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Abstract 

Heat adaption through acclimatisation or acclimation improves cardiovascular stability by 

maintaining cardiac output due to compensatory increases in stroke volume. The main aim 

of this study was to assess whether 2D transthoracic echocardiography (TTE) could be used 

to confirm differences in resting echocardiographic parameters, before and after active heat 

acclimation (HA). Thirteen male endurance trained cyclists underwent a resting blinded TTE 

before and after randomisation to either 5 consecutive daily exertional heat exposures of 

controlled hyperthermia at 32℃ with 70% relative humidity (RH) (HOT) or 5-days of exercise 

in temperate (21℃ with 36% RH) environmental conditions (TEMP). Measures of HA 

included  heart rate, gastrointestinal temperature, skin temperature, sweat loss, total non-

urinary fluid loss (TNUFL),  plasma volume and participant’s ratings of perceived exertion 

(RPE). Following HA, the HOT group demonstrated increased sweat loss (p=0.01) and TNUFL 

(p=0.01) in comparison to the TEMP group with a significantly decreased RPE (p=0.01). On 

TTE, post exposure, there was a significant comparative increase in the HOT group in left 

ventricular end diastolic volume (p=0.029), SV (p=0.009), left atrial volume (p=0.005), 

inferior vena cava diameter (p=0.041), and a significant difference in mean peak diastolic 

mitral annular velocity (e’) (p=0.044).  Cardiovascular adaptations to HA appear to be 



predominantly mediated by improvements in increased preload and ventricular compliance. 

TTE is a useful tool to demonstrate and quantify cardiac HA. 



Introduction 

Thermoregulatory induced cardiovascular insufficiency impairs the ability to exercise in the 

heat1,2. Heat adaption through acclimatisation or acclimation (HA) improves cardiovascular 

stability by maintaining cardiac output, despite lowering resting heart rate (HR)3, due to 

compensatory increases in stroke volume (SV)1,4. The increase in SV is predominantly 

thought to be due to an increase in plasma volume (PV)5,6 however the effect size detected 

by meta-analysis is small1. Improvements in cardiovascular efficiency following HA have also 

been attributed to falls in the core and skin temperature accommodating a lower HR and 

consequent increased SV7. Other mechanisms include a reduction in sympathetic 

stimulation8 which has been shown to reduce HR and induce plasma volume expansion in 

animal models9. Fundamental changes in the cardiac morphology have also been identified, 

following HA, with increased ventricular compliance9,10 secondary to a redistribution of 

cardiac myosin isoenzymes and alterations in sarcoplasmic proteins in rat models11,12.  This 

allows the ventricle to accept an increased preload and then to deliver an increased SV 

without an increase in end-diastolic pressure. This increase in compliance improves cardiac 

efficiency and pressure generation10,13  so advantageously increasing cardiac output without 

a significant increase in HR. This suite of cardiovascular changes has not been conclusively 

demonstrated in human subjects.  

This study was performed to specifically assess whether resting 2D trans-thoracic 

echocardiography (TTE) could be used to identify differences in measurable 

echocardiographic cardiovascular parameters following active HA in comparison to exercise 

in temperate conditions. A secondary aim was to investigate whether TTE could provide 

further insight into cardiovascular adaptations to heat and the underlying mechanisms in 

human subjects. 



Methods 

Participants 

The study protocol was approved by Leeds Beckett University Research and Ethics Committee.  

Thirteen healthy male participants volunteered and gave written consent. All participants 

were amateur endurance trained cyclists, or triathletes, classified as performance level 3 by 

training or V̇02peak
14.  Each participant was previously unacclimated to the heat and the 

acclimation sessions occurred during the winter-spring to reduce seasonal acclimatisation 

effects15. Additionally, participants were asked to avoid prolonged thermal exposures16 (i.e. 

baths, saunas and steam rooms), during the trial period. Participants were instructed to 

maintain their normal training routines in the interval between initial measures and the 

intervention. Participants were requested not to undergo any training during the intervention 

period.  All participants were asked to refrain from alcohol consumption at least 24 hours prior 

to any testing and to abstain from caffeine/stimulant containing drinks 6 hours prior to TTE.  

