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Take home message 

Intravenous iron supplementation at sea level is associated with enhanced stroke volume and 

higher SpO2 on ascent to very high altitude (5100 m). These effects appear to result from 

reduced pulmonary vascular resistance and improved right heart function.  
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Editor, 

More than one hundred million people reside worldwide at altitudes in excess of 2,500 m 

above sea level. In the millions more who sojourn at high altitude for recreational, 

occupational or military pursuits, hypobaric hypoxia drives physiological changes affecting 

the pulmonary circulation, haematocrit and right ventricle (RV) [1]. Coincident with these, 

maximal left ventricular (LV) stroke volume (SV) falls [2], with a reduction of 20% reported 

after a two-week stay at 4,300 m [3]. A rise in heart rate (HR) compensates at rest and during 

submaximal exercise but is insufficient during maximal intensity exercise, constraining 

maximal cardiac output (CO). Previously it was considered that a reduction in plasma volume 

or a direct effect of hypoxia on LV myocardial contractility were probably responsible [4]. 

More recently it has been suggested that increased RV afterload may be of greater importance 

[5]. 

Hypoxic pulmonary vasoconstriction (HPV) contributes significantly to increased RV work 

and pulmonary hypertension during alveolar hypoxia [6]. In healthy iron-replete individuals, 

intravenous (IV) iron attenuates HPV [7, 8], tending to reduce RV afterload. We 

hypothesised that IV iron would improve cardiopulmonary function during ascent to very 

high altitude through this action upon the pulmonary vasculature, with or without a direct 

effect on the heart. 

We conducted a randomised, controlled, double-blind, clinical physiology study. Eighteen 

British Armed Forces personnel (17 male, 1 female) volunteered; one was excluded because 

of abnormal baseline iron indices. Participants were randomized to receive either 1 g ferric 

carboxymaltose (Ferinject®), or saline control, as a single infusion. Two weeks later, 

participants flew to Kathmandu, Nepal, at an altitude of 1,400 m, were driven to 2,600 m 
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(day 4), trekked to 3,800 m (day 5), 4,100 m (day 7), and then 5,100 m (day 10). Serial 

measurements of iron indices, peripheral oxyhaemoglobin saturation (SpO2), and 

transthoracic echocardiographic parameters (VividQ, GE, Boston) were recorded at rest. 

Stroke volume was estimated by multiplying LV outflow tract (LVOT) velocity-time integral 

(VTI) by LVOT cross-sectional area, and CO by multiplying SV and HR. Both were then 

normalised to body surface area in m2 (BSA; Mosteller formula). 

Right ventricular systolic pressure (RVSP) was estimated from the peak velocity of the 

tricuspid regurgitation jet [1, 5, 7-9]. The LV and RV indices of myocardial performance 

(LIMP and RIMP) and tricuspid annular planar systolic excursion (TAPSE) were measured. 

Pulmonary vascular resistance (PVR) was estimated using the Abbas method [9].  Between-

group differences in responses were analysed using mixed-effects modelling (SPSS Statistics 

version 25, IBM). Ethical approval was given by the Ministry of Defence Research Ethics 

Committee, all participants provided written informed consent, and the study was registered 

with ClinicalTrials.gov (NCT03707249). 

The groups were well matched at baseline. Comparisons for the iron group vs. controls were 

as follows: mean (SD) age 35.5 (8.2) vs. 36.1 (7.7) years; body mass index 24.8 (1.0) vs. 24.6 

(2.0) kg/m2; and BSA 2.02 (0.06) vs. 1.99 (0.04) m2. No adverse infusion-related events 

occurred. One participant in the control group did not ascend beyond 4,100 m due to severe 

gastrointestinal symptoms; all available data for this participant were included in the analysis. 

Changes in iron indices, haematological parameters and cardiopulmonary variables are 

illustrated in the Figure. Ferritin and hepcidin were elevated in the iron group, with a 
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corresponding reduction in the rise in both erythropoietin and soluble transferrin receptor 

(sTfR). 

The prior administration of iron significantly attenuated the progressive fall in SpO2 seen 

with increasing altitude (absolute difference in desaturation 5.5%; 95% CI: 2.5 to 8.4%; 

p<0.001). Iron also abolished the normal fall in SV observed with increasing altitude. The 

mean between-group difference in the change in stroke volume index (SVI) was 6.2 ml/m2 

(95% CI: 0.31 to 12.2 ml/m2; p=0.039). 

