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Abstract 

Purpose: To evaluate the relative importance and predictive 

ability of salivary IgA (s-IgA) measures with regards to upper 

respiratory illness (URI) in youth athletes. Methods: Over a 38-

week period, twenty-two youth athletes (age 16.8; ±0.5 years) 

provided daily symptoms of URI and fifteen fortnightly passive 

drool saliva samples, from which s-IgA concentration and 

secretion rate were measured. Kernel smoothed bootstrapping 

generated a balanced dataset with simulated data points. The 

random forest algorithm was used to evaluate the relative 

importance (RI) and predictive ability of s-IgA concentration 

and secretion rate with regards to URI symptoms present on the 

day of saliva sampling (URIday), within two weeks of sampling 

(URI2wk) and within four weeks of sampling (URI4wk). Results: 

The percentage deviation from average healthy s-IgA 

concentration was the most important feature for URIday (median 

RI 1.74, interquartile range 1.41-2.07). The average healthy s-

IgA secretion rate was the most important feature within URI4wk 

(median RI 0.94, interquartile range 0.79-1.13). No feature was 

clearly more important than any other in URI2wk. The median 

area under the curve values were 0.68, 0.63 and 0.65 for URIday, 

URI2wk and URI4wk respectively. Conclusions: The RI values 

suggest the percentage deviation from average healthy s-IgA 

concentration may be used to evaluate the short-term risk of 

URI, whilst the average healthy s-IgA secretion rate may be used 
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to evaluate the long-term risk. However, the results show that 

neither s-IgA concentration nor secretion rate can be used to 

accurately predict URI onset within a four-week window in 

youth athletes. 

Keywords: Adolescent, immune function, machine learning, 

monitoring 
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Introduction 

The negative impact of illness on performance, and the 

mechanisms by which athletic development could be hindered, 

are now well established1–3. Illness usually occurs within a 

sporting situation when the immune response to a pathogen is 

compromised4–7. It has recently been documented that 

psychological stress affects this immune response by a similar 

magnitude when compared to physical stress8. Given that youth 

athletes are subjected to a unique set of academic, maturational 

and social stressors alongside their sporting demands (i.e. their 

training/match load and associated travel requirements)9, and 

that their stress coping skills do not fully develop until 

adulthood10, there is significant scope for the combined effect of 

these physical and psychological stressors to place them at 

significant risk of illness incidence in high performance sporting 

environments11,12. Consequently, in an effort to maximise youth 

athlete development and performance, regular monitoring of the 

risk of upper respiratory illness (URI) has been encouraged13. 

Despite this, only one study has evaluated the risk of URI in 

youth athletes14, as the majority of studies in the area have 

focussed on collegiate5,7 or professional4,6 athletes. 

One method of assessing a youth athlete’s risk of URI is via 

assessment of their salivary Immunoglobulin A (s-IgA)7,15. In 

recent years, the use of s-IgA as an URI monitoring strategy has 



6 

increased as it provides a relatively non-invasive and objective 

measure of athlete immune function16,17. IgA is the predominant 

antibody secreted by the mucosa as part of the ‘first line of 

defence’ against the vast majority of infections attempting to 

invade the human body17,18, so it is unsurprising that some 

studies have associated reductions in s-IgA with an increased 

risk of URI incidence4–6. However, this association has not 

always been replicated7,14 and the true predictive ability of s-IgA 

with regards to URI incidence remains unclear5–7.  

Some of the discrepancy in findings between s-IgA studies can 

be accounted for by the data collection methods used. S-IgA can 

be measured as either a concentration5,6 or a secretion rate5,7, and 

it is possible that both measures are important at different time 

points prior to URI incidence. For example, a significant 

transient weekly reduction in s-IgA concentration in the three 

weeks prior to URI incidence has been reported in elite adult 

yachtsmen6, but no significant difference in s-IgA secretion rate 

was observed on a similar weekly basis in female collegiate 

soccer players7. Similarly, although s-IgA secretion rate was 

associated with an increased risk of URI in collegiate American 

football players, s-IgA concentration was not in the four weeks 

or greater time period between sampling points5. Taken together, 

the results of these studies suggest that s-IgA concentration may 

be a more important short-term predictor of URI, with a 
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declining importance up to three weeks prior to URI onset. 

