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ABSTRACT: 

One advantage of steel reinforced concrete (SRC) columns is that the concrete encasement reduces 

the maximum temperature attained by the steel section in the full-range fire situation. For 

fire-exposed SRC columns, a better understanding of their post-fire performance can facilitate their 

rehabilitation and re-use. This paper presents a numerical study into the post-fire performance of 

SRC columns. Results show that an SRC column of 600600 mm in cross-section retained 0.87 

times of the original load-bearing capacity after exposure to full-range fire with a heating duration of 

45 min and a subsequent linear cooling down phase of 139 min. After the SRC column fully cooled 

down to ambient temperature, the proportion of load carried by the steel section increased to 73%, 

significantly higher than the level at ambient temperature (20%). Results of the parametric study 

revealed that a number of factors, i.e., duration of fire exposure, cross-sectional size, slenderness 

ratio and concrete strength, significantly affected the post-fire residual strength. The numerical 

method was applied to the post-fire assessment of the SRC columns in a fire-exposed building and a 

case study is presented. The resistance of the SRC column to compression reduced by 4% after fire 

exposure. By using the proposed repair method, the resistance to compression can be recovered by 

11% compared to that before fire exposure.  
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NOTATION 
Ac Cross-sectional area of the concrete 

As Cross-sectional area of the steel section 

Asb Cross-sectional area of the longitudinal reinforcements 

B Width of the composite cross-section 

bf Width of the steel section 

C Sectional perimeter 

D Depth of the composite cross-section 

d Diameter of the longitudinal reinforcement 

e Eccentricity 

fcu Compressive cube strength of the concrete at ambient temperature 

fy Yield strength of the steel at ambient temperature 

fyb Yield strength of the longitudinal reinforcement at ambient temperature 

H Height of the column 

hf Height of the steel section 

K Flexural stiffness 

kr Reduction coefficient for the post-fire residual strength 

l Effective length

M Bending moment 

Mf Bending moment in the fire situation 

Mu Resistance to bending at ambient temperature 

Mur Post-fire resistance to bending  

N Compressive load or axial force 

Nf Compressive load in the fire situation 

Nu Resistance to axial compression at ambient temperature 

Nur Post-fire resistance to axial compression 

n Load ratio, n= Nf/Nu 

tf Thickness of the flange of the steel section 

th Duration of fire exposure/heating phase 

tw Thickness of the web of the steel section 

t Time 

Δc Axial deformation 

 Sectional steel ratio,  =As/Ac 

 Aspect ratio  

 Strain  

 Curvature  

 Temperature, in °C 

max Maximum temperature attained during the heating and cooling phases, in °C 

 Slenderness ratio  

 Reinforcement ratio,  =Asb/Ac 

 Stress 
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1. Introduction

Steel reinforced concrete (SRC) columns, also known as concrete-encased steel composite columns, 

are composed of an inner steel section, longitudinal reinforcements, stirrups and outer concrete. 

Stemming from steel structures [1], SRC columns are nowadays widely used as load-bearing 

members in multi-storey buildings owing to the enhanced structural performance both at ambient 

temperature and in the fire situation. Through appropriate design, this type of columns can benefit 

from composite action and achieve enhanced stiffness and strength. Local buckling of the steel 

section can also be minimised. In terms of fire behaviour, SRC columns exhibit an exceptional fire 

resistance without additional fire protection due to the thermal insulation of the concrete. Codes for 

the fire design of SRC columns are available. The mechanical contribution of the outer concrete is 

either ignored (i.e., regarded an insulating material for the steel section) [2] or taken into 

consideration [3].  

In 2009, a fire broke out in a 159-meter-high building where SRC columns were used as one type of 

the main vertical load-bearing members. The fire lasted for about 6 h (Fig.1a, Hou et al.[4]). Fig.1b 

shows a fire-exposed interior SRC column: its surface was blackened and the concrete cover spalled 

locally. After the fire, a preliminary inspection of the structures revealed that the fire did not cause a 

significant structural damage to vertical load bearing members and it was likely to reuse the main 

structure after appropriate repair. An issue emerging at the initial stages of the post-fire assessment 

was how to assess the structural damage of the fire-exposed SRC columns and how to conduct the 

structural repair. Establishing a fundamental understanding of the structural performance of 

fire-exposed SRC columns would serve as a preliminary step.  

Researchers have conducted extensive experimental and numerical studies on the fire performance of 

SRC columns over recent decades. However, these studies mainly focused on the structural 

behaviour in the fire situation; limited study is available on the post-fire response. For example, the 

effects of axial restraint, cross-sectional dimensions and load level on the fire resistance has been 

examined [5]-[7]. The equations to predict the ultimate strength of SRC columns in the fire situation 
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is available [8]. Concrete explosive spalling (CES) reduces the fire resistance of SRC columns [9]. 

The restraint of surrounding structures affects the fire resistance and the failure modes of SRC 

columns [10]-[12]. Ellobody [13] has condcted a detailed review of the relevant literature. Han et al. 

[14] summarized the studies on sub-assemblies, e.g., joints and frames, consisting of SRC columns.

Additionally, studies on the fire performance of other types of steel-concrete composite columns 

[15]-[20] and joints comprising partially encased steel columns [21] are available. Furthermore, 

Espinos et al. [22] concluded that employing inner steel sections could improve the fire performance 

of conventional concrete-filled steel tubular (CFST) columns. These studies provide important 

insights into the fire performance of SRC columns.  

The studies of the post-fire behaviour of SRC columns/composite structures are relatively limited. 

Zhang et al. [23] conducted an experimental investigation and identified that failure of SRC columns 

could occur during the cooling down phase. The studies dealing with the numerical modelling of 

structures exposed to natural fires and the post-fire residual capacity are available, but they mostly 

focus on CFST columns [24]-[32], concrete-filled double-skin tube columns [33] and 

concrete-encased CFST columns [34]-[35]. The practice of repairing fire-damaged steel/concrete 

structures is available [36]-[38], although no such practice could be found for SRC columns. These 

documents have developed an understanding of the behaviour of fire-exposed structural members.  

