:10.1007/s11227‐011‐0635‐z, 2012. 

7. ASHRAE Technical Committee 9.9, “Thermal Guidelines for Data Processing 

Environments – Expanded Data Center Classes and Usage Guidance,” 2011.  

8. X. Jin, F. Zhang, A. V. Vasilakos, and Z. Liu: Green Data Centers: A Survey, 

Perspectives, and Future Directions,” arXiv, vol. 1608, no. 00687, 2016. 

9. M. Chinnici, A. Capozzoli, and G. Serale: Measuring energy efficiency in data centers. In 

Pervasive Computing Next Generation Platforms for Intelligent Data Collection, Chapter 

10, pp. 299-351, 2016. 

10. M. Chinnici, et al: Data Center, a Cyber-Physical System: Improving Energy Efficiency 

Through the Power Management,” in 2017 IEEE 15th Intl Conf on Dependable, 

Autonomic and Secure Computing, 15th Intl Conf 

(DASC/PiCom/DataCom/CyberSciTech), 2017, pp. 269–272.  

11. S. Yeo, et al.: ATAC: Ambient Temperature‐Aware Capping for Power Efficient 

Datacenters, in Proceedings of the 5th ACM Symposium on Cloud Computing, Seattle, 

WA, USA, doi:10.1145/2670979.2670966, 2014. 

12. A. Capozzoli, et al: Thermal Metrics for Data Centers: A Critical Review,” Energy 

Procedia, vol. 62, pp. 391–400, Jan. 2014.  

13. A. Capozzoli, et al: Review on performance metrics for energy efficiency in data center: 

The role of thermal management,” LNC,  vol. 8945, pp. 135–151, 2015.  

 

https://doi.org/10.1088/1748-9326/3/3/034008
https://doi.org/10.1145/2187671.2187675

