o
[LEEDS
(. D BECKETT
UNIVERSITY
Citation:

Altahhan, A (2020) True Online TD()-Replan Method Planning Through Replaying. In: International
Joint Conference of Neural Networks, IJCNN 2020, 19-24 Jul 2020, Scotland.

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/6941/

Document Version:
Conference or Workshop ltem (Accepted Version)

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/6941/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

True Online TD-Replan(\) Method
Planning through Replaying

Abdulrahman Altahhan, Member, IEEE

Abstract—In this paper, we develop a new planning method
that extends the capabilities of the true online TD to allow an
agent to efficiently replay all or part of its past experience, online
in the sequence that they appear with, either in each step or
sparsely according to the usual A parameter. In this new method
that we call True Online TD-Replan()\), the \ parameter plays a
new role in specifying the density of the replay process in addition
to the usual role of specifying the depth of the target’s updates.
We demonstrate that, for problems that benefit from experience
replay, our new method outperforms true online TD()\), albeit
quadratic in complexity due to its replay capabilities. In addition,
we demonstrate that our method outperforms other methods with
similar quadratic complexity such as Dyna Planning and TD(0)-
Replan algorithms. We test our method on two benchmarking
environments, a random walk problem that uses simple binary
features and on a myoelectric control domain that uses both
simple SEMG features and deeply extracted features to showcase
its capabilities.

Index Terms—TD, TD()), true online TD with Replay, Replan,
Replanning, experience replay.

I. INTRODUCTION

XPERIENCE replay plays an important role in the

context of reinforcement learning algorithms. In this
paper we tackle the issue of building a robust method that
allows the agent to maximize its experience replay capability
with relatively cheap complexity. We will tackle multi-step
sequential replay algorithm where the agent replays a sequence
of past experience steps in the order they appeared with. This
issue have been partially attempted in [1] where the algorithm
used TD(0) update rules as its basis. In this work, we will
extend the ideas developed in [1] to the true online TD(\)
updates. In particular, we will build a new method based on
three requirements. First, we would like to be able to utilise
a multi-step targets for each replay update instead of the one
step target update of TD(0), this allows the method to choose
how deep its targets are going to be for each replay update.
The second requirement, is that we want to allow the algorithm
designer to choose how much of the past experience updates
he/she needs to incorporate and how frequently this replay
process will be performed. Thirdly, regardless of the replay
depth and the target’s depths, the method should be efficient
even on the limit when the replay depth is maximal. To achieve
these goals we first introduce a method, namely online A-return
TD-Replan, that takes experience replay to its extreme by
allowing the agent to replay all of its past experience online in

A. Altahhan is with the School of Built Environment, Engineering
and Computing, Leeds Beckett University, Leeds, UK, LS6 3QS. e-mail:
a.altahhan @leedsbeckett.ac.uk.

every time step. Unlike previous work, this method allows us
to utilize the multi-step interim A-return targets for each replay
update instead of the one-step target of TD(0). We show how to
deduce an online efficient incremental method, namely TD(\)-
Replan, that is equivalent to online A-return TD-Replan, but
has a complexity that is not related to the time step, we prove
the equivalency mathematically in Theorem 1. We show then
that the true online TD algorithm becomes a special case
of the true online TD-Replan algorithm in Theorem 2. We
then soften the replay maximal replay requirement by utilizing
a parameterization that interpolates between no-replay and
replay-all, effectively allowing the designer to choose the
online replay depth similar to how we choose the depth of
A-return in the true online TD()). Finally, the target’s depth
and the replay process depth of the resultant TD()\)—Replan()’\)
method, can be aligned to formulate TD-Replan()\).

Reinforcement learning deals with Markov Decision Process
(S, A,p,r,v) where we have a set of discrete actions A that
are available for the agent to pick from at each state s. We
denote the feature representation of state s as ¢(s) and the
number of features || = n. (s, a, §) is the expected reward
signal for taking action a at state s then moving to state S.
The feature representation can be complex. For example, the
features can be obtained from a deep architecture such as
from the encoder of an auto-encoder [2] or a set of stacked
auto encoders [3] . We can then employ whatever algorithm
we have on the resultant features [4]. In this case each
learning stage is dissected from the other stages. In this paper
we take this approach due to its simplicity and theoretical
guarantees. Alternatively, one can take a more integrated end-
to-end learning approach. An example of such integrated
approach is to build a deep feature extraction model and
append a fully connected layer with linear activation function,
we then can backpropagate the error coming out of the last
layer further into previous layers [5]. However, despite the
impressive empirical achievement of such models convergence
guarantees do not apply straight on a non-linear model [4].
The high performance in the second approach can mainly be
attributed to the stability and agility provided by the replay
process [6]. By building the targets in the method itself we
conjecture that we can avoid having to use a separate network
to represents the targets as in [5]. The better performance of an
intermediate replay depth value can be attributed to the ability
to balance the importance of sequence of events and to break
the strong correlation that can lead to instability when non-
linear function approximation is used. In this work we build an
algorithm that is particularly suitable for deep learning whether
the learning process is dissected or integrated.

IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

Throughout our presentation we will assume that the be-
haviour policy is derived directly from the learning weights for
action-values and we do not consider policy gradient methods.
Our focus will be on multi-steps policy evaluation methods
that involves looking back at multiple updates for steps that
happened in the past and repeat their respective updates, i.e.
replay them.

II. BUNDLED EXPERIENCE REPLAY

Replay can be categorized as sequential with specific fre-
quency (ex. replaying past sequence of 10 steps every other
step), which is the topic of this paper, and non-sequential,
for example the one used in [7]. When sequential replay
is incorporated in the method we can systematically reduce
its complexity to be related to the number of used features,
whether a deep or a shallow model is used, rather than in the
number of time steps of an experience. More recently, the
replay process has been taken from a different perspective
through the work of [8] to mean re-evaluating past target
updates using what has been recently learned by the agent,
they tagged it as replay. In this sense their algorithms redo
the same set of past updates, with the same initial learning
weights in each step, using updated targets, in order to benefit
from past experience. In their setting each bundle of updates
always starts from the same initial weight’s values, which is a
key issue. Although this simplifies finding incremental forms
for the learning process, however in that sense their approach
is more of reevaluating the target rather than actually replaying
the experience. From our perspective, replaying the experience
requires going through a bundle of past experience and redo
the updates as if the agent went through them again but with
its current set of weights [1]. Therefore, our approach for
experience replay is more like the original approach of Lin
(combined with the notion of target revaluation) but contrary
to Lin’s it is more sequential and more intensive to promote
learning agility. From a learning perspective, each time a
new online interaction takes place between the agent and the
environment, the replay process should allow the model to
start with a better initialization of the weights.

III. TD-REPLAN WITH INTERIM A\-RETURN

Contrary to [1] we use interim A-return as the target for
each update. Interim A-returns takes advantage of all past
experience to obtain a more accurate estimate of the targets of
the TD updates. In this section we show the forward view of
our elaborate replay method using interim A-returns similar to
the way true online TD(\) was constructed [9]). The forward
true online TD() algorithm is largely kept as is with one
important change. We will run through all past updates and
redo them all as a bundle, using the latest model weights, i.e
without reinitializing them back to their original values. We
assume that in each time step ¢, the algorithm is going to go
back to all past steps trajectory and replay every single update
based on its latest weights. Index ¢ will be used to represent
current time step, while index &k will be used to represent past
steps, where 0 < k < ¢. For example, the model’s weights at
time step ¢ that are used to replay past step k are denoted 02,

while the weights that are the results of replaying past time
step k are denoted). 0’ will be abbreviated as ;; i.e.
6;: = 0, for example when we see 6, it stands for 8. We
will devote our attention in this section to the last layer of the
model that is used to represents the value function V. Each
one of the forward TD replay updates can be written as

01 =01 + VoV (G - vslort))

where G;lﬂ_l is the interim A-return introduced in [9] and is
defined as:
t—k—1 A

ST NG 4 Al 2)

=1

At
G, =

GV =1\ > VT Riy A9V (Ske410k15-1) (3)
j=1

Note that when £k = ¢ — 1 then G;lt = G,(fl) = R4 +

YV (S¢+1]0¢) which is the usual one-step target of TD(0). We
assume that the last layer is linear, hence a linear model is
used to express the value function, V (s|0) = 8 ¢(s), where
VeV = ¢(s). This assumption entails some restriction but
it does not prevent us from using a non-linear and complex
layers that come before this last layer in order to build a full
fledged deep learning model.

In this case, the set of the replay updates (1) is written as

01 = 0" gy (G (01) o) @

0,1 = A0, + b, 5)
Ap = [T — x| ©)
bl = e G (7

where Ay is a squared matrix, bz is a vector and n is the
number of weights used to encode the value function. The time
and space complexity of the above algorithm can be made
reasonable and be only related to n. Although each step is
entailing ¢ updates with complexity O(t x n), we shall use
the formalism used by [10] and [9] to make the complexity
O(n?) assuming that ¢ > n or ¢ > n in most of the cases.
In addition, it can be proven [9] that:

G G = (A) R Ry +40) bt — 01100
Gz‘t_i_l _ Gz‘t + ()\’Y)tik(;t (8)

Let us see how the algorithm behaves along with the targets
Gzltﬂ in the below snippet.