To the best knowledge of the partners involved in the appraisal of the aforementioned building, no 

established knowledge was available for the post-fire performance of SRC columns, presumably 

because: 1) fire incidents occurred in buildings using SRC columns were rarely reported; and 2) the 

study of their post-fire performance was inhibited by the costly fire tests. Since SRC columns are 

usually designed to be the main vertical load-bearing members, they tend to have large 

cross-sectional dimensions. It is likely that they do not experience major structural damage due to the 

insulation of the concrete encasement, and hence the fire-induced damage is reparable. To fill this 

research gap and to facilitate the retrofit and rehabilitation of the fire-exposed building, the first 

author’s research team experimentally and numerically conducted a series of studies into the post-fire 

performance of SRC columns. The authors have conducted preliminary experimental studies and 
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have established finite element analysis (FEA) models to simulate the fire response of SRC columns 

[39]-[40]. Fig.2 shows a typical cross-section of an SRC column that was studied. This paper extends 

the numerical study of the post-fire performance of SRC columns and the main body contains three 

sections. Section 2 examines the post-fire performance of SRC columns, including resistance to 

combined compression and bending, failure modes and redistribution of internal forces. Section 3 

presents a parametric study on the post-fire residual strength of SRC columns. Section 4 gives a 

post-fire assessment method for SRC columns and a case study demonstrating the use of this method. 

2. Post-fire performance of SRC columns

This section presents a numerical investigation into the post-fire performance of SRC columns to 

establish a preliminary knowledge for assessing their residual strength. Detailed establishment and 

validation of the FEA models are available in refs. [39]-[40]. For simplicity, the FEA model is 

introduced briefly herein.  

2.1. Brief introduction of FEA models 

The sequentially coupled thermal analysis available in software package Abaqus [41] was used to 

establish the FEA model. The heat transfer analysis had one analysis step combining the heating and 

cooling phases, whilst the subsequent stress analysis comprised three steps. To evaluate the post-fire 

behaviour, the combined actions from axial compression and fire exposure were considered in the 

full-range fire scenario, which included four phases, i.e., an initial phase for applying load at ambient 

temperature (to simulate the pre-fire stage), a heating phase (standard fire exposure), a subsequent 

cooling down phase, and a post-fire phase. Detailed schematic graphs for these full-range fire phases 

and the determination of material properties are available in [40].  

Fig. 3 illustrates the variations of stress-strain relationships of steel grade Q335 (yield strength 

fy=335 MPa) and concrete class C40/50 (cube strength fcu=50 MPa). Generally, the yield strength of 

steel was assumed to recover during cooling down (Fig. 3a). The stress-strain relationships of steel 

during cooling down were determined by an assumption that their expressions were identical with 

those at elevated temperature (and post-fire); but using the cooling peak strengths (and the 
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corresponding strains) which were determined by linear interpolation taking the cooling temperature 

(i.e., the lower temperature during cooling after the attainment of maximum temperature, max) as the 

independent variable. Unlike steel, the mechanical properties of concrete during cooling down 

continues deteriorating [3]; therefore, the properties of concrete at any temperature during cooling 

was assumed to be identical with those cooled down to ambient temperature (Fig. 3b). The reasons 

for these assumptions were a lack of test data and constitutive models for the cooling down phase, 

but the feasibility and accuracy of this assumption has been proved by previous studies 

[35][39]-[40][42].  

Theoretically, the thermal properties for the cooling down phase are not identical with those for the 

heating phase. Due to the complexity of their determination and a lack of comprehensive 

experimental evidence, the thermal properties of concrete during cooling down and steel were 

therefore assumed to be reversible, ignoring the effects of residual thermal expansion. Previous study 

using the same assumption [42] generated acceptable predictions for the temperature development. 

Experimental evidence suggests that the thermal conductivity of concrete in the cooling phase is 

lower than that in the heating phase [43], which indicated the assumption of reversibility might 

generate lower temperature for the inner cross-section. However, considering the combined effect of 

other factors (e.g. variations in the specific heat of concrete and the thermal properties of steel), it is 

difficult to evaluate the qualitative changes if the true thermal properties in the cooling phase are 

included.  

For the heating phase, the standard temperature-time curve was used. For the subsequent cooling 

down phase, the temperature was assumed to decrease linearly at a rate dependent on the duration of 

heating phase [44]. The main reason of using the standard fire curve rather than a realistic fire curve 

obtained from fire dynamics was because: (1) no validated constitutive models can consider both 

in-fire and post-fire material behaviour; and (2) most test data and corresponding validations are 

conducted in the standard fire. The effects of cooling method and cooling rate were not the aim of 

this paper, and hence were not studied explicitly. Note that the assumed linear cooling pattern could 

lead to nonconservative results because the inner cross-section might attained a higher maximum 
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temperature when subjected to a slower cooling rate.  

In the stress analysis, the first step (initial phase) was employed to apply load. The second step, 

importing the temperature obtained from the heat transfer analysis as predefined fields, was used for 

obtaining the structural response in the fire condition. The last step (post-fire phase) was used for 

analysing the post-fire structural response. The technique of ‘restart’ analysis was used in the third 

step to improve computational efficiency, as explained in Section 2.2. A user-defined subroutine 

(‘USDFLD’, in conjunction with ‘UEXPAN’) was used to introduce temperature-dependent material 

properties over the four phases. ‘Tie’ and ‘Embedded’ constraints were used to simulate the steel 

section-concrete interface and the reinforcement-concrete interface, respectively. A sensitivity 

analysis was conducted to determine the optimal element sizes. The final sizes in the direction of 

depth and width were 10-20 mm, whilst those along the height/longitudinal direction was two times 

greater, i.e., 20-40 mm.  

