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Disturbance Observer-based Subspace Predictive Control of a Pressurized
Water-type Nuclear Reactor

Vineet Vajpayee, Victor Becerra, Nils Bausch, Shohan Banerjee, Jiamei Deng, S. R. Shimjith, A. John Arul

Abstract— This work presents a disturbance observer-based
predictive control strategy using a subspace matrix structure.
The aim is to improve the capability of classical predictive
controllers in handling external disturbances. A subspace-based
predictive controller is designed directly from measurements.
Then, a disturbance observer is designed using subspace matri-
ces to estimate the external disturbance. Both of the designs are
integrated using a feed-forward plus feed-back strategy to form
the proposed control strategy. The proposed scheme is tested
with a simulated model of a pressurized water nuclear reactor.
The effectiveness of the proposed technique is demonstrated for
two different load-following operations. Further, a quantitative
analysis is performed to analyse the control performance of the
proposed approach.

I. INTRODUCTION

Nuclear power plants are complex, highly-constrained, and
non-linear systems. Control of a nuclear power plant during
load-following mode of operation is a challenging task due
to parameter variations caused by fuel burn-up, internal reac-
tivity feedbacks, modelling uncertainties, and unknown dis-
turbances. System parameters associated with reactor core,
thermal-hydraulics, and internal reactivity feedbacks differ
significantly with operating power levels. Furthermore, the
routine load cycles can significantly degrade nuclear power
plant performance due to a broad range of power variations.
In addition to these, uncertainties in the measurement of
reactor power and neutron flux add further problems to
the control design. Consequently, the traditional controllers
suffer in delivering optimal performance. Thus, it is of prime
importance to improve the existing control techniques for the
enhanced safety and operability of a nuclear power plant.

Model Predictive Control (MPC) is an advanced control
design approach that has been employed considerably in
industry [1]. MPC has the ability to adapt to new operating
conditions and allows simpler constraints handling. It solves
an optimization problem to determine future control input
over a time period. Traditionally, MPC calls for an accurate
mathematical model of the process to design the control law.
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The application of MPC to the constrained load-following
operation of a pressurized water-type reactor (PWR) has
engaged vast research interest in the last decade [2]–[5].
For instance, Na et al. [2] applied MPC to the control of
power level and axial power distribution. The load-following
problem for movable nuclear power plants is attempted using
the multiple MPC approach [3]. Eliasi et al. [4] designed a
robust MPC strategy for bounding xenon oscillations. The
load-following operation at a low-load working condition is
studied using quadratic programming approach [5].

Although predictive controller design approaches opti-
mize the performance of constrained systems, they lack
disturbance handling capabilities. Measurements of reactor
power, neutron flux, and coolant temperatures usually contain
noise, uncertainties, and unmeasured disturbances. In the
presence of strong disturbances, the response of predictive
controller deviates far from the real output and thus the
control performance can degrade greatly and may even cause
system instability [6], [7].

In recent past, observer-based control approaches have
been proposed to eliminate the effect of uncertainties and
external disturbances. Disturbance observer (DOB) based
control is one of the widely employed strategies for handling
uncertainties and disturbances [8]. It utilizes the inverse
model of the plant to estimate the unknown disturbances. The
estimated disturbances are then combined with the control
input to mitigate the effect of actual disturbances on the
plant output. Due to its simplicity and effectiveness, the DOB
has been integrated with MPC in the process industries in
the last two decades with appilcations in grinding mill [9],
[10], systems with dead-time [11], flight control [12], static
var compensator [13], and selective catalytic reduction den-
itrification system [14]. These integrated schemes provided
improved closed loop performances.

Owing to the advantages of both DOB and MPC, their
combination can remove the effect of unknown disturbances
and plant behaviour variations quickly while guaranteeing
optimal performance. However, the performance of the DOB-
based MPC control is heavily dependent on the employed
model of the process. The scheme requires a priori an
accurate mathematical description of the underlying pro-
cess. Moreover, the model is also required to be invertible.
The necessity of an accurate plant model becomes quite
stringent especially when retrofitting new controllers in an
aged nuclear power plant [15]. As a result, the traditional
MPC-based design techniques can demonstrate sub-optimal
control performance. These conditions may further increase
the complexity of the overall scheme due to the conservative



nature of constraints.
In contrast, data-based approaches such as Subspace Pre-

dictive Control (SPC) allows easy adaptation to the time-
varying characteristic of the process [6], [7], [16]–[18]. SPC
is a recently developed data-driven predictive control strategy
based on the subspace matrix structure. It combines the
estimation of a linear predictor using subspace identification
with the formulation of receding horizon control design.
In contrast to the traditional MPC which first models the
process and then estimates the controller parameters, the SPC
combines these two steps into one, thereby reducing the com-
putation time, complexity, and errors arising due to model-
plant mismatch. SPC directly designs the controller from the
recorded measurement data. The formulation of SPC neither
requires the solution of a non-linear Riccati equation, as
is the case with linear quadratic control, nor the solution
of a recursive Diophantine equation, as with generalised
predictive control. The realization of SPC is through singular
value and QR decompositions, which make the algorithm
numerically stable and computationally efficient.