Ag =T — aodyy
A =T - a1¢1¢1T7
Ay =T — crgyps ,
Az =T — azdseb3 ,

This is the same process performed in developing true online
TD, except we will force each bundle of updates to initialise
the first weight with the weight of the previous bundle of
updates. By doing so we will be replaying all past updates in

bé = 040¢’0G())\|4
bzl1 = 041¢1G?|4
b = Gyt
b§ = 043¢3G§|4

01 = A03 + b :
05 = A,07 + b
03 = A0, + b :
0 = A30; + b; :

IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

each time step. It should be noted that if we fixed the initial
weights of a bundle of update steps, then the algorithm turns
into just a revaluation of all past rules instead of replaying
past experience, this is what algorithms at [8], [10] and [9]
are performing, there is no replay process utilized in them.

Hence, based on our algorithm, the final weights 01 for time
steps 4 can be calculated in terms of the initial weights 0§ by
backward substitutions as

0,=0=A3A,A,A005+ A3 A5 A b5+ A3 Asbi + Azby+bs

Note that we we need G2|4 to be able to calculate by. It can
be easily proven by induction that

0 t k+1
(H Ai> 0 +> (H Ai> bit! 9)
1=t k 1=t

=0

t+1
9t+1 -

It should be noted that this algorithm is completely different
than the algorithm that we developed in [1] in two ways; first
the basic updates of each replay step is based on true online
TD not on TD(0), i.e. our algorithm uses the truncated A-
return targets, the second difference is that the matrices Ay
are defined differently. It should be noted that every bundle of
update ends at Hiﬁ which can be used to summarize all past
sequence of intermediate updates as has been shown in [9]. We
call the above algorithm the true online \-return TD-Replan
to emphasise two things; first that the algorithm is replaying
all past experience using true online TD(A) updates, second
to emphasise the link between replaying and planning which
has been already established in [8]. Clearly, this algorithm is
expensive with a complexity of O(n X t) and in its current
form it is impractical. In the next section we develop a
more efficient way to achieve the same set of updates. This
algorithm constitutes the non-incremental forward view of a
more efficient and incremental algorithm that we call the true
online TD(\)-Replan.

IV. TRUE ONLINE TD(A)-REPLAN: AN INCREMENTAL
ONLINE VIEW

To arrive to a correct efficient form for the intensive replay
mechanism presented in the previous section, we need to
extend the mathematical formulation developed in deriving the
incremental forms of the true online TD(\) to accommodate
the replay process.

Theorem 1: Given a set of n weights 6 that are due to the
forward true online TD()\)-Replan algorithm shown earlier, we
can obtain exactly @ incrementally according to the following
step updates

Ay = [Ian - Oét¢t¢tq
er = Ayyer—1 + i,
e = Aier 1 +e (5t +6/] ¢, — 0l1¢t) + 0,0/ b,
A=A A
0,11 =A0;+¢e

Proof: We start from (9), similar to [9] we denote

k41
AT = A4 A = [[A (10)
i=t
A =T, (11)
Al = A, (12)
We define
A= A (13)
t
g = AL (14)
k=0
Update (9) becomes
041 = A0, + & (15)

Now we turn our attention to €; to come up with an incre-
mental form to update it online. By plugging definition in (8)
in the definition of &; (14) and utilizing (11) we obtain that

t

_ __Z k+1 Alt+1
€ = At Oék(l)ka

k=0
t—1

_ k+1 Alt+1 Alt+1
= § AT ¢, G + ¢, Gj
k=0

t—1
= Z Aftt oy, (Gi‘t + (7)\)#1@5’0
k=0

+ gy (Rt+1 + 70:¢t+1 + 9:—1@)
-1 i1
N ,) _
= A, A g Gy 0 A gy (v)!
k=0 k=0
+ oy (5t + 9l1¢t>
t—1

= A& 1 +6; Z AerlOék(ﬁk(’Y)\)tfk + oy (5f + 0:—1@)
k=0
e = A1 + 5t€t + oy (9:—1@)
t

eri=Y (YN AT are,
k=0

(16)
a7

Note that «; is included in the definition of €. In addition, e;
is defined as in [9] and hence we can readily utilize its derived
incremental form

t
ec:= (WN)'" A awpy
k=0

e = Ayyder 1 + o, (18)
Finally, from the definition of A? in (10) we have
At = AtAt—l PN AO = AtAt—l (19)

which constitutes the incremental form for A;. The initial con-
ditions as per the definitions are set to A_; = Z,,xpn, A_| =
Zyxn,,€—1 = 0,x1 which yields TD(0) update for t = 0.
Hence our algorithm is defined by (7), (15), (16), (18) and
(19) which conclude our proof. [|

IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

V. EFFICIENT TD-REPLAN ALGORITHM

By substituting A; and reorganising the terms so that we
have vector X matrix multiplication and not matrix X matrix
multiplication we obtain the true online TD(\)-Replan method
shown below:

e =Ner1 + o, (1—e/_ ;) (20)
_ T T
e =¢e_1te; (5t +0, ¢, — 0t—1¢t)
— iy (élﬂf% - 0l1¢t) (21)
let = Atq — (¢3At71)
011 = A0, +e

(22)
(23)

Formulating this method as a learning episodic algorithm for
prediction is given in Algorithm 1.