In the numerical study, the values of parameters (Table 1) were determined according to Eurocode 

EN 1994-1-1 [45], Chinese code JGJ 138-2001 [46] and existing construction practice, particularly 

the aforementioned fire-exposed building. The parameters are categorised into three types: 

(1) Geometrical parameters: sectional perimeter, C, (=2B+2D, B and D are the width and the depth of

the cross-section, respectively); aspect ratio of cross-section, , (=D/B); slenderness ratio, ,

(= 32 l /B, l is the effective length); structural steel ratio, , (=As /Ac, As and Ac are the

cross-sectional areas of the steel section and the concrete, respectively); reinforcement ratio, , 

(=Asb /Ac, Asb is the cross-sectional area of the longitudinal reinforcements). 

(2) Parameters related to actions: duration of fire exposure, th; eccentricity ratio, e/r, (e is the

eccentricity of loading, r=D/2 when about the major axis, r=B/2 when about the minor axis); and

load ratio, n, (=Nf/Nu, Nf and Nu are the compressive load in the fire situation and the resistance

to axial compression at ambient temperature, respectively).

(3) Physical parameters: yield strength of the steel section, fy; yield strength of the longitudinal

reinforcement, fyb; and compressive cube strength of the concrete, fcu.
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For the numerical simulations herein, failure of SRC columns under fire exposure was deemed to 

have occurred when: (1) axial contraction exceeded H/100 mm, and (2) rate of axial contraction 

exceeded 3H/1000 mm/min, according to ISO 834-1 [47]. For the post-fire cases, failure was deemed 

to have occurred when either (1) the post-fire peak load was attained, or (2) axial contraction 

exceeded H/100 mm. 

To obtain the relationships between residual strength and fire exposure, duration of fire 

exposure/heating phase, th, was taken as the main independent variable; for each combination of 

parameters, the post-fire residual strength was calculated assuming various th-values, ranging from 0 

to 90 min at intervals of 15 min. The full length of the columns was assumed to be exposed to fire all 

around the column. Pinned-pinned boundary conditions were assumed. The concrete cover of 

reinforcements was 30 mm in thickness. The effect of fire-induced CES was ignored for fcu=40 and 

60 MPa. For fcu=80 MPa, this effect was taken into account by the method proposed by Kodur et al 

[48]. This method assumes that CES occurs in the concrete cover of reinforcement when its 

temperature exceeds 350 C. Note that this one peak temperature-based approach does not reflect the 

actual behaviour of CES. The major limitation is that this method fails to consider the increase in 

spalling degree due to the increasing stress level of the unspalled concrete, and consequently might 

lead to nonconservative results because such inaccuracy could be a critical factor for the predictions 

of the behaviour of SRC column during/after fire exposure. The following values (underlined in 

Table 1) were used as a basic combination (Fig.2): DBH=6006006000 mm, 

hfbftwtf=3603001616 mm, fy=345 MPa, fyb=335 MPa, fcu=60 MPa, =4%, =1%, e/r=0, 

C=2400 mm, =35 and th=45 min. The full-range fire had a heating phase of th=45 min and a 

subsequent cooling phase of 139 min (the corresponding cooling rate was 9.38 °C/min).   

2.2. Post-fire resistance to combined compression and bending  

For fire-exposed SRC columns with reparable damage, the information of residual strength is 

fundamental to the decision-making process and the method of repair. Establishing a preliminary 

understanding of the residual strength will facilitate the assessment procedure.  
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The pre-fire and post-fire resistances of SRC columns to the combined compression and bending 

were obtained by the FEA models, as illustrated by the interaction curves in Fig.4. There are several 

reasons why the FEA models were adopted to obtain the post-fire N-M interaction curves. Firstly, the 

FEA models allow the inclusion of the effects of initial loads on the post-fire response, as explained 

in the next paragraph. Secondly, it is beneficial and efficient to use the feature ‘restart’ in Abaqus to 

explore different post-fire loading paths (Fig.4). Thirdly, the internal forces of the SRC columns can 

be extracted and highlighted, as presented in Section 2.4.  

For the ambient temperature situation, the resistance to axial compression, Nu, and the resistance to 

pure bending, Mu, were extracted respectively from the FEA models in a first step. In a second step, 

several parallel analyses were conducted: the resistances to the combination of axial compression and 

bending were determined by applying different levels of N (<Nu) and subsequently increasing the 

applied bending moment until the ultimate states were attained.  

For the interaction curves of the fire-exposed SRC column, the method is described as follows. The 

column was subjected to an assumed load level (n=0.2, point I in Fig.4) and a subsequent full-range 

fire with the load kept constant. Note that failure might occur during the heating phase, however, the 

duration of fire exposure was determined to be less than the fire resistance (obtained in a preliminary 

analysis) since this study focused on the post-fire residual strength. For a fire-exposed SRC column, 

its initial post-fire state was taken as the time when it fully cooled down to ambient temperature. 

Several parallel analyses were then performed using the ‘restart’ technique and all the subsequent 

analyses were appended to the same initial state. Among these parallel analyses, a first analysis was 

the case where the axial load was increased to obtain the post-fire resistance to pure axial 

compression, Nur (point F'). In a second analysis, the bending moment was increased to obtain the 

post-fire resistance to pure bending, Mur (point H'). In a way similar to that of ambient temperature, 

the other analyses were conducted to obtain the intermediate ultimate states (curve F'G'H'), i.e., the 

resistance to combined compression and bending: the axial load was increased to different levels and 

then the bending moment was increased until the ultimate states were attained. Arrows IJ and JK 

(Fig.4) showed this loading path. For comparison purpose, these ultimate states, i.e., the values of N 
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and M have been normalised (divided by Nu and Mu, respectively) such that the resistances at 

ambient temperature were equal to unity (points F and H in Fig.4).  