In this work, a data-driven Disturbance Observer-based
Subspace Predictive Control (DOSPC) approach is proposed
using a subspace matrix structure for the effective control of
a Pressurized Water Reactor (PWR). The approach integrates
a feed-forward control based on subspace-based DOB and a
feedback control based on SPC. The main advantage of the
proposed technique is that it can be used in the absence of
a plant model. The efficacy of the proposed DOSPC is vali-
dated using two different load-following transients of a PWR.
The proposed control scheme is effectively able to overcome
disturbances present in the system while guaranteeing the
optimal performance. The controller is suitably able to track
typical ramp and step-type variations in the reactor power.
The control performance of the proposed DOSPC is further
compared with that of the classical SPC.

The rest of the paper is organized as follows: Section II
formulates the problem. Section III presents the proposed
control scheme. Section IV evaluates the proposed technique
on a simulated PWR-type nuclear reactor and discusses
its effectiveness through simulation results. Conclusions are
drawn in Section V indicating main contributions.

II. PROBLEM FORMULATION

Consider a linear uncertain systems given as,

x[k + 1] = Ax[k] +B(u[k] + ξ[k]),
y[k] = Cx[k],

(1)

where x[k] ∈ Rn, u[k] ∈ Rm, and y[k] ∈ Rl, ξ[k] ∈ Rm

represent state, input, output, and disturbance, respectively.
A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rl×n are system matrices.
It is assumed that (A,B) is controllable and that the system
uncertainties are unknown and bounded.

The problem is to design a control input (uf ), such that
the predicted output (ŷf ) tracks a reference signal (rf ) in the
presence of uncertainty ξ[k] without violating the constraints,

Umin ≤ uf ≤ Umax; ∆Umin ≤ ∆uf ≤ ∆Umax;
Ymin ≤ yf ≤ Ymax; ∆Ymin ≤ ∆yf ≤ ∆Ymax;

(2)
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Fig. 1. Block diagram of the proposed DOSPC algorithm.

To achieve this objective the control scheme proposed in this
work is depicted in Fig. 1. The control input is computed by
minimizing the quadratic cost function,

J = min
∆uf

(
(ŷf − rf )

T
Qf (ŷf − rf ) + ∆uf

TRf∆uf

)
, (3)

where,
rf =

[
rT [k + 1] rT [k + 2] · · · rT [k +Np]

]T
,

ŷf =
[
ŷT [k + 1] ŷT [k + 2] · · · ŷT [k +Np]

]T
,

uf =
[
uT [k + 1] uT [k + 2] · · · uT [k +Nc]

]T
.

Nc (≤ Np) and Np are control and prediction horizons,
respectively. Rf = INc

⊗ R penalizes the rate of change of
input, where R ∈ Rm×m is a positive definite matrix, INc

is an Nc×Nc identity matrix, and ⊗ denotes the Kronecker
product. Similarly, Qf = INp ⊗ Q penalizes the error
between desired reference and output, where Q ∈ Rl×l is a
positive semi-definite matrix.

III. PROPOSED CONTROL APPROACH

A. Subspace Predictor

The formulation of SPC requires the design of a predictor
to compute the control law. A set of block Hankel matrices
can be formed from the collected measurement data at
different equilibrium points as,

YP =


y[1] y[2] · · · y[N − 2f + 1]
y[2] y[3] · · · y[N − 2f + 2]

...
...

. . .
...

y[f ] y[f + 1] · · · y[N − f ]

 ; (4)

YF =


y[f + 1] y[f + 2] · · · y[N − f + 1]
y[f + 2] y[f + 3] · · · y[N − f + 2]

...
...