Conversely, s-IgA secretion rate may be a more important long-

term predictor of URI (four weeks and greater prior to onset). 

However, no study has proven this hypothesis so a study 

considering the relative importance of s-IgA concentration and 

secretion rate as predictors of URI at different time points in the 

four weeks prior to onset is warranted. 

Alongside a greater understanding of the relative importance of 

s-IgA concentration and secretion rate at different time points

prior to URI onset, it would be beneficial to elucidate the true 

predictive ability of s-IgA with regards to URI incidence. 

Although a three week transient drop in s-IgA concentration 

below the individual’s average healthy value (averaged from all 

those values where URI was not present) was associated with 

URI incidence in elite adult yachtsmen, the same study found 

that only 28% of the samples identifying a drop in s-IgA 

concentration below 70% of this value resulted in subsequent 

URI incidence6. Similarly, only 48% of the samples falling 

below 40% of the average healthy s-IgA concentration resulted 

in future URI incidence. Furthermore, although s-IgA secretion 

rate was the only significant measure in the regression model for 

collegiate American football players, the model over-predicted 

URI incidence at each sampling point and s-IgA secretion rate 

accounted for only 12-42% of the variance in URI incidence5. It 
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has recently been shown within injury prevention research that 

training load variables demonstrating strong associations with 

injury incidence are not necessarily strong predictors of injury 

timing19,20, so it is pivotal that the true predictive ability of 

immune measures with regards to URI is fully evaluated. 

To understand the true relative importance and predictive ability 

of s-IgA with regards to URI in youth athletes, it is necessary to 

shift from a data modelling or correlation-based approach (e.g. 

mixed effects models or regressions) to a machine learning or 

prediction-based approach (e.g. decision trees or random 

forests)21. The key difference between these two approaches is 

the method by which they are optimised. Correlation-based 

approaches are optimised to maximise how well the model fits 

the data, thus allowing risk factors of URI incidence to be 

identified. However, machine learning approaches are optimised 

by evaluating the predictive accuracy of the model on unseen 

data, allowing the importance of different variables as predictors 

to be evaluated21. Recently, the use of machine learning 

techniques to predict adverse outcomes to the training process 

has been advocated22. However, when test samples are 

unbalanced (e.g. with low URI incidence), these methods can 

produce inaccurate results as the classification model produced 

may achieve high levels of overall accuracy by predicting the 

majority class (e.g. ‘not ill’) with high accuracy at the cost of 
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poor accuracy for the minority class (e.g. ‘ill’), rather than 

predicting both classes equally23. To resolve this issue, several 

bootstrapping methods have been identified. These methods 

create a balanced sample dataset by providing simulated data 

based on the statistical properties of the original dataset, thereby 

allowing machine learning techniques to provide accurate 

results24. This approach has not yet been considered within the 

s-IgA and URI literature in sport, so there is scope for its

introduction as a method of identifying the true relative 

importance and predictive ability of s-IgA with regards to URI 

incidence in youth athletes. 

Although the current literature suggests that s-IgA concentration 

may be a suitable short-term risk factor for URI incidence6 and 

that s-IgA secretion rate may be a more appropriate long-term 

risk factor of URI5, no study has evaluated the relative 

importance of these variables as predictors of URI onset at 

different time points prior to its occurrence  using data 

previously unseen by the model. Furthermore, the true predictive 

ability of s-IgA with regards to URI can be questioned5–7. 

Consequently, the aims of this study were to 1) identify the 

relative importance of s-IgA concentration and secretion rate at 

different timepoints in the four weeks prior to URI onset; and 2) 

identify the true predictive ability of s-IgA with regards to URI 
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incidence in youth athletes using data previously unseen by the 

model. 

Methods 

Participants 

Twenty-two youth athletes aged 16-18 years (age 16.8 ± 0.5 

years, height 173.3 ± 6.5 cm, body mass 70.1 ± 10.8 kg) 

participated in this study. Participants were recruited from a local 

independent school in the United Kingdom (UK), where they 

were members of the school's sport scholarship programme. 