The reduction of the resistance of SRC columns to compression and bending can be reflected by the 

inward shift of the interaction curve (from FGH to F'G'H'). As expected, the post-fire residual 

strength decreased by varying degrees dependent on load combination. For example, the resistance to 

pure compression decreased by 13% (from F to F'); whilst the resistance to pure bending dropped by 

9% (from H to H'). For this case, this loss of strength was mainly attributable to the fire-induced 

deterioration of material properties. The reduction of the resistance to combined compression and 

bending was graphically shown by the shaded area sandwiched between the two interaction curves 

(Fig.4). It indicated that the SRC column was likely to fail during full-range fire exposure (including 

the cooling phase) if the load combination imposed on it at ambient temperature lay in the 

sandwiched area. Note that curve F'G'H' was the resistance of the SRC column after fully cooling 

down to ambient temperature. Its resistance during fire exposure, however, could be even lower 

(indicated by the red-shaded area), which were not reflected by curve F'G'H'. That was mainly 

because it was assumed in the modelling that steel recovered its initial strength on cooling. Curve 

F'G'H' gave an indication of the residual resistance of SRC columns. Fig.4 also shows that load 

combination affected the post-fire residual resistance. 

2.3. Failure modes 

Two post-fire failure modes were identified for SRC columns, as shown in Fig.5, where the contour 

plots show the plastic strain of concrete in the longitudinal direction (PE33). The compression failure 

mode (corresponding to point F' in Fig.4) was characterized by local crushing but no global buckling 

(Fig.5a). The failure mode was observed for the simulation cases where concentric axial load was 

applied and geometric imperfection showed a limited effect. In this case as shown in Fig.5a, two 

crushing zones formed near the upper and the lower ends where the plastic strain (negative denotes 

compressive strain in the contour) peaked. The concrete cover crushed, and the longitudinal 

reinforcements and the flange of the steel section buckled locally. This failure mode would be 

observed for actual stub columns. Additionally, it might also occur in the SRC columns whose 
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cross-sectional area was significantly reduced by CES.  

For slender columns, global buckling failure mode (corresponding to point H' in Fig.4) was observed, 

as shown in Fig.5b. A plastic hinge developed eventually at the mid-height due to the crushing of 

concrete at the concave side. The contours of plastics strain show that major tensile strains developed 

in the tension zone at the convex side. From the perspective of assessing the post-fire residual 

strength, the global buckling failure mode was less likely to occur because SRC columns were 

mostly design with a relatively low slenderness ratio to resist mainly axial compression. 

The post-fire failure modes of SRC columns resembled those at ambient temperature. Note that the 

failure modes (Fig.5) were obtained from the cases without the effect of fire-induced CES. The 

randomness of fire-induced CES might result in a different/combined failure mode. Considering that 

one of the aims of this study is to serve the assessment and repair of fire-exposed building, it is more 

meaningful to incorporate the effect of CES with the aid of test evidence and fire scene investigation, 

as presented in Section 4.  

2.4. Redistribution of internal forces  

FEA modelling has the advantage of allowing the extraction of internal stress and section forces. To 

evaluate the contributions of different components to the post-fire load-bearing capacity, the internal 

forces were extracted from the mid-height cross-section by using the ‘free body cut’ function in 

Abaqus [41]. This function integrates the resultant forces and moments based on sectional outputs. 

Fig. 6 shows the axial load-time relationships for the cases shown in Fig. 5 (th=45 min). Note the 

time scales in the analysis steps of ambient phase and post-fire loading phase were the default time 

period, ranging from 0 to 1.0, in Abaqus. For clarity, these time scales have been magnified to make 

the differences observable; the ambient phase ranges from 0-5 h and post-fire loading phase starts 

from 45 h (Fig. 6). The heating and cooling phases, ranging from 5 h to 45 h, are displayed in their 

natural time scale. The capital letter ‘C’ in the legend in Fig. 6 denotes the forces obtained in the 

compression failure mode, whilst ‘B’ denotes the global buckling failure mode. The percentage rates 

show the proportion of the load carried by each component to the total axial force. 

As expected, the fire exposure caused load redistributions in the early stage (5-10 h) of heating and 
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cooling phases. The axial load carried by the steel section decreased between 5 and 6.3 h because the 

outer concrete was heated. The steel section even developed tension (-2% of total axial force) at 6.3 

h. Afterwards, the load carried by the steel section increased mainly because of the deterioration of

outer concrete. At the end of the cooling phase it carried 73% of the total axial load, exceeding its 

contribution at the ambient phase (20%). This 73% contribution was offset by the tension developed 

in the longitudinal reinforcements (-46%). This confirmed that the steel section contributed 

significantly to the load bearing resistance in the post-fire situation.  

For compression failure mode, in the process of post-fire loading the redistribution of the internal 

forces that occurred during the heating and cooling phases were counteracted. This was reflected by 

the proportions of load carried by different components when the SRC column attained its 

load-carrying capacity (49 h). The concrete, the longitudinal reinforcements and the steel section 

carried 64%, 7% and 28% of the total load, which showed an insignificant difference as compared 

with those at ambient temperature (76%, 5% and 20%). This indicated that the fire-exposed SRC 

column could retain the composite action during the post-fire loading phase. For global buckling 

failure modes (suffixed with B), the steel section developed a tension force, making up -35% of the 

total axial load. This demonstrated that the steel section significantly contributed to the post-fire 

resistance to bending.  