. . .
...

y[2f ] y[2f + 1] · · · y[N ]

(5)

where f is the order of predictor matrix. YP ∈
Rfl×(N−2f+1) and YF ∈ Rfl×(N−2f+1) are called the
past and future output data Hankel matrices, respectively.
Similarly, UP ∈ Rfm×(N−2f+1), EP ∈ Rfl×(N−2f+1),
and XP ∈ Rn×(N−2f+1) are defined as past input, past



innovation, and past state matrices, respectively. The same
notation holds true with subscript F terms to define future
Hankel matrices. Using these definitions,

YP = ΓfXP +Hd
fUP +Hs

fEP ,

YF = ΓfXF +Hd
fUF +Hs

fEF , (6)

XF = AfXP + ∆d
fUP + ∆s

fEP ,

where Γf ∈ Rfl×n is the extended observability matrix.
Hd

f ∈ Rfl×fm and Hs
f ∈ Rfl×fl are deterministic and

stochastic lower block-triangular Toeplitz matrices, respec-
tively. ∆d

f ∈ Rn×fm and ∆s
f ∈ Rn×fl are deterministic and

stochastic reverse extended controllability matrices, respec-
tively. Thus, the predictor is given by

ŶF = LwWP + LuUF , (7)

where WP =
[
Y T
P UT

P

]T ∈ Rf(m+l)×(N−2f+1). Lw ∈
Rfl×f(m+l) and Lu ∈ Rfl×fm are predictor matrices at
different equilibrium points.

B. Subspace Predictive Control

In order to incorporate the above defined predictor in SPC,
only the leftmost column of Ŷf needs to be considered. Thus,
(7) can be rewritten as

ŷf = Lwwp + Luuf , (8)

or simply in terms of input increments as,

ŷf = Īly[k] +OlLw∆wp +OlLu∆uf , (9)

where

Ol =


Il 0 · · · 0
Il Il · · · 0
...

...
. . .

...
Il Il · · · Il

 ∈ RNpl×Npl, Il =


Il
Il
...
Il

 ∈ RNpl×l,

(10)
and Il is an l × l identity matrix. Rewriting (9), by using
ȳ[k] = Īly [k], L̄w = OlLw, and L̄u = OlLu, as

ŷf = ȳ[k] + L̄w∆wp + L̄u∆uf . (11)

For the case of unconstrained SPC design, the input incre-
ment can be computed as

∆uf = −
((
L̄u

)T
Qf L̄u +Rf

)−1(
L̄u

)T
Qf

(
ȳ[k]− rf + L̄w∆wp

)
,

(12)
or simply,

∆uf = −Ku (ȳ[k]− rf )−Kw∆wp (13)

where the gain matrices are defined by,

Ku =
((
L̄u

)T
Qf L̄u +Rf

)−1(
L̄u

)T
Qf ,

Kw =
((
L̄u

)T
Qf L̄u +Rf

)−1(
L̄u

)T
Qf L̄w.

(14)

Finally, the control signal is updated using only the first
element of the control move

u [t+ 1] = ∆uf [1] + u [k] . (15)

C. Subspace-based Disturbance Observer

The idea of subspace-based disturbance observer is to
estimate the effects of unknown disturbances and plant be-
haviour variations using subspace matrices. Instead of using
the inverse of the plant model, the subspace predictor relation
is utilized to design the subspace-based DOB. The method-
ology employs the inverse of subspace-based predictor to
calculate the gain of the DOB and thus to estimate the effect
of disturbance and uncertainness design [14].

Under the assumption that the system is of minimum
phase, (8) can be rewritten as

ũ[k] =
(
Ld
u

)−1 (
y[k]− Ld

ww
d
p

)
(16)

where Ld
u and Ld

w are the gains of the DOB and they are
derived from the predictor matrices as,

Ld
u = Lu(1 : l, :)

Ld
w = Lw(1 : l, 1 : m)

(17)

The effect of unknown disturbances is reflected in the esti-
mated control input. Thus, by subtracting it from the actual
control input, the equivalent disturbance can be estimated.
From Fig. 1, the estimated disturbance is given by,

D̂(z) = Q(z)G−1(z)Y (z)−Q(z)U(z) (18)

where G(z), Q(z), Y (z), and U(z) denote the z-domain
equivalent of PWR model, filter, output, and input, respec-
tively. The estimated disturbance estimation is then supplied
as a feed-forward signal and is subtracted from the feed-
back control input to compute the overall control signal to
be applied to the plant. Let the output of the plant is given
by,

Y (z) = U(z)G(z) +D(z)G(z) (19)

From (18), the estimate of disturbance can be obtained as,

D̂(z) = Q(z)D(z) (20)

If the estimated disturbance is fed back to compensate
the influence of the lumped disturbance, the output of the
equivalent system can be given as

Y (z) = U(z)G(z)−Q(z)D(z)G(z) +D(z)G(z) (21)

In another case, let the output of the plant is related as,

Y (z) = U(z)G(z) +D(z) (22)

Again using (18), the estimate of disturbance is given as,

D̂(z) = Q(z)D(z)G−1(z) (23)

Hence, the output of the equivalent system is given by

Y (z) =
(
U(z)−Q(z)D(z)G−1(z)

)
G(z) +D(z) (24)

It can be noted that the subspace-based DOB can estimate
the unknown disturbances, (20) and (23), and the desired
response, (21) and (24), can be obtained by tuning the filter.
The filter Q(z) is designed to be a low-pass filter with steady-
state gain value of 1 [19]. Thus, the plant would behave like a
nominal system with the integration of disturbance observer.