Algorithm 1 TD()M)-Replan(1) Learning
Input: «,7v, A, 04t
Output: 6
obtain initial ¢
0 < 004t
for all episodes do
e—0,e+0A—T Vys+0
while S is not Terminal do
obtain next feature vector ¢’ and reward R
V0o
V!« er)/
0+ R+V' -V
e ey\—ap(yre' ¢ —1)
e«e —ap(e ¢— Vo) +eld+V— Vo)
A A—ap(p' A)
0« AO +e
Voia <V’
¢ ¢
end while
end for

VI. TRUE ONLINE TD()\) AS A SPECIAL CASE OF TRUE
ONLINE TD(M)-REPLAN

In this section we show that the true online TD()\) can be
viewed as a special case of the true online TD(A)-Replan by
fixing the weights used in the update rule (15).

Theorem 2: When 0; = 6y the true online TD()A)-Replan
algorithm reduces to the usual linear true online TD(\).

Proof: By defining a; := A,8, rule (23) becomes:

041 = A0 + &

0i11 = a; + &

(24)
(25)

In addition, A; can be vectorized into @; by multiplying (22)
by 6y and substituting by the a; definition:

ay = a1 — o, (G P;) (26)

Equation (26) can be combined with (21) by simple addition of
a; + e; and substituting by 6,1 and substituting a;_1 +&;_1
by 6; we have

e;+a;=e;_1+a_1
iy (@l1e0) +ei(00+ 0] 6 — 010,
-, (étT—1¢t - 0:—1¢t>
0i11=0;+e (5t +6/ ¢, — 9:—1@)

— ai @y (9:@ - 02——1¢t) 27

Update (27) along with (20) correspond exactly to the update
rules of the true online TD(\) algorithm which conclude our
proof. []

The TD(M\)-Replan(1) replays all past experience in every step
and as we said earlier it is on the far end of the spectrum
of replaying. In order to reach a compromise that allows our
algorithm to represents all range of replaying from non to full,
we will look into reducing the complexity of our algorithm.
So far, we have replayed all past experience by having current
step replay rules to use past step weights as a base to update
to current weights. However, our method allows for more
flexibility.

VII. TRUE ONLINE TD-REPLAN())

The above methods constitutes the two ends of the spectrum
of experience replay. The next normal development is to
explore ways of representing all the spectrum between these
two ends. In other words, we would like to construct a method
that allows us to specify how much of a replay, if any, the agent
should experience in each online step. This is an open question
that one can address in several ways. One way to perform this
requirement is by constructing a linear combination of the two
methods using a hyper parameter A. Or, we can use the same
A parametrisation in order to combine the depth of the target
and the depth of the replay in one hyper parameter. To achieve
this, we can alter the TD(\)-Replan method:

0,11 = A, (Xot + (1 - X) 00) + &

_ A, (X0t+ (1 —X) 00) + (Xémt (1 —/i) ét)

MA0; + &)+ (1—N)(Ab + &) (28)

Since the last update is written as a linear combination of
updates (15) and (24) the resultant method is a parametrized
combination of the two methods: the true online TD(A)-Replan
and the true online TD(A). Therefor, the final method that we
call TD()\)-Replan(;\) is defined by equations(7), (28), (16),
(18) and (19). Below we show a policy evaluation algorithm
that is based on true online TD(A)-Replan(f\) method.

IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 5

Algorithm 2 true online TD()\)—Replan()’\) Learning

Input: o,~, A, N, Qi {\ may = X}
Qutput: 6
0 0;n4t
for all episodes do
obtain initial state ¢
0y 0,e+—0e+0,A—7Z, V<0
while S is not Terminal do

1/n 1/n 1/n
Fig. 1. Random Walk Task

trueTD(A)-Replan(1) vs. true TD()) vs. DynaPlanning vs. TD(0)-Replan

, trucTD(D4)
obtain next feature vector ¢ bt
T 05 - -rmv'f'D(n:;J:'\:
V — erz traeTIH0OT5)
teplan(1) = = - trae TI(000)
V 0 d) ,) = = —trueTD{1)
| - DynaPlanning
6 <— R + ’YV - V 0.4 == mtreTOD0) 0 mmma T D0k Replan

e ey\—ap(yre' ¢ —1)
e—e—ap(e'd—Voa)+eld+V —Vyuq)
A—A—ap(ep'A)
0%A<5\0+(175\)00) te
Voia <V
P @

end while

end for

It should be noted that when true online TD()\)-Replan(),\ =
0) is exactly equivalent to the true online TD(A). It should
be noted also that when we have A = \ then the method
is simply called TD-Replan(). Similar to true online TD()),
TD-Replan(0) method is equivalent to TD(0).

