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Abstract 

This paper is concerned with the changes brought about by digital transformation, which impact 

society and businesses as well as individuals. These changes influence manufacturing 

organisations because decision making processes are automated and increasingly driven by data 

analysis. The aim of this paper is to present a process framework specifically developed for the 

implementation and continuous assessment of innovative technologies in manufacturing 

organisations. The approach will consider the coherence of technological and organisational 

development, including required changes in decision making support. The framework will also 

provide guidance on evaluation criteria and coherence indicators. The conceptual model is 

based on a thorough literature review and will be revised through conceptual test cases. The 

main areas of focus are Big Data Analytics, Artificial Intelligence in collaboration processes, 

ethical considerations of the application of future-oriented technologies and the role of the 

human in future manufacturing organisations. 

Keywords: Manufacturing, Digital Transformation, Supply Chain Management, Artificial 

Intelligence, Big Data, Collaboration 
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1 Introduction  

Managers and entrepreneurs are looking towards innovative technological solutions to help 

overcome modern business challenges. Digital transformation, cyber-physical systems, 

Industry 4.0 and the Internet of Things (IoT) are some of the omnipresent buzzwords hinting at 

the tremendous changes which organisations and individuals are currently facing. Novel 

technologies such as Big Data Analytics (BDA) and Artificial Intelligence (AI) applications are 

promising more efficient and sustainable manufacturing but might also prove to be ethically 

challenging. Many employers as well as employees perceive the technological changes as 

overpowering and to be evolving at an ever-greater pace. This apparent incoherence between 

the technological, organisational, and individual readiness in the age of digital transformation 

challenges manufacturing, production, and operations management and research. 

This developmental paper presents a conceptual process framework specifically developed for 

the implementation and continuous assessment of innovative technologies in manufacturing 

organisations. The approach will consider the coherence of technological and organisational 

development, including required changes in decision making support and provide guidance on 

evaluation criteria and coherence indicators. 

2 Relevance & Existing Theories 

The following section highlights the relevance and current research results for the main focus 

areas of BDA, AI in collaboration processes and the role of the human in future manufacturing 

organisations. 

Over the last decades, a large number of automated data analysis methods as well as visual 

analytics methods have been developed and applied by industry. The number of applications is 

constantly growing (Bange et al., 2015). Today, the complex nature of many problems requires 

human intelligence at multiple steps of the data analysis process, e.g. to include domain 

knowledge or to prepare and test initially created reports. Generally, BDA methods allow 

decision makers to combine human flexibility, creativity, and existing expert knowledge with 

the enormous storage and processing capacities of computers to gain new insights into complex 

problems. Using advanced visual interfaces, humans may also directly interact with the data 

analysis capabilities of today’s computer, allowing them to make well-informed decisions in 

complex situations (Thomas and Cook, 2005). In future, more applications of (semi-)automated 

and data-driven decisions may appear in order to reduce human decision making. 

In research, further approaches are being developed. Recently, literature reviews on BDA 

applications have been published by Cui et al. (2020) and Kuo and Kusiak (2019) for 

manufacturing, Shah and Wiese (2018) for Supply-Chains and Lv et al. (2018) with a special 

focus on the electronics industry.  Thus, most of the publications are limited to technical 

descriptions of the underlying information systems and the applied algorithms. The use of the 

named approaches for an operational use on a day-to-day base is rare. Organisational aspects 

are not covered in detail. Even from a technical perspective, due to the need for integrated or 

interoperable information management as well as the required analytical skills set, data-driven 

decision making in industrial contexts currently falls short of the potential of the state-of-the-

art of research and practical applications are limited, mainly due to data quality issues. 