Basketball (n=2), cricket (n=3), football (n=5), hockey (n=1), 

netball (n=5) and rugby union (n=6) were represented by sixteen 

males and six females competing at club/school (n=9), 

professional academy (n=4), county/regional (n=6) and 

international (n=3) standard in their respective sports. In total, 

participants took part in 10.5 ± 3.4 hours of sporting activity per 

week alongside their academic commitments of 8.30am-4pm. 

All participants were made aware of the benefits and risks of the 

study, and written informed consent was provided by all 

participants and their parents prior to the study. Ethics approval 

was granted by Leeds Beckett University Ethics Committee. 

Salivary IgA 

Over 38-weeks, between August and April, participants 

provided 15 saliva samples. Each sample was separated by two 
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weeks unless external factors (e.g. school holidays) dictated 

otherwise. Consequently, samples were collected three weeks 

apart twice and four weeks apart once. On each occasion, saliva 

samples were collected on the same weekday (Wednesday) 

within a 30-minute period, between 10:15 and 10:45. 

Participants provided samples prior to their first exercise of the 

day and following a 2-hour period without eating or drinking. 

Upon arrival, 50 ml of water was provided for participants to 

rinse out their mouths. Saliva sampling (via the passive drool 

method) commenced 10 minutes later. Participants were 

instructed to sit upright with their head tilted downwards and 

provide an unstimulated saliva sample of approximately 1.5 ml 

into a 3.5ml cryogenic vial. The volume of the sample and the 

time taken to produce it were recorded prior to freezing at -80˚C 

for storage within 30 minutes of completion. All standardisation 

and measurement methods mirrored those of previous studies5,6. 

Saliva samples were assessed in duplicate for s-IgA 

concentration by a service laboratory (ARU Biomarker 

Laboratory, Norwich, UK) using enzyme-linked immunosorbent 

assay in line with the manufacturer’s protocols (Secretory IgA 

EIA Kit Research, Catalogue Number 1-1602-SAL, Salimetrics 

LLC, State College, PA). S-IgA results were calculated as s-IgA 

concentration (µg/mL) and s-IgA secretion rate (s-IgA 

concentration divided by the time taken to provide the sample in 

minutes; µg/min). 
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In order to ensure that URI episodes were not systematically 

missed (e.g. through non-responding when ill if not at school), 

s-IgA samples were only included in analysis if a minimum

number of daily URI questions were completed before the next 

sampling time point. The thresholds for inclusion were 7/14 for 

two weeks, 10/21 for three weeks and 14/28 for four weeks. The 

between-day CV was calculated for s-IgA concentration and 

secretion rate from the thirteen participants who did not suffer 

from URI at either week 0 or 2.  

URI questionnaire 

Participants provided URI details seven days per week as part of 

their usual wellness monitoring programme. Details were 

provided using an online platform (Sports-train, Nice) similar to 

a previous study25. The question to report URI was: "Have you 

continuously experienced any of the following over the last 24 

hours? Sore throat, runny nose, cough, scratchy throat, nasal 

congestion, headache, fever, hoarseness, sneezing and/or body 

aches and pains (not related to delayed onset muscle soreness)?" 

based on previously identified symptoms of URI26 and similar to 

other self-report questions used within sport as part of wellness 

monitoring programmes27. Participants also identified the 

number of days the symptoms were present. URI episodes were 

only included in the analysis if a minimum of one symptom 
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persisted continuously for 72 hours or longer and were not 

considered to be recurrent (i.e. those URI episodes which began 

within seven days of the previous episode finishing6). Those URI 

episodes identified as occurring due to an allergy, established via 

discussion with the athlete in question, were also removed from 

analysis.  

Statistical analyses 

In order to assess the predictive ability of s-IgA with regards to 

URI, the collected data was split into three datasets. One 

evaluated URI incidence on the day of saliva sampling (URIday), 

one evaluated URI incidence within the 2 weeks following 

sampling (URI2wk) and one evaluated URI incidence within the 

4 weeks following sampling (URI4wk). These timings were 

chosen to best replicate a previous study considering deviations 

from the average healthy s-IgA concentration6, within the 

fortnightly sampling limitation of this study.  