3. Effects of parameters on post-fire residual strength

3.1. Definition of strength reduction coefficient 

To serve the purpose of assessing the residual strength of a fire-exposed SRC column, a reduction 

coefficient (kr) was used to quantify the extent of fire-induced damage. The definition of kr is 

expressed in Eq. (1):  

 

u

hur
r

N

tN
k  (1) 

where Nu is the resistance to axial compression (buckling resistance) at ambient temperature, Nur(th) 

is the post-fire resistance to axial compression (buckling resistance), th is the duration of fire 

exposure. The following subsection presents the effects of various parameters (Table 1) on the 
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reduction coefficient. 

3.2. Effects of parameters on reduction coefficient 

For each parameter, the kr-value is graphed against the main independent variable th (Fig.7). The 

parameters of C,  and fcu had a significant effect on kr (Figs.7a, c and f). The kr-value increased with 

an increasing C, particularly when C increased from 1600 mm to 2400 mm (Fig.7a). This trend was 

similar with CFST columns [25]. That is because a larger cross-section has greater thermal inertia; 

thus reducing the maximum temperature attained by the inner components, particularly the steel 

section. Interestingly, the above increasing trend became lesser when C exceeded 2400 mm (i.e., the 

width of square section exceeded 600 mm). That is because as C increased, the maximum 

temperature of the inner components (particularly the steel section) tended to converge due to the 

thermal properties of the concrete. If this maximum temperature was lower than 400C [3][49], steel 

recovered its initial strength on cooling down, and thus making no additional contribution to the 

decrease of the kr-value.  

Fig.7c shows that kr decreased with increasing , which was consistent with the buckling theory and 

previous research on CFST columns [25]. The buckling theory for columns might also apply for the 

determination of post-fire resistance of SRC columns; but using residual mechanical properties [32]. 

Furthermore, a greater  might generate more post-fire residual deformation, which added to the 

second-order effect for the post-fire loading. For all the cases, the lowest kr-value was 0.45 when 

=70 and th=90 min (Fig.7c). 

The kr-value decreased as fcu increased (Fig.7f). Particularly, the kr-value reduced by a greater extent 

when fcu increased from 60 MPa to 80 MPa as compared with that from 40 MPa to 60 MPa. For 

example, the decreases of kr-values when th=90 min were 13% and 5% respectively. Two reasons 

might account for this. First, the load share at the attainment of plastics resistance was dependent on 

the material strengths. With load ratio kept constant, concrete of a greater strength class carried a 

higher proportion of external load (i.e., under higher stress level in the fire situation). Consequently, 

this caused greater damage to the concrete. Second, fire-induced CES was taken into account for 
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fcu=80 MPa in the modelling, which added to the reduction of kr. Earlier study on CFST columns [25] 

found that fcu has a minor effect on kr. The reason why the effect of fcu became remarkable for SRC 

columns might be that the concrete was on the outermost of the cross-section and exposed to fire 

directly. 

The parameters of n, fy and  had moderate effects on kr. As expected, the kr-value showed a 

decreasing trend with the increase of n (Fig.7d), mainly because a greater stress level reduced the 

load-bearing capacity at elevated temperature by a greater extent. The kr-value (corresponding to 

th=90 min) decreased by 5% when n increased from 0.2 to 0.6; whereas for CFST columns the 

kr-value (corresponding to a heating time ratio, to=0.6) increased from 0.35 to 0.75 [25]. These 

different trends resulted from the difference in the time scales. The previous study employed the 

heating time ratio, to, defined by the ratio of heating time to the fire resistance, as the independent 

variable. The fire exposure time was determined by multiplying to with the fire resistance, which was 

preliminarily obtained in an analysis of the same member under the same load level. It is a 

well-known fact that a greater load level results in a lower fire resistance. Therefore, with to kept 

constant, when the load level increased the resultant th-value used in the post-fire analysis of the 

CFST column became lower. By contrast, this study employed the duration in real time as the 

independent variable.  

As expected, the two parameters related to the steel section, i.e., fy and , showed similar trends. The 

kr-value increased with the increase of fy (Fig.7g) or  (Fig.7i), mainly because increasing either fy or 

 increases the contribution of the steel section to the total plastic resistance. Furthermore, increasing

the strengths of the steel components, i.e., fy and fyb (Fig.7g and h) seemed to be more beneficial in 

terms of retaining residual strength than that of the strength of the concrete fcu (Fig.7f). That is 

because the recovery of steel strength on cooling down was included in the modelling.  

Other parameters, such as , e/r, fyb, and , had minor effects on kr. The kr-value decreased slightly 

with the increase of  (Fig.7b), possibly because the columns with a higher -value tended to fail 

about the minor axis. The effect of fyb (Fig.7h) resembled that of fy. Compared with the effect of , 
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the effect of  (Fig.7j) was relatively minor, probably because the value of  was relatively lower 

than  in this study. The effect of e/r on kr seemed to be complex; e/r had a moderate effect on kr 

when the fire exposure was shorter (e.g., th=15 min), whereas a minor effect when th was greater (e.g., 

th=90 min, Fig.7e). Fig.4 may help to understand this complexity. The residual resistance to axial 

compression varies depending on both the loading paths, e.g., (e/r)1 and (e/r)2, and the shape of the 

post-fire interaction curves.   

3.3. Effect of fire exposure on the residual strength 

Fig.7 also shows that kr decreased with the increase of the duration of fire exposure, th. The evolution 

in th of the residual strength of SRC columns is graphed schematically (Fig.8). As is well-known, the 

strength decreases with the increase of fire exposure time (curve CF). The rate of decrease can be 

gradual (segment CJ) for SRC columns when th ≤ 90 min due to the insulating effect of the concrete 

encasement, as shown in the subfigures in Fig.7. The limit state in the fire situation may be attained 

(indicated by point F) with ongoing fire exposure, and thus the slope of curve CF becomes steep 

(curve IF). This reflects the runaway failure of tested specimens. For an SRC column carrying the 

service load (e.g., point A), a fire exposure (arrow AG) and a subsequent cooling phase (GH) reduces 

its load-bearing capacity (by CB). As shown, Fig.8 incorporates the possible detrimental effect of the 

cooling down phase. For the purpose of post-fire assessment and repair, the state of post-fire load 

combination (point H) and the residual strength (DJ) shall be identified. An appropriate repair 

method shall recover the load-bearing capacity to ensure structural safety. 