In addition to BDA, researchers and practitioners are developing other innovative technological 

approaches such as AI to enhance decision making processes in manufacturing. An interesting 

application area for AI-enhanced decision making are Supply Chain Management (SCM) and 

Supply Chain Collaboration (SCC). It is argued that future supply chains will be affected by 

digitalisation (Ivanov et al., 2019) and will therefore need to be faster, more efficient, granular 
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and precise (Alicke et al., 2016). The growing application and importance of SCM is supported 

by the perceived advantages of the extension towards a more comprehensive approach and 

network view (Eßig et al., 2013, Christopher, 2016) as well as studies foreseeing a substantial 

growth of the logistics industry (Kohl and Pfretzschner, 2018). Innovation and optimisation 

efforts such as collaborative SCM are considered to be of great importance for the survival and 

thriving of organisations (Van Lancker et al., 2016, Christopher, 2000). The design of 

organisational decision-making structures is a relevant area of interest for both scholars and 

practitioners (Shrestha et al., 2019). 

As networks have become increasingly collaborative, complex and dynamic, the interaction 

between IT and business has become more intense (Roth et al., 2013) and advanced information 

systems enable improved supply chain coordination in real-time (Ivanov et al., 2019). 

Engineering and software innovations, such as the IoT, have created new challenges for 

organisations concerning the management and utilisation of high degrees of complexity and 

interconnectedness as they can be found in supply chain networks, while AI has shown great 

promise in improving human decision making processes (Min, 2010). Existing research of AI-

enhanced decision making processes in a manufacturing context is numerous and includes risk-

management (Baryannis et al., 2019), multi-agent based systems application (Monostori et al., 

2015) and demand forecasting (Nemati Amirkolaii et al., 2017). The current varied applications 

of AI-based decision making underline its versatility and promise. However, research suggest 

that the technological development of AI in the context of decision making is thriving but has 

not yet reached its full potential, also in the manufacturing context. Consequently, organisations 

will require adapted implementation roadmaps. Despite the technological advances, questions 

remain with regard to the coherence between technological and organisational development and 

readiness. 

Whilst the IT industry is uncritically optimistic about global computing and the social progress 

it brings, and technology is vaunted as the key component of growth (Bowers, 2000, Cahill et 

al., 2018, George et al., 2014), there is little real evidence of actual improvement directly 

attributable to technological innovation, be that in decision making, productivity or 

profitability.  Kranzberg (1986) and Solow (1987) were among the first to point out that for all 

the promises of productivity increases automation would bring, they have not yet materialised.  

In the UK, the Industrial Strategy‘s (BEIS, 2017) focus on national productivity indicates the 

hoped for outcomes have not yet materialised. 

Some have suggested this is because data-driven decision making removes contextualisation 

from information, which is vital to enhance outputs or outcomes (Shedroff, 1999, Bowers, 

2000, Jennex and Bartczak, 2013).  Others have noted additional possible contributory factors 

to the long-predicted benefits (e.g. Mullan and Wajcman, 2019).   Sustained value creation is 

hindered by a number of issues in transforming data into information for meaningful and 

improved decision making (Godet, 2002, Linstone and Devezas, 2012, Hulten and Nakamura, 

2017, Beath et al., 2012).  Finally, there is a paradox of too much information creating an 

information glut rather than providing useful, relevant information to help people do their jobs 

(e.g. Nielsen et al., 2018).  This can create tensions for organisations as they push to deal with 

these challenges rather than look at data in a more holistic and integrated manner, contributing 

to a sense of information overload for people which in turn creates uncertainty and hinders 

better decision making (Edmunds and Morris, 2000, Eppler and Mengis, 2004). 

Up to a certain point there is a positive correlation between the amount of information an 

individual is exposed to and performance in terms of decision making.  Conversely, when the 

volume of information supply exceeds the information-processing capacity of an individual, 

diminished decision quality is the result, a relationship represented by an inverted U-curve 
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(Eppler and Mengis, 2004).  Information overload can be caused by the quality, quantity, 

frequency, and intensity of information available, so attention becomes the critical resource 

(Haas et al., 2015).  Interestingly, the more qualified and experienced the decision-maker the 

more efficient the information-processing, underlining the bounded rationality of decision 

making (Laker et al., 2018, Pettersen, 2018).  Information overload threatens to engulf an 

individual's control over a situation and thus contribute to errors and omissions when making 

decisions, especially in situations of high task complexity, reiterating the fact that human factors 

not just technological factors impact processing ability (Laker et al., 2018, Edmunds and 

Morris, 2000). 