Based on previous research, three features were included in each 

dataset for s-IgA concentration and secretion rate: the 

individual’s average healthy measure, the percentage deviation 

from the individual’s average healthy measure, and the raw value 

of the measure5,6. The individual’s average healthy measure was 

calculated by averaging all of his/her s-IgA concentration or 

secretion rate values over a minimum of four weeks before and 
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two weeks after URI incidence, matching as closely as possible 

to the three and one week periods previously used6. To account 

for other potential confounding variables, the three classification 

features of sport group, sex and environment were also added to 

the model. All three classification features had previously shown 

relationships with URI incidence28,29. Due to the small sample 

size for each sport, the sport group variable clustered athletes 

into court-based (basketball and netball), field-based (football 

and hockey), contact (rugby) and summer (cricket) sports. Sex 

split the athletes based on their sex (female for netball and 

hockey, male for all others), and environment split the sports into 

indoor (basketball and netball) or outdoor (all others) sports. The 

outcome variable was a binary URI or no URI. 

To establish the relative importance and predictive ability of s-

IgA concentration and secretion rate with regards to URI in 

youth athletes, the random forest machine learning algorithm 

was used. To provide a robust assessment of the predictive 

ability of the features in URI, URI2wk and URI4wk, 1000 trials 

were conducted. In each trial, new randomized, stratified 

samples were generated from the original datasets for the 

training (50%), validation (25%) and testing (25%) subsets and 

the random forest algorithm was run. The training subset was z-

score normalised and kernel smoothed bootstrapping24 was used 

to balance it, providing equal numbers of positive and negative 
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URI samples. Neither the validation nor the testing subsets were 

subjected to this resampling process. Both the training and 

validation subsets were used for parameter selection and the 

predictive ability of the models was assessed using the testing 

subset as a measure of out-of-sample predictive ability. The 

results are presented via box and whisker plots, which provide 

the median, interquartile range (IQR) and outlying results from 

the 1000 trials evaluated for each model. 

The relative feature importance was measured using the 

permutation method with mean decrease in accuracy reported as 

the metric for feature importance30. The mean decrease in 

accuracy is measured in arbitrary units (AU) and provides a 

relative measure of the importance for each feature to the 

performance of each model. A larger number is representative of 

a greater importance to the prediction of URI, but these values 

cannot be compared between models. The predictive ability of 

the models was evaluated using the area under the curve (AUC). 

The AUC is calculated based on the number of correct and 

incorrect predictions made by the model, providing a value 

between 0 and 1, where 0.5 indicates that the model has a 50% 

chance of predicting the right value. An AUC value greater than 

0.75 was used as the threshold for a good predictive model31. All 

analyses were completed using bespoke scripts in MATLAB 

version 9.4 (MathWorks, Natick, Massachusetts). 
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Results 

Of the 3,311 URI responses included in the study, 372 (11.2%) 

were classified as URI from 45 unique episodes. Participants 

reported a median of 2 URI episodes (range 0-7) and the average 

length of URI was 17 ± 18 days. The between-day CV was 

31.1% for s-IgA concentration and 61.7% for s-IgA secretion 

rate. 

Figures 1, 2 and 3 show the relative feature importance for the 

random forest models for URIday, URI2wk and URI4wk. The 

positive values of the features across all three models indicate 

that all features improved the predictive ability of the model. 

However, from URIday to URI4wk there is a clear difference in the 

relative importance of two key variables: the percentage 

deviation from average healthy s-IgA concentration and the 

average healthy secretion rate. For the URIday model, the 

percentage deviation from average healthy s-IgA concentration 

was the most important predictive feature (median relative 

importance 1.74, IQR 1.41-2.07), whereas for URI4wk, the 

average healthy secretion rate was most important (median 

relative importance 0.94, IQR 0.79-1.13). No feature was clearly 

more important than any other in URI2wk. Figure 4 provides the 

AUC for all models and shows that the median AUC is not 
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greater than the 0.75 practically meaningful threshold set in any 

of the models.  