VIII. TD-REPLAN APPLIED ON RANDOM WALK

In this section we show the prediction performance of our
algorithms on a random walk task for benchmarking. Random
walk isolates the effect of the dynamic of the environment
since selecting the actions is randomised based on a probability
distribution that represents a fixed policy. This allows us to
concentrate on the prediction capability of an algorithm. Our
environment consists of 17 states [4] and the process starts
always form the far left hand side state and the episodes ends
when the process reaches the far right state. In each step the
action that moves the current state towards the right final state
are given a fixed reward of 1/n where n is the number of non
terminal states. While, the action that moves the current state
away from the right final state are given a reward of —1/n,
the action that takes the process to the right final state is given
a 0 reward, staying in the far left state is also given a reward
of 0. Both actions have the same probability and no discount
is used, i.e. v = 1. These setting allowed the RMSE error to
be bounded to 1, and further allowed us to benchmark with
other random walk problems. It can be easily proven that the
sum of the rewards of each state can be analytically calculated
to be V(S;) = (i — 1)/n.The features used are simple
basis binary features that represents each state as a vector of
zeros with one feature on at a time. Our experiments shows
that our new methods TD-Replan have the least sensitivity
to the step size and almost always guarantees convergence
with maximum speed (in terms of number steps needed to
converge). Fig. 2 shows that our algorithm outperforms the
true online TD(A) for all A values in this domain. It also

RMSE

0.2

01

Fig. 2. Comparison of true online TD(\)-Replan(1) with true online TD(A),
as well as TD(0)-Replan and Dyna Planning, on Random Walk on 17 of the
first 10 episodes averaged over 20 trials for binary features. This shows the
clear edge that our new method have over other methods despite the simplicity
of the problem.

outperformed the TD(0)-Replan(1) algorithm [1] as well as the
Dyna Planning algorithm [11] both of which have a similar
quadratic complexity, which shows that our algorithm clearly
outperform those planning algorithms as well.

IX. DEEP SPARSE VARIATIONAL AUTOENCODER
AND TD-REPLAN APPLIED ON MYOELECTRIC
CONTROL

In [12] authors have shown how to control a two-dimension
cursor via a set of surface electromyographic (SEMG) signals
obtained from forearm activities. Fourteen abled-body subjects
were studied one of which has a congenital upper-limb de-
ficiency. They have conducted a set of myoelectric control
experiments; their aim was to study the effect of arm position
and donning/doffing of a textile hose that they used to obtain a
set of SEMG signal readings. In their experiments, each subject
controlled the cursor using a set of sixteen SEMG sensory
signals attached to the subject’s forearm. The task is to move
a cursor from a location inside a circle that is presented to
the subject on a computer screen to the centre of the circle
using the SEMG signals coming from their muscles activities.
In each experiment a set of sixteen pre-specified locations
were randomly selected one after the other and the subject
has to move the cursor to the requested location. The tasks
were performed in approximation and sometimes the subjects
failed to reach the target position in the allocated time. The
subject is considered to hit the target if he/she sustained the
cursor in a radius of 0.15 for 1 second. After the subject hits
or misses the target, a pause of 1 second is enforced and the

IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

trueT D(A)-Replan(1) vs trueT D(A)
Dyna Planning vs. TD(0)-Replan

———trucT D(0)-Re
trueT D(0.4)

rucT D{0)
rucTD(0.4)
rucT D{0.8)

== DynaPlann
=e@m= T D(0)-Repl

ng

RMSE

e ST

Fig. 3. Comparison of the RMSE for true online TD(\)-Replan(1) and true
online TD(\) applied on Myoelectric control of cursor on a screen using
normalised SEMG as features, all taken for the first 10 episodes and averaged
over 66 trials with o values that spans 0.001 to 0.1 with 0.005 steps. the figure
clearly shows that for high A values TD(A)-Replan(1) is more advantageous
than true TD(\). We note that our algorithm has a wider maximal area and
converges quicker to an optimal performance for a wider range of learning
steps «, making it more reliable and stable. Note that Dyna Planning has
struggled to learn the environment’s dynamics due to deep learning mapping
the SEMG into a more elaborate but sparse space. On the other hand, TD(0)-
Replan has performed relatively good as expected but could not outperform
true TD(0.9)-Replan onward.

cursor is returned to the centre until all 16 targets have been
presented (in random order). The dataset is publicly available
in [13].