IV. CASE STUDY: APPLICATION TO A SIMULATED
PWR-TYPE NUCLEAR REACTOR

The dynamical model of a PWR can be defined using the
point kinetics equation with six groups of delayed neutrons
precursors’ concentration coupled with thermal hydraulics.
The model is based on the following assumptions: the pri-
mary loop is characterized by a lumped model; the pressure
and mass flow rate are constants; and the heat generated
in the core is transferred using a single phase coolant. The
model equations are given by:

dP

dt
=

ρT −
6∑

i=1

βi

Λ
P +

6∑
i=1

βiCi

Λ
, (25)

dCi

dt
= λi (P − Ci) , i = 1, 2, . . . , 6, (26)

dTf
dt

= HfP − γf (Tf − Tc) , (27)

dTc
dt

= −Hc (Tout − Tin) + γc (Tf − Tc) , (28)

dTin
dt

=
1

τcold
(D2Tsg −D3Thot − Tin) , (29)

dThot
dt

=
1

τhot
(Tout − Thot) , (30)

dTsg
dt

= − 1

τsg
(Tsg − Thot)−D1LT , (31)

Tc =
Tout + Tin

2
, (32)

ρT = ρ+ αfTf + αcTc (33)

where P is normalized neutronic power; βi, λi, and Ci

denote fraction of delayed neutrons, decay constant, and
normalized delayed neutron precursors’ concentration of ith

group, respectively; Λ represents prompt neutron life time;
Tf and Tc are temperatures of fuel and coolant, respectively;
αf and αc are temperature coefficients of reactivity of fuel
and coolant, respectively; Hf , Hc, γf , and γc are propor-
tionality constants; Tout, Tin, Thot, and Tsg are tempera-
tures of core-outlet, core-inlet, hot leg and steam generator,
respectively. τcold, τhot, and τsg are time constants; D1,
D2, and D3 are constants; LT is turbine load; ρ and ρT
denote reactivity contributed by control input and the total
reactivity, respectively; It is assumed that initially the reactor
is operating at 0.5 fractional full power (FFP). Values of
various parameters used in (25)–(33) at 0.5 FFP are listed in
Table I [3], [7]. The system given by (25)–(33) is perturbed
by a reactivity transient to obtain the corresponding variation
in reactor power. The reactivity and power are considered
as input and output of the reactor system, respectively and
thus form the estimation dataset for designing the nominal
control.

A. Case Study I

A study is carried out to examine the step and ramp type
disturbances handling capability of the proposed controller

for the following load-following mode of operation:

P =



0.50P, 0s ≤ t ≤ 1.8s;
0.5(t− 1.8)/60 + 0.50, 1.8s < t ≤ 3.6s;
0.515P, 3.6s < t ≤ 5.4s;
0.5(t− 5.4)/60 + 0.515, 5.4s < t ≤ 7.2s;
0.53P, 7.2s < t ≤ 9.0s;
0.5(t− 9.0)/60 + 0.53, 9.0s < t ≤ 9.72s;
0.536P, 9.72s < t ≤ 12.6s;
−0.5(t− 12.6)/60 + 0.536, 12.6s < t ≤ 13.32s;
0.53P, 13.32s < t ≤ 15.12s;
−0.5(t− 15.12)/60 + 0.53, 15.12s < t ≤ 16.92s;
0.515P, 16.92s < t ≤ 18.72s;
−0.5(t− 18.72)/60 + 0.515, 18.72s < t ≤ 20.52s;
0.50P, 20.52s < t ≤ 24.12s;
0.53P, 24.12s < t ≤ 27.72s;
0.50P, 27.72s < t ≤ 35s;

(34)

A step and ramp type disturbance is applied to the incremen-
tal change of reactivity as

∆ξ (t) =

 −1× 10−7, 7.2s < t ≤ 9.0s;
1× 10−7(t− 14.4), 14.4s < t ≤ 22.5s;
1× 10−7, 28.8s < t ≤ 29.7s;

(35)

Performance of the proposed DOSPC controller and that
of the classical SPC controller for tracking the reference
power in the presence of disturbances are shown in Fig. 2.
It can be observed that the proposed DOSPC is able to track
the reference set-point better than that of the classical SPC.
DOSPC can remove the effect of step and ramp disturbances.
Variations of control signal and rate of change of control
signal are shown in Figs. 3 and 4, respectively. Variations of
actual and estimated disturbances are shown in Fig. 5.