3.4. Simplified computation diagram of reduction coefficient 

Fig.9 gives a simplified computation diagram for estimating the reduction coefficient (kr) for SRC 

columns. The parameters showing minor and moderate effects were omitted, therefore, the kr-value 

was dependent on the duration of fire exposure (th), the sectional perimeter (C), the slenderness ratio 

() and the cube strength of concrete (fcu). The ranges of validity for Fig.9 are C=1600-4000 mm, 

=17.5-70.0, th=0-90 min, fcu=40-80 MPa, fy=235-420 MPa, fyb=235-400 MPa, =4%-8%, =1%-3%, 

and e/r=0-0.9. There are a number of limitations of this diagram. Note that the effect of fire-induced 



16 

CES was incorporated for fcu=80 MPa only, and was evaluated based on the assumption that the 

concrete cover of reinforcement fully spalls when the concrete temperature reaches 350 C. The 

randomness of CES was ignored. Fig.9 applies to the standard fire exposure all around the columns 

and does not taken into account of the difference in temperature along the height. Therefore, this 

diagram gives an idea of how much the strength of the fire-exposed SRC columns might decrease, 

rather than a validated prediction. For assessing a real fire-exposed SRC column numerically, the 

detailed information of CES shall be incorporated. Furthermore, this diagram gives no data for some 

intermediate values, e.g. fcu=70 MPa, due to the limited values taken in the parametric study.  

4. Application of post-fire assessment methodology

The final section first describes the method adopted for assessing the fire-exposed SRC columns in 

the aforementioned building and then demonstrates the application of this method through a case 

study. 

4.1. Post-fire assessment guidelines  

As aforementioned, detailed guidelines for post-fire assessment and a few case studies for steel and 

concrete structures are available elsewhere [36]-[37]. For a fire-exposed steel-concrete composite 

structure, these guidelines can be referred to. The Chinese code CECS 252 [50] also provides a 

general procedure for post-fire investigation and structural assessment. The method for assessing the 

aforementioned fire-exposed SRC columns is shown in Fig.10. The flow chart involves five steps:  

(1) Identification of reparable members with the aid of fire scene investigation report, building

design documentation and structural inspection report; 

(2) Determination of the performance of these members at ambient temperature by using advanced

numerical models; 

(3) Determination of post-fire residual structural characteristics;

(4) Design for repair; and

(5) Assessment of the proposed repair method and redesign if necessary.

The following subsection demonstrates the assessment and the repair of a specific SRC column 
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(Fig.1b). 

4.2. Case study  

The fire-exposed complex comprised of a main high-rise structure and lower space grip structures. 

The former featured a tower (occupied rooftop being 137.9 m), a basement and a podium (occupied 

rooftop being 11.9-23.9 m). The tower adopted shear wall-frame structural system, in which SRC 

columns were used as vertical load-bearing members. Detailed assessment process for the specific 

column is as follows. 

Step 1: Identification of reparable columns  

The fire investigation report categorised the fire-induced damage into four levels for structural 

members (Table 2). No structural repair was necessary for level 1 (superficial damage). For levels 2 

(minor damage) and 3 (moderate damage), the fire-induced damage was regarded as reparable 

damage. The members belonging to level 4 (extensive damage) were unrepairable and should be 

scrapped. The information of the reparable column members was extracted from the report and 

compiled a list. This list revealed that the fire caused severe damage to the columns at floors 10 and 

26D. For floor 10, thirty-nine structural members were identified as moderate damage (level 3) and 

the maximum depth of CES was 75 mm. For floor 26D, ten structural members were classified into 

level 3 and the maximum depth of CES was 35 mm.  

In the remainder of this subsection, an SRC column (of damage level 3) at floor 10 is taken as an 

example (Fig.11). CES occurred on the north face of this column, partially exposing the 

reinforcement. The sizes of the CES were approximately 1200550 mm, and the average depth was 

25 mm. The original cross-sectional dimensions of the column were 1250850 mm. The dimensions 

of the encased steel section were hf=600 mm, bf=300 mm, tf=tw=40 mm. Thirty-six reinforcing bars 

of 28 mm in diameter were used. Stirrups of 16 mm in diameter were arranged at 100 mm intervals. 

The strengths of materials were fcu=60 MPa, fy =345 MPa and fyb= 335 MPa. The design values of 

most unfavourable load combination were determined according to the design documents: 

N=1.30×104 kN, Mx=220 kN∙m and My=214 kN∙m.  
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Step 2: Determination of the performance at ambient temperature 

For comparison purpose, the structural performance of this column at ambient temperature was first 

obtained by the FEA model. The ultimate strength and the flexural stiffness were obtained to 

establish a fundamental understanding of the pre-fire structural performance. The data gathered in 

Step 1, e.g., preliminary data, including geometrical data and physical parameters and loads, were 

used as inputs to the FEA models. The height was determined assuming pin-ended conditions and the 

effective length factors provided by the design documentation. The effective length factors for 

bending about the major axis x and the minor axis y were both taken as 1.25. An additional 

eccentricity of the greater of 20 mm and 1/30 of the sectional dimension was used in the FEA model 

as the initial imperfection according to Chinese code JGJ 138-2001 [46]. The predicted results are 

presented and discussed in Step 5. 

Step 3: Determination of the post-fire residual structural characteristic  

In this step, the post-fire residual strength and the stiffness of fire-exposed SRC columns were 

determined by the FEA model.  