Our aim in this study is to show how to directly predict the
future position of the cursor based on current raw sSEMG arm
signals, hence simplifying and transforming the ways in which
such control models are constructed and trained. We will use
our algorithms to predict the next position of the cursor on a
screen based on the SEMG signals. The SEMG signal is packed
with noise and variation that makes the task challenging. It has
been attempted to be tackled using deep learning approach
as in [6] but in a supervised learning settings. In addition,
we conduct a comparison study to show that our algorithm
prediction accuracy can considerably outperform other widely
used RL planning and non-planning algorithms such as the
Dyna planning and true online TD(A) as well as TD(0)-
Replan. All algorithms used the same two sets of features
to compare their capacity. The first is the sSEMG readings
after normalisation, and the second is a set of features that
are extracted from an auto encoder (AE).

In [14] authors showed that TD can predict the next sensor
reading based on previous reading, they call it ‘nexting’. They
have shown that nexting can be performed on a large number
of sensory inputs to predict their next values in parallel. Their
task was a robot circling a pen continuously and their sensors
(lights and ultrasonic) were predicted. In [9] authors have
demonstrated how to predict two degrees of freedom task that
involved the grip force and motor angle signals of a robotics
hand. In this context, the sensory input plays the role of a
reward. The point of view that rewards can be used to perform
general prediction has been explored in several settings. For

example, [15] used a variety of stimuli as a reward function
to learn animal behaviour and to model conditioning.

A. Deep Auto Encoder Structure and PreTraining

The structure of the Sparse Auto Encoder is as follows.
The encoder has 5 layers, the first treats the SEMG input as an
image. The second, is a convolutional neural (CNN) layer that
has 32 filters each of size 3x1 with a stride of 2 (yielding 8x32
features). This is followed by a relu which is then followed by
another CNN layer that has a 64 filters each of size 3x1 with a
stride of 2 (yielding an output of 4x64=256). This is followed
by a relu layer which then is flattened into 256 neurons,
which is followed by a fully connected layer to the 256
latent variables. No padding has been applied. The decoder
mirrors these layers in the usual reversed manner (by using a
transposed convolutional layers instead of the convolutional),
both deconvolutional CNN layers have filter sizes of 2x1, no
cropping has been applied. The sSEMG signal has been treated
as if it is a 2d gray scale image, the mission of the Sparse
AE is to come up with a cleaner and a sparse decompressed
representation of the SEMG signal, i.e. to map the 16 SEMG
readings into 256 = 162 features each specialised in a range
of SEMG values. We start by training the AE in the usual
unsupervised training fashion to learn the best representation
for the SEMG sensor readings. We used a minibatch size of
512, the transfer function for all the encoders and decoders
is the logistic sigmoid and the learning rate is set to 1073.
We have trained our deep learning feature extractor using all
the episodes’ data regardless of the positions and trials (so all
sixteen positions are considered). The input was normalised
by re-scaling for each component of the 16 sSEMG readings.
After training the AE, we use the encoder to encode all sSEMG
signals in a predefined number of features that corresponds to
the number of latent neurons. The number of features used
(without AE) is 16 and the model used one bias, while the
number of latent features considered with AE is 16%. The
number of episodes for training the AE was set to 10 where
the loss was around 0.05. To show the prediction capabilities
of our algorithm we use a value-function approach and we do
not utilise direct parametrized policy search methods and our
approach is a model-free RL. When we train our algorithm
we do not try to build a model for the environment dynamics
since it is not necessary to predict the value function (or
to do a policy search, both of these can be done without
the environment model by sampling interaction between the
agent and its environment). However, we will compare the
performance of our TD-Replan with Dyna Planning that create
a model that predicts the next state and next reward based on
current state [11].

B. True Online TD-Replan Training Results

The data set has been divided into trials each trial consists
10 random episodes that belongs to the same task (starting
position for the cursor), each episodes constitutes a task of
moving the cursor from a start position to the centre of a circle
on the screen using the subject SEMG signal. So the number
of steps of each episodes varies. In order to train a network to

IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

perform a prediction for a task, we have bundled the episodes
related to each task together. The model has been left to run to
the end of each episode without a stop condition to capture the
full experience. The reward signal is taken to be the normalised
difference between current position and the target position for
the X coordinate and the Y coordinate separately. The results
are shown for predicting the X signal for brevity. All episodes
of the six starting positions that have significant variation along
the X axes are considered. We have not used the calibration
runs of the subjects (the first 9) since during calibration one
of the coordinated were artificially set to O and the other is
set to a fixed number and the cursor was not actually moved
using the sEMG [16]. Runs 22 onward were not included
due to the deterioration of performance of the participants
due to donning/doffing effect, therefore all runs 10-21 were
utilized. All experiments were done on an online fashion and
all arms positions were considered equally without distinction.
The maximum number of trials is 66 (11 for each task) and
all of them has been utilised to obtain the averages (in our
settings a trail is a set of 10 episodes). v was set to 0.95 and
we have used the same representation across the tasks.