**INSERT FIGURES 1, 2, 3 AND 4 AROUND HERE** 

Discussion 

The aims of this study were to 1) identify the relative importance 

of s-IgA concentration and secretion rate as predictors of URI at 

different timepoints in the four weeks prior to URI onset; and 2) 

identify the true predictive ability of s-IgA with regards to URI 

incidence in youth athletes. Using a prospective longitudinal 

research design, our findings demonstrate that the relative 

importance of s-IgA measures differs depending upon the time 

before URI onset. At URIday, the percentage deviation from the 

average healthy s-IgA concentration was the most important 

predictive feature of the model, whereas at URI4wk the average 

healthy s-IgA secretion rate was the most important. All features 

held similar importance in the URI2wk model. In terms of 

predictive ability, the AUC of all three models fell below the 

0.75 AU threshold for a good predictor indicating that s-IgA 

measures cannot be used to accurately predict URI at three 

individual time points within four weeks of the URI episode 

(URIday, URI2wk and URI4wk). 
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The key finding of this study is the differentiation between the 

importance of s-IgA concentration and s-IgA secretion rate as 

predictors of URI at different timepoints in the four weeks prior 

to URI onset. It has previously been shown that the percentage 

deviation from the average healthy s-IgA concentration 

transiently drops in the three weeks prior to URI6 and is 

significantly related with URI incidence on the day of URI4,6. 

Conversely, s-IgA secretion rate has previously shown a greater 

association with URI than s-IgA concentration over periods of 

four weeks and greater5. Our predictive models add further 

support to these differences by identifying the percentage 

deviation from the average healthy s-IgA concentration as the 

most important feature for URIday (median relative importance 

1.74, IQR 1.41-2.07), and the average healthy s-IgA secretion 

rate as the most important feature for URI4wk (median relative 

importance 0.94, IQR 0.79-1.13). However, at URI2wk there 

appears to be a crossover in the importance of the two measures 

and there is no feature which is clearly more important than any 

other. It is possible that this can also be explained by the 

previously established three-week transient drop in s-IgA 

concentration prior to URI incidence6. In that study, a significant 

difference in the percentage deviation from average healthy s-

IgA concentration was only observed when URI values were 

compared to four-weeks pre-incidence and measures of one and 

two weeks post-URI6. It is therefore possible that although the 
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percentage deviation from average healthy s-IgA concentration 

is important on the day of SRI, it may have little practical 

importance in the weeks leading up to it. Unfortunately, due to 

the fortnightly sampling employed in this study, we are unable 

to confirm the importance of the measure at one and three weeks 

prior to URI onset.  

The second notable finding of this study is that none of our 

models’ AUCs were greater than the 0.75 threshold set for a 

good predictive model of URI in youth athletes. This observation 

confirms that while s-IgA can be used as a risk factor for URI, it 

cannot predict URI incidence alone. Such a finding is perhaps 

unsurprising given the multifactorial risk factors of URI, 

including low energy availability, which can compromise 

immunity within two days32, poor sleep, which influences 

immune function via the hypothalamic-pituitary-adrenal axis33 , 

environmental conditions, such as sharing water bottles and 

exposure to foreign pathogens from team-mates28,34 and the 

individual’s stress/recovery balance28,34. However, the lack of 

predictive ability of immune measures with regards to URI may 

also be related to their poor reliability. Our results indicated that 

the between day CV was 31.1% for s-IgA concentration and 

61.7% for s-IgA secretion rate. With a between day CV of 

31.1%, a s-IgA concentration sample with a true value of 100 

µg/ml could hold values from 68.9-131.1 µg/ml based on the 
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test’s error. This wide variation in the potential values of s-IgA 

concentration observed relative to its true value limits its 

predictive ability as the observed value could be much greater or 

smaller than the true value, resulting in numerous false positive 

or negative predictions of URI. 

Although our manuscript uses novel and advanced machine 

learning based algorithms to identify the relative importance and 

true predictive ability of s-IgA with regards to URI incidence in 

youth athletes, the results are subject to limitations. The first of 

which is the lack of training load, sleep and psychological stress 

data, which could have explained some of the reductions in s-

IgA levels and, if accounted for, may have helped provide a more 

accurate predictive model. Secondly, the use of self-reported 

data may have influenced the accuracy of the prediction model. 