Apart from the operative and strategic role of the human in future manufacturing organisations, 

ethical aspects also need to be considered. As it is not enough to only convey ethical principles, 

ethical action guidelines need to be taught and practised. In Germany, this approach of 

competence development is also driven by the Association of German Engineers (VDI), which 

offers further education in the form of seminars and conferences for engineers. According to 

Hubig (2012), specific responsibility arises for engineers due to specific competencies Their 

technical responsibility concerns intended use or evident misuse. Strategic responsibility covers 

performance characteristics (alternatives), undesirable developments or the possibility of 

intentional misuse. Future-oriented technologies such as BDA and AI need to play a more active 

role in education and training in order to establish new ethical considerations in theory and 

practice. Zawacki-Richter (2011) states that ethics belong to the macro level of distance systems 

and theory. Therefore, ethics education should be an essential component of current and future 

education. 

3 Outline of Approach and Findings 

As highlighted in the previous section, the research literature shows a growing amount of 

contributions for BDA and AI applications in manufacturing. Most of them are placed at large-

scale enterprises and still prototyping possible application areas. In addition to the analysis of 

technological developments, ethical requirements and the role of the human in future 

manufacturing organisations will be discussed. The aim of the intended paper is the 

development of a conceptual process framework for the implementation and continuous 

assessment of innovative technologies in manufacturing organisations.  

For the model development, a systematic approach based on the principles of process modelling 

and business process modelling (BPM) is used. In recent years, BPM is being used to support 

various new aspects of business processes in and between organisations, for instance advanced 

reporting and analysis methodologies, as it enables organisations to abstract processes from 

information technology (IT) innovations (Alotaibi, 2016). The model development approach 

for this paper considers the technology acceptance model (TAM), the agile process framework 

Scrum, the CRISP-DM process model and the stage-gate model by R. G. Cooper. Furthermore, 

socio-technical systems frameworks and insights from the situational theory of leadership are 

implemented in the TOCI model. Figure 1 is based on the BPM lifecycle (Alotaibi, 2016) and 

illustrates the iterative research approach. 
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Figure 1: Overview of the research and modelling approach 

The Technological and Organisational Coherence Implementation (TOCI) model (see Figure 

2) is a conceptual framework for the description of generic implementation processes for novel 

technologies and consists of three kinds of events: working phases, stage-gates and iterations.  

 

Figure 2: First draft of the Technological and Organisational Coherence Implementation (TOCI) Model 

Working phases have a maximum duration of one month and are the time phases during which 

the actual implementation tasks are done, i.e. the technological and organisational development. 

During these phases, the coherence indicator is to be assessed on a regular basis. Stage-gates 

function as quality gates where the coherence between the technological and organisational 

development is evaluated. Depending on the assessment of the coherence indicator, the project 

manager decides whether the process will be continued or a return to the previous working 

phase(s) is required. These return loops are referred to as iterations which are necessary if the 

incoherence between organisational and technological development tasks is too great, i.e. the 

coherence indicator is less than 0.5 or above 1.5. Stage-gates also include decision-making and 
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data sharing advancement. For each stage-gate, a portfolio containing a selection of KPIs is 

available. The coherence indicator describes the relation between the relative task fulfilment 

for both categories (technological and organisational development) in percent.  For instance, an 

80% fulfilment rate for technological development tasks in working phase 1 in relation to a 

50% fulfilment rate for organisational development tasks results in a coherence indicator of 

0.625 (50% divided by 80%). This indicates an imbalance towards a technologically focused 

process development. 

4 Conclusion 

The previous sections have illustrated that the application of technological innovations is 

evolving rapidly. As the preliminary results included in this paper have shown, there is an 

apparent incoherence between the technological and organisational readiness. Ethical 

considerations and the implications for human actors need to be analysed.  

The paper will be developed further before the intended publication in an academic journal. 

The thorough analysis and discussion of the state of the art in BDA and AI research in the 

manufacturing context as well as and the role of the human in manufacturing organisations will 

be extended based on literature reviews. The further development and revision of the TOCI 

model is intended with regard to the optimisation of the model design and the application of the 

model to conceptual case studies. 
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