Fig. 3 shows the comparison for the normalised sEMG
features, where no deep learning feature extractor is employed.
This figure shows that our algorithm performance exceeds the
performance of the true online TD for any relatively high A
values (> 0.8) specifically at high o values > 0.05.

Fig. 4 shows clearly that our algorithm outperforms the
true online TD(A) for all A values in this domain for the
deep extracted features. The figure shows that the difference
between our algorithm and the other algorithms becomes more
prominent, demonstrating the suitability of our algorithm to
this type of deep learning extraction. We note that true online
TD(M)-Replan converges quicker to an optimal performance
making it agile. Another important property to note, is that
the algorithm starts almost readily with low RMSE levels
when we increase the replay depth, and quickly converges
to its optimal performance for small to intermediate learning
step. This demonstrate that our algorithm suitable for real time
and critical applications that needs minimal training and quick
response. Note that A performed best for 0.9 as is normally
expected.

Fig. 5 shows that the values that keep all methods con-
vergent are the range shown in Fig. 4 over which TD())-
Replan(1) outperformed all other methods. Note that Dyna
Planning is included but hardly can be seen due to its diver-
gence for a values beyond 0.002.

Fig. 6 shows the the comparison for true online TD(A =
0‘9)—Replan(),\) with different A, demonstrating that the depth
of the replay plays an important role when the features are
deep and the rewards is not delayed. We should note also
that true online TD(\)-Replan(0) = true online TD()\) as
per Theorem 2 and hence the latter is actually included in
the comparison. We can see the theme of a stable optimal
performance for a range of « values when we increase the
replay depth (i.e. when we increase)1) up to 0.8. For A=1
the algorithm increased its performance for the smaller «
values but then started to decrease for relatively higher values.
This type of behaviour is expected for this hyper parameter,

true TD(A)- Replan(1) vs. true TD(A) vs. TD(0)-Replan vs. Dyna Planning
]

0.6 Ft e trrue TD(0)- Re

1

I trueTD(0.4)
1 1) = = = trueTD(0.8)
1 1) = o= mtrueTD(0.9)
1 1) = = = trueT D
| e true T D) tan(1) trueTD(0.975)
& ue eplan(l) = = = trucTD(0.99)

n

1 T D)

055 gt
L)

RMSE

L L L L L L L L L L
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Fig. 4. RMSE comparison for true online TD(\)-Replan(l), true online
TD(A), TD(0)-Replan and Dyna Planning. The methods are applied on
myoelectric control of cursor on a screen, where 16 normalised SEMG are
fed into a Sparse Auto Encoder to extract a more elaborate set of features
(162). All results are taken for the first 10 episodes and averaged over 66
trials with o values that spans 104 to 10~3 with 3 x 10~ increment. The
figure clearly shows that when using deeply learned features TD(\)-Replan(1)
outperforms the true TD(A) for all A values with a considerable margin.

true T]é)()\)— Replan(1) vs. true TD(A) vs. TD(0)-Replan vs. Dyna Planning
1 . A

A

== = trucTD{0)
trucTD(0.4)

-

- true T D(0.9)
= = =trucTD(0.05)

RMSE

L L L L L L L L L |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Fig. 5. Same as for Fig. 4 but over a wider range of values of «. It shows
that for this type of features the smaller o values generates better results for
both algorithms.

resembling the usual A\ behaviour.

X. CONCLUSION

In this paper we have introduced a novel reinforcement
learning method, namely the true online TD(A)—Replan()l) that
extends the capabilities of the true online TD(A) method to
allow the method to replay all or part of its past experience
according to the A parameter. In addition, A allows it to
choose the depth of it targets as per norm for TD(\) methods.
The cost of the algorithm is quadratic in the number of
features and the algorithm is suitable for planning. Further, we
proved that the true online TD(A\) method becomes a special
case of our method. This in turn allowed us to design an

IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

trueTD(0.9)- Replan(})

= = = truel D(0.9)-Heplan{0)
----------- truel’D(0.9)- Replan{0.4)
- trueT D(0.9)-Replan{0.8)
e truel'D(0.9)-Replan(1)