In the control group, LIMP, RIMP and TAPSE all worsened significantly with increasing 

altitude. LIMP rose by 0.08 (95% CI: 0.003 to 0.16 ml/m2; p=0.043), RIMP rose by 0.31 

(95% CI: 0.24 to 0.38 ml/m2; p<0.001), and TAPSE fell by 0.55 cm (95% CI: 0.27 to 0.83 

cm; p<0.001). When comparing the iron group with controls, the degree of impairment in 

RIMP and TAPSE was reduced by 0.14 (95% CI: 0.03 to 0.24; p=0.013) and 0.41 cm (95% 

CI: 0.01 to 0.82 cm; p=0.045), respectively. However, the iron group showed no difference in 

the deterioration in LIMP (95% CI for between group difference: -0.07 to 0.16; p=0.41) nor 

the rise in RVSP on ascent (95% CI: -7.6 to 4.0 mmHg; p=0.51). 

Interestingly, we found that iron supplementation was associated with augmented SV in the 

absence of a difference in RVSP. Had PVR remained similar in both groups, the higher SV of 

the iron group would be expected to have associated with a higher RVSP. In fact, RVSP 

responses were similar and there appeared to be a trend towards a lower PVR in the iron 

group, although this was not statistically significant (95% CI: -0.58 to 0.23 Wood Units; 

p=0.38). However, a strong negative correlation was evident between the change in SVI and 

the change in PVR (Pearson's r = -0.72; p=0.003), implying a close relationship between 

increased RV afterload and falling SV. 



5 

 

Reduced PVR might be a direct result of increased iron bioavailability, as previously 

described [7, 8], or may result from improved oxyhaemoglobin saturation. The latter would 

also act to reduce HPV as the result of a corresponding increase in mixed venous oxygen 

tension. The latter is a significant stimulus for HPV, albeit less so than alveolar oxygen 

tension [10]. Both mechanisms are biologically plausible, as is the putative mechanism for 

increased oxygenation in the iron group: that an iron-mediated reduction in HPV promotes 

V̇/Q̇ matching. The finding that RV, but not LV, function was enhanced in the group given 

iron also seems likely to reflect reduced RV work secondary to attenuated HPV and 

consequently reduced PVR. 

An alternative explanation would be that iron acted to augment the ventilatory response to 

hypobaric hypoxia. We were not able to measure ventilation as part of the expedition. Whilst 

there is good reason to believe iron bioavailability might affect pulmonary ventilation via an 

action on the hypoxia inducible factor (HIF) pathway within carotid body glomus cells [11], 

no human study has detected such a phenomenon [8, 12]. Moreover, the expected direction of 

effect is for iron to diminish alveolar ventilation rather than augment it. 

The links between iron, erythropoiesis and oxygen homeostasis are complex [13]. 

Erythropoietin is under transcriptional regulation by both hypoxia and iron [12], so the 

attenuated erythropoietin rise in the iron group will reflect some combination of both a direct 

action of iron and improved renal oxygenation. The rise in sTfR, levels of which reflect the 

balance between iron supply and erythropoietic activity [14], was similarly attenuated in the 

iron group, reflecting some combination of greater iron bioavailability and lower stimulation 

of the bone marrow by erythropoietin. Both iron and hypoxia regulate expression of hepcidin, 

the key hormone regulating iron homeostasis; the effect of hypoxia is indirect, mediated 

downstream of marrow stimulation [13]. The effect of prior iron infusion on iron 
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bioavailability in the present study was so marked that it lifted the heavy suppression of 

hepcidin seen at 5,100 m in the control group. 

A role for IV iron therapy is well established in chronic heart failure [15], Our findings 

support the view that manipulation of iron bioavailability should be explored more broadly in 

conditions that feature increased PVR, V̇/Q̇ mismatch, or right heart dysfunction, including 

right heart failure, acute pulmonary embolism, high altitude pulmonary oedema, adult 

congenital heart disease, chronic thromboembolic pulmonary hypertension, and chronic 

obstructive pulmonary disease. 
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Figure. Variation with altitude of iron indices, haematological parameters and cardiopulmonary 

physiological variables. Sea-level data were acquired immediately prior to infusion of iron or saline. Data 

for the iron group are shown as filled circles; the control group, empty circles. Data are plotted as means 

± SEM. The p-values given are for the interaction between group and altitude, that is, whether iron 

administration altered the change from sea level to maximum altitude. CI, cardiac index; Epo, 

erythropoietin; Hb, haemoglobin concentration; PVR, pulmonary vascular resistance; RIMP and LIMP, 

RV and LV indices of myocardial performance (combined measures of the efficiency of ventricular filling 

and ejection; higher values indicate more significant impairment); RVSP, right ventricular systolic 

pressure; SpO2, peripheral oxyhemoglobin saturation; sTfR, soluble transferrin receptor; SVI, stroke 

volume index; TAPSE, tricuspid annular planar systolic excursion; TSat, transferrin saturation.  
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