B. Case Study II

Another load-following mode of operation is considered
to validate the effectiveness of the proposed controller during
large variation in power as follows:

P =



0.50P, 0s ≤ t ≤ 18s;
0.60P, 18s < t ≤ 54s;
0.50P, 54s < t ≤ 90s;
−1.0(t− 90)/6 + 0.50, 90s < t ≤ 144s;
0.41P, 144s < t ≤ 180s;
1.0(t− 180)/6 + 0.41, 180s < t ≤ 234s;
0.50P, 234s < t ≤ 270s;
0.60P, 270s < t ≤ 306s;
0.50P, 306s < t ≤ 350s;

(36)

A sinusoidal disturbance is applied to the reactivity input as,

ξ (t) =

{
1× 10−2 sin(5t), 36s < t ≤ 180s;
2× 10−2 sin(2t), 180s < t ≤ 324s;

(37)

Performance of the proposed DOSPC controller and that of
the classical SPC controller for tracking the reference are
shown in Fig. 6. It can be observed that the proposed DOSPC
is able to track the reference set-point better than that of the
classical SPC. DOSPC can remove the effect of sinusoidal



TABLE I
NEUTRONIC AND THERMAL-HYDRAULIC PARAMETERS

Group, i 1 2 3 4 5 6
λi(s

−1) 0.0125 0.0308 0.1152 0.3109 1.240 3.3287
βi 0.000216 0.001416 0.001349 0.00218 0.00095 0.000322

Hf (◦Cs−1) Hc(s
−1) γf (s−1) γc(s

−1) αf

(◦C−1
)

αc

(◦C−1
)

Λ(s)
22.22 1.0261 0.1751 0.0571 −2.9× 10−5 −6.3× 10−4 1.76× 10−4

τcold(s) τhot(s) τsg(s) D1(◦Cs−1) D2 D3

7.0 5.0 11.3 3.746 0.7005 −0.2995

TABLE II
COMPARISON OF PERFORMANCE OF DIFFERENT APPROACHES

Case Technique PRMSE TVI ‖U‖2
I DOSPC 1.084× 10−3 1.078× 10−3 3.112× 10−2

SPC 1.193× 10−3 1.398× 10−3 4.128× 10−2

II DOSPC 4.848× 10−4 6.644× 10−3 2.567× 10−1

SPC 5.204× 10−4 1.101× 10−2 3.855× 10−1

disturbances. Variations of control signal and rate of change
of control signal are shown in Figs. 7 and 8, respectively.
Variations of incremental change of actual and estimated
disturbances are shown in Fig. 9.

C. Performance Assessment

A quantitative performance assessment is conducted by
analysing the effects of control actions on the output and
the input. Performance measures such as, percentage root
mean squared error (PRMSE) computed between output and
demand set-point, total variation of input (TVI), and the L2-
norm of input (‖U‖2) are computed. These are given by,

PRMSE =
1

N

√√√√ N∑
k=1

(y[k]− r[k])
2 × 100%, (38)

TV I =

N∑
k=1

|(u [k + 1]− u [k])|, (39)

‖U‖2 =

√√√√( N∑
k=1

(u[k])
2

)
. (40)

Table II compares the control performances of DOSPC and
SPC approaches. It is found that the values of PRMSE, TVI,
and the ‖U‖2 for DOSPC approaches is less than that of
the classical SPC approach in both the cases. The controller
provides better set point tracking with less control efforts in
the presence of disturbances. Thus, it can be concluded that
the DOSPC can track the demand variation better than that
of the classical SPC approach.

V. CONCLUSIONS

A data-driven disturbance observer-based subspace pre-
dictive control approach is designed to control a PWR-
type nuclear reactor. The proposed controller is realized by
integrating a feed-forward control based on subspace-based
DOB and a feedback control based on SPC. The controller is
implemented to study two different load-following operations
in a PWR. Simulation results demonstrate that the proposed
control strategy maintains the desired performance. It is
effectively able to overcome different disturbances present in
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the system. The control performance of the proposed DOSPC
is found to be better than that of the classical SPC.
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