RMSE

0.005 0.006 0.007 0008 0.009 0.01
83

0.002 0.003 0.004

0 0.001

Fig. 6. RMSE Comparison for true online TD(O.Q)—Replan(j\) applied on
myoelectric control of cursor on a screen with a 162 latent features coming
from an encoder, all taken for the first 10 episodes and averaged over 66
trials with o values that spans 10~% to 1073, The figure clearly shows that
increasing the replay depth X\ increases the algorithm performance when using
deeply learned features. Note that the same applies for other A values but is
not shown for brevity.

algorithm that can scan the full spectrum between full and
partial planning based on the suitability of the application and
the response and complexity requirements. Specifically, true
online TD(\) = true online TD(\)-Replan(0). We have tested
the efficacy of our algorithm on two benchmarking domains,
in one of which we have combined our algorithm with a
sparse autoencoder that utilises CNN layers. Both domains
confirmed the utility and high performance of our algorithm
in comparison to other more expensive algorithms. Further, the
results shows that our algorithm constituted a good match for a
deep learning extractor, paving the way for further integration
in the future. Future work includes showing that our methods
can be integrated with on-policy or off-policy learning update
to produce new control methods, in addition to tackling an
end-to-end training of a deep reinforcement learning model
that is based on our method.

REFERENCES

[1] A. Altahhan, “TD(0)-replay: An efficient model-free planning with full
replay,” in 2018 International Joint Conference on Neural Networks
(IJCNN), 2018, Conference Proceedings, pp. 1-7.

[2] B. Yoshua, Learning Deep Architectures for Al, ser.
Deep Architectures for Al now, 2009. [Online].
http://ieeexplore.ieee.org/document/8187120

[3] A. Ruiz-Garcia, M. Elshaw, A. Altahhan, and V. Palade, “Stacked deep
convolutional auto-encoders for emotion recognition from facial ex-
pressions,” in 2017 International Joint Conference on Neural Networks
(IJCNN), 2017, Conference Proceedings, pp. 1586—1593.

[4] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, 2017.

[51 V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, p. 529, 2015. [Online].
Available: https://doi.org/10.1038/nature14236

[6] Y. Li, “Deep reinforcement learning,” ArXiv, vol. abs/1810.06339, 2018.

Learning
Available:

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Machine Learning, vol. 8, no. 3, pp. 293—
321, 1992. [Online]. Available: https://doi.org/10.1007/BF00992699

S. Zhang and R. S. Sutton, “A deeper look at experience replay,” eprint
arXiv:1712.01275, p. arXiv:1712.01275, 2017. [Online]. Available:
https://ui.adsabs.harvard.edu/#abs/2017arXiv171201275Z

H. van Seijen, A. Rupam Mahmood, P. M. Pilarski, M. C. Machado,
and R. S. Sutton, “True online temporal-difference learning,” Journal of
Machine Learning Research, vol. 17, no. 145, pp. 1-40, 2016. [Online].
Available: https://ui.adsabs.harvard.edu/#abs/2015arXiv151204087V

H. van Hasselt and R. S. Sutton, “Learning to predict independent
of span,” CoRR, vol. abs/1508.04582, 2015. [Online]. Available:
http://arxiv.org/abs/1508.04582

R. S. Sutton, C. Szepesvari, A. Geramifard, and M. P. Bowling,
“Dyna-style planning with linear function approximation and prioritized
sweeping,” eprint arXiv:1206.3285, p. arXiv:1206.3285, 2012. [Online].
Available: https://ui.adsabs.harvard.edu/#abs/2012arXiv1206.3285S
H.-J. Hwang, J. M. Hahne, and K-R. Miiller, “Real-
time robustness evaluation of regression based myoelectric
control against arm position change and donning/doffing,”
PloS one, vol. 12, no. 11, pp. e0186318-e0186318, 2017.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/29095846
https://www.ncbi.nlm.nih.gov/pmc/PMC5667774/

M. Atzori, A. Gijsberts, 1. Kuzborskij, S. Elsig, A. M. Hager, O. De-
riaz, C. Castellini, H. Miiller, and B. Caputo, “Characterization of a
benchmark database for myoelectric movement classification,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 23,
no. 1, pp. 73-83, 2015.

J. Modayil, A. White, and R. S. Sutton, “Multi-timescale
nexting in a reinforcement learning robot,” Adaptive Behavior,
vol. 22, no. 2, pp. 146-160, 2014. [Online]. Available:
https://doi.org/10.1177/1059712313511648

——, “Multi-timescale nexting in a reinforcement learning robot,” in
From Animals to Animats 12, T. Ziemke, C. Balkenius, and J. Hallam,
Eds. Springer Berlin Heidelberg, 2012, Conference Proceedings, pp.
299-309.

S. Muceli, N. Jiang, and D. Farina, “Extracting signals robust to
electrode number and shift for online simultaneous and proportional
myoelectric control by factorization algorithms,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 22, no. 3, pp. 623—
633, 2014.