The wide range of URI lengths (17 ± 18 days) is potentially 

indicative of different participants having different individual 

thresholds for when they are suffering from symptoms, which 

may have had a negative effect on the predictive ability of the 

model. Finally, the sample should be considered. Although this 

study was conducted in youth athletes, it was necessary to 

compare the research to adult athletes based on the current state 

of the literature4–7. It is important to note that the different 

demands of the two cohorts outlined in the introduction 

(different psychological stressors and coping mechanisms8–10) 
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may ensure that comparison between the two cohorts proves 

unsuitable. Future studies should consider the true predictive 

ability of s-IgA with regards to URI using the machine learning 

based methods considered in this study to clarify whether there 

are any differences between the two cohorts. It should also be 

noted that this study used a small and unbalanced sample (16 

males, 6 females), which may have influenced the results. 

Despite these limitations, our novel statistical analyses have 

provided results of significant merit within this field.  

Practical applications 

The results of this study are important for practitioners 

considering the use of s-IgA measures as predictors of URI 

incidence. Previous correlation-based analyses have identified 

significant relationships between s-IgA concentration, s-IgA 

secretion rate and URI incidence5–7. However, although the 

relative importance of these measures within our analyses 

confirms their usefulness as risk factors for URI incidence at 

different timepoints in the lead up to incidence, the predictive 

ability of the models indicate that s-IgA cannot be used to predict 

URI onset in youth athletes. It is therefore pivotal that s-IgA 

measures are only considered as risk factors for URI incidence 

and should be considered alongside other risk factors such as the 

sport evaluated, life stressors, nutritional deficiencies and energy 
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availability28 when considering changes to an athlete’s training 

schedule.  

Conclusion 

This study is the first to use advanced machine learning 

techniques to provide a robust assessment of the relative 

importance and predictive ability of s-IgA with regards to URI 

in youth athletes. In summary, our results show that there is a 

differentiation in the roles of s-IgA concentration and secretion 

rate in the four weeks prior to URI incidence. The percentage 

deviation from the average healthy s-IgA concentration was 

identified as the most important feature in URIday, indicating it 

may be a useful short-term risk factor for URI incidence. 

However, its usefulness as a short-term risk factor in practice 

may be limited by its unclear importance relative to other 

features in URI2wk. The average healthy s-IgA secretion rate was 

identified as the most important feature in URI4wk, indicating that 

the athlete’s healthy s-IgA secretion rate could be taken as a 

useful long-term risk factor for URI. However, none of the 

models produced were capable of accurately predicting URI 

onset, limiting the use of any of the features measured to risk 

factors rather than true predictors of URI incidence. 
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Figure 1: Box and whisker feature importance plots for 

URIday. The box provides the median, lower and upper 

quartiles for the 1000 trials completed. The whisker extends 

to the minimum and maximum values, excluding outliers 

(denoted by crosses). NB: Conc = concentration; SR = 

secretion rate; s-IgA Conc Per Dev = percentage deviation 

from average healthy s-IgA concentration; s-IgA SR Per Dev 

= percentage deviation from average healthy s-IgA secretion 

rate. 
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Figure 2: Box and whisker feature importance plots for 

URI2wk. The box provides the median, lower and upper 

quartiles for the 1000 trials completed. The whisker extends 

to the minimum and maximum values, excluding outliers 

(denoted by crosses). NB: Conc = concentration; SR = 

secretion rate; s-IgA Conc Per Dev = percentage deviation 

from average healthy s-IgA concentration; s-IgA SR Per Dev 

= percentage deviation from average healthy s-IgA secretion 

rate. 
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Figure 3: Box and whisker feature importance plots for 

URI4wk. The box provides the median, lower and upper 

quartiles for the 1000 trials completed. The whisker extends 

to the minimum and maximum values, excluding outliers 

(denoted by crosses). NB: Conc = concentration; SR = 

secretion rate; s-IgA Conc Per Dev = percentage deviation 

from average healthy s-IgA concentration; s-IgA SR Per Dev 

= percentage deviation from average healthy s-IgA secretion 

rate. 
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Figure 4: Box and whisker plots for the AUC of each model. 

The box provides the median, lower and upper quartiles for 

the 1000 trials completed. The whisker extends to the 

minimum and maximum values, excluding outliers (denoted 

by crosses). Dashed line represents 0.75 AU threshold for 

good predictor. 