For the temperature history, the BFD fire curve proposed by Barnett [51] was adopted due to its 

simplicity: the temperature development is expressed by one equation with three factors. The curve 

reflects the temperature evolution of an indoor fire, including growth phase, flashover, fully 

developed phase and decay phase. Parameters, e.g., the effects of opening factor, the fire load mass 

density and the heating rate, were determined according to the investigation report. A two-zone 

model was used to differentiate the upper zone (higher temperature) from the lower zone (lower 

temperature). Their respective temperature versus time curves are shown in Fig.12.  

The stress analysis was performed by using the FEA model, as described in Section 2.1. Fig.13 

illustrates the boundary conditions and the meshing of the FEA model for this specific column. The 

actual severity (depth of spalling zone) and the region of CES were incorporated in the modelling. 

The time of occurrence of CES was determined according to the preliminary experimental study. The 

CES occurred at the concrete cover after 15 min of fire exposure and lasted for 20 min [40]. For 

simplicity, it was assumed that the CES occurred at 25 min of fire exposure. Furthermore, the 



19 

interface between the high-strength compensating concrete and the original concrete was modelled 

by ‘Tie’ constraint, assuming a full-bond behaviour. The results are given in Fig. 14 and discussed in 

Step 5.  

Besides the above numerical method, an alternative method is to use the simplified computation 

diagram (Fig.9). The th-value, C-value, -value and fcu-value of a specific fire-exposed SRC column 

can be determined first according to the fire investigation report and the design documentation, and 

then the kr-value can be determined. Note that the th-value shall be determined using the equivalent 

fire exposure time. For the specific SRC column (Fig.1b), C=4200 mm, =20 for about y-y axis (and 

=14 for about x-x axis, Fig.11), fcu=60 MPa, the equivalent fire exposure time th=23 min if the same 

maximum temperature (800 °C from the upper zone curve) is used to find the equivalent maximum 

temperature for standard fire curve. Therefore, the curve labelled ‘C=4000 mm, fcu=60 MPa, =17.5’ 

in Fig. 9 might be used for an estimation, and it gives a kr-value of 0.83. 

Step 4: Design for repair 

The design for repair was similar to the design for ambient temperature. According to the design 

drawings for repair, the design institute selected the method of sprayed concrete. For the specific 

column (Fig.11a), the repair method is detailed in Fig.11c. The proposed plan is introduced as 

follows: the burn marks and the crumbly surface were chipped off to expose the inner solid concrete; 

the exposed area exceeded that of the original concrete by at least 100 mm in radius direction to 

ensure bond performance. Any rust on exposed reinforcement was removed. The surface was then 

cleaned with wire brush and pressure washer sequentially. The moisture content of the surface was 

monitored to ensure it satisfied the application of glue and concrete. After the glue was applied on 

the surface, new reinforcement was placed and fastened with rivets. High-strength compensating 

concrete/sprayed concrete was projected onto the surface, followed by standard procedure of curing. 

The strength of the compensating concrete was 5 MPa higher than the strength of the original 

concrete. The dimensions of the repaired cross-section exceeded the original by 120 mm (60 mm at 

each end).  
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Step 5: Assessment of the repair effect 

To assess the repair effect, the FEA model was used to evaluate the proposed repair design. For 

comparison, the strength and the axial stiffness of the SRC column before fire exposure, after fire 

exposure and after repair were extracted from different analyses. From a technical perspective, the 

design for repair shall principally ensure that the performance of repaired column exceeds the 

pre-fire level. Otherwise, redesign shall be conducted, followed by successive structural analysis. 

Note that the structural performance was the only focus herein; whereas for the real project, various 

factors were taken into consideration, e.g. cost and construction time.  

For the analysis of the repaired column, the fire-induced deterioration of the original materials 

(including concrete, steel and reinforcement) was incorporated and imported by using the capability 

of ‘transferring results from one Abaqus/Standard analysis to another’ in Abaqus. The final material 

states from the structural analysis in Step 3 were imported into this analysis model as initial states, 

such that the original materials inherited these states in the subsequent analysis. For the new 

repairing materials, no initial state was applied.  

Fig.14 shows the interaction curves of the SRC columns at different stages. For this specific column, 

the resistance to compression after exposure to fire reduced by 4%, whereas the resistances to 

bending moment about both axes decreased by 4%. By comparison, kr was estimated to be 0.83 

according to Fig.9 (Step 3). This conservative result is within expectation because the temperature of 

the upper zone (Fig.12) was used to determine the maximum temperature (thus the equivalent fire 

exposure time) for the full length of the column.  

The interaction curves for the repaired column shifted outside, covering a larger area than that before 

fire (Fig.14). The resistance to axial compression increased by 11% as compared with the post-fire 

resistance. The increase of the resistance to bending about the minor axis seemed to exceed that of 

the major axis. This is probably because the encasing material was also applied to the region where 

CES occurred, besides the uniform depth of concrete (Fig.11c). These comparisons demonstrated that 

the repair method was capable of recovering the initial capacity.  

The bending moment (M) versus curvature () relationships were also extracted to check the flexural 
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stiffness (Fig.15). These curves were obtained by increasing the bending moment applied on the 

member in the FEA model. Fig.15 shows that the fire exposure reduced the initial flexural stiffness in 

the late stage of bending, especially when  exceeded 0.005 m-1. The proposed repair method was 

able to recover the flexural stiffness to the pre-fire level. The flexural stiffness, K, is defined by the 

secant flexural stiffness corresponding to 0.6 times of the maximum bending resistance in the M- 

curves, and listed in Fig.15. It shows that K decreased by 14% and 18% after exposure to fire for 

bending about axes x and y respectively. By using the proposed repair method, K-value recovered by 

7% and 8% compared to the post-fire levels. This again confirmed that the repair method was able to 

recover the flexural stiffness. Additionally, Fig.15 also shows that the flexural stiffness for bending 

about the minor axis also tended to recover by a greater extent. 

The above case study shows that the repair method was able to recover the strength and the flexural 

stiffness of the specific SRC column. Note that these were based on several assumptions, e.g., a 

perfect bond behaviour between the new and the original materials. The study presented above 

served the post-fire assessment and the actual design for repair of the fire-exposed SRC columns. 

5. Conclusions

Within the limitations of the work conducted in this paper, the following conclusions can be drawn: 

(1) The post-fire resistance of SRC columns to the combined compression and bending was reduced

to varying degrees dependent on a variety of parameters. An SRC column of 600600 mm in

cross-section retained 0.87 times of the initial resistance to axial compression and 0.91 times of

the initial resistance to pure bending after a full-range fire exposure of 45 min and a subsequent

cooling down phase of 139 min. The development of the internal forces of the SRC column

showed that the steel section carried 73% of the total axial load after cooling down, whilst its

contribution was 20% at ambient temperature.

(2) The duration of fire exposure, as well as the sectional perimeter, the slenderness ratio and the

concrete cube strength, were identified to have a significant effect on the post-fire reduction

coefficient. For a stocky (<=17.5) SRC column of 600600 mm in cross-section (concrete
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strength=60 MPa) after exposure to full-range fire with heating phase of 45 min and 90 min, the 

reduction coefficients were 0.87 and 0.75, respectively. Unlike CFST columns, the reduction 

coefficient of SRC columns was affected significantly by the concrete strength.  

(3) The case study shows that the resistance of the specific SRC column to compression reduced by

4% after fire, whereas by adopting the proposed repair method, the resistance of the repaired

SRC column could be increased by 11% compared with that the post-fire resistance. The flexural

stiffness decreased by 14% after fire, and improved by 7% compared with the pre-fire level. The

assessment confirmed that the repair method was able to recover the load-bearing capacity and

the flexural stiffness effectively.
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Captions for Tables 

Table 1 Summary of the investigated parameters 

Table 2 Classification of damage  
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Tables 

Table 1 Summary of the investigated parameters 

Type Parameters Symbols Values Units

Sectional perimeter C 400, 600, 800, 1000 mm 

Sectional aspect ratio  1.0, 1.5, 2.0 - 

Slenderness ratio  17.5, 35.0, 52.5, 70.0 - 

Steel ratio  4%, 6%, 8% - 

Geometric parameters 

Reinforcement ratio  1%, 2%, 3% - 

Duration of fire exposure th 0, 15, 30, 45, 60, 90 min 

Load eccentricity e/r 0, 0.3, 0.6, 0.9 - 
Parameters related to 

actions 
Load ratio n 0.2, 0.4, 0.6 - 

Yield strength of steel section fy 235, 345, 420 MPa 

Yield strength of rebars fyb 235, 335, 400 MPa Physical parameters 

Cube strength of concrete fcu 40, 60, 80 MPa 
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Table 2 Classification of damage 

Categories Descriptions Measures

1-Superficial
damage

Surface of concrete darkened by smoke, no 
spalling, no crazing, no exposed 

reinforcement, no cracks 

Superficial repair: clear up the darkened 
surfaces, no structural repairing measure 

needed 

2-Minor
damage

Slight crazing, minor spalling, no 
reinforcement exposed, no cracks 

General repair: restore the durability of 
surface concrete 

3-Moderate
damage

Localized or considerable concrete spalling, 
moderate crazing, minor or major cracking, 

reinforcement exposed 

Major repair: repair, rehabilitate or replace 
damaged parts to restore the structural 

performance 

4-Extensive
damage

Severe concrete explosive spalling, severe 
buckling of steel section and reinforcement 

Unrepairable: scrap 
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Captions for Figures 

Fig. 1. The fire-exposed building and the view of a post-fire interior SRC column 

Fig. 2. A cross-section of an SRC column 

Fig. 3. Stress-strain relationships of materials at different phases 

Fig. 4. Interaction curves of an SRC column after fire exposure 

Fig. 5. Post-fire failure modes of SRC columns 

Fig. 6. Internal load share versus time relationships 

Fig. 7. Influence of parameters on reduction coefficient (kr) 

Fig. 8. Effect of fire exposure on the strength of SRC columns 

Fig. 9. Simplified computation diagram for post-fire reduction coefficient (kr) 

Fig. 10. Flowchart of post-fire assessment and design for repair 

Fig. 11. Details of a fire-exposed SRC column (units: mm) 

Fig. 12. Temperature () versus time (t) curves in a fire compartment 

Fig. 13. Meshes and boundary conditions of the SRC column in the FEA model 

Fig. 14. Interaction curves of the SRC column 

Fig. 15. Moment (M) versus curvature () curves of the SRC column 

 



2 
 

Figures 

 

                             

     (a) The facade of the fire-exposed building       (b) A fire-exposed SRC column  
Fig. 1. The fire-exposed building and the view of a post-fire interior SRC column 
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Fig. 2. A cross-section of an SRC column 
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(a) Steel 

 

 

(b) Concrete 
Fig. 3. Stress-strain relationships of materials at different phases 
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Fig. 4. Interaction curves of an SRC column after fire exposure 
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(a) Compression failure mode       (b) Global buckling failure mode 

Fig. 5. Post-fire failure modes of SRC columns 
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Fig. 6. Internal load share versus time relationships 
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Fig. 7. Influence of parameters on reduction coefficient (kr) 
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Fig. 8. Effect of fire exposure on the strength of SRC columns  
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Fig. 9. Simplified computation diagram for post-fire reduction coefficient (kr)  
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Fig. 10. Flowchart of post-fire assessment and design for repair 
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Fig. 11. Details of a fire-exposed SRC column (units: mm) 
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Fig. 13. Meshes and boundary conditions of the SRC column in the FEA model 
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