Preliminary testing 

Body composition was assessed by calibrated air displacement plethysmography (BOD POD, 

Life measurement systems, USA), and measurements of height (Seca, 220, Germany) and 

body mass (Seca, 770, Germany) were recorded. V̇O2peak(L.min-1) was determined from an 

incremental test to volitional exhaustion on a cycle ergometer (Wattbike, Trainer, UK) in 

temperate laboratory conditions (19.3 ± 1.6℃, 47± 6% relative humidity). Participants 

adjusted bike dimensions at baseline, and these then remained fixed for all experimental 

trials.  Participants started cycling at ~150 watts, and increased the workload at a rate of 20 

W.min-1 until exhaustion or the individual’s cadence dropped below 70 rpm17. Respiratory

gases were measured continuously using breath-by-breath in-line gas analysis (Cortex, 

Metalyser, 3B, Germany), calibrated following the manufacturer’s instructions. HR was 



recorded continuously during all exercise tests (Polar, V800, Finland). V̇O2peak  was 

considered the highest V̇O2  in any 30s period in the last two minutes18. 

Echocardiography 

Prior to intervention participants underwent a resting TTE (CX50, Phillips, USA) performed by 

a blinded British Society of Echocardiography (BSE) accredited practitioner. Echocardiography 

measures were performed in the resting partial left decubitus position with the couch head 

at 30° elevation (flat for subcostal views) satisfying the requirements of the BSE minimum data 

set19. Measures were averaged over 3 heart beats. TTE was performed at a similar time of day 

to avoid potential diurnal variation. Left ventricular stroke volume (SV; in cm3) was calculated 

in two ways: 1) from the product of the velocity-time integral (cm) of the pulsed-wave Doppler 

in the left ventricular outflow tract (LVOT) and the LVOT cross sectional area (πr2; in cm2), 

determined by a TTE measurement of the LVOT in the parasternal long-axis view; 2) From the 

subtraction of the left ventricular end systolic volume (LVESV) from the left ventricular end 

diastolic volume (LVEDV) calculated using Simpson biplane method19 in both two chamber and 

four chamber views, and then averaged. Atrial volumes were calculated using the area-length 

method20. The septal and lateral mitral annular peak velocities were averaged to give an 

overall e’.  

Acclimation protocol 

Participants were randomised to either an isothermic HA (HOT) (n=7) or temperate exercise 

intervention (TEMP) (n=6). The isothermic HA arm consisted of five consecutive daily 

exertional heat exposures performed in an environmental chamber at 32.1 ± 0.1℃ with 70.3 

± 1.1% relative humidity, utilising the controlled hyperthermia method which is potentially 

more effective in eliciting greater and more rapid HA than constant work or self-paced 

approaches5,21. This approach involves rapidly increasing core temperature (1-1.5℃) through 



an active exercise phase, followed by a reduced exercise intensity to attain and maintain a 

core temperature (≥38.5℃). This was achieved by cycling at a relative exercise intensity of 

2.0-2.7 W·kg-1 22 to reach the target temperature in ~30-minutes and maintain it for 60 

minutes with the work titrated to maintain this core temp. The TEMP group cycled for 90 

minutes, every day for 5 days in temperate environmental conditions (21.5±1.2℃ with 36.2 ± 

5.6% relative humidity) at 2.0-2.7 W·kg-1.   

Two hours before arrival at each experimental exposure, participants consumed 500mL of 

water to ensure euhydration prior to each exposure. On arrival, participants provided a 

urine sample which was assessed for urine colour, osmolality (Osmocheck, Vitech, Scientific 

Ltd, Japan) and specific gravity (Hand refractometer, Atago, Tokyo, Japan). Participants were 

deemed euhydrated when urine osmolality was <700 mOsmol·kg-1, specific gravity <1.020 

and urine colour <3 on an 8-point scale23.  

Prior to commencing exercise, participants’ nude body mass (NBM) was assessed and 

haemoglobin (Hb) concentration and haematocrit (Hct) measured, in triplicate, to calculate 

the plasma volume (PV) using the Dill and Costill method24. This was followed by 5-minutes 

rest in HOT or TEMP conditions, after which resting HR, gastrointestinal temperature (Tgi), skin 

temperature (Tsk), thermal sensation score (TSS)25 and thermal comfort26 (TC) were recorded 

and the physiological strain index (PSI) was calculated27. Tgi was measured by using a 

calibrated28 ingestible core temperature pill (BodyCap, e-Celsius, France), set to record at 10s 

intervals, ingested >6 hours before the trial. Four skin temperature loggers (iButton TM, 

Integrated Products, USA) were attached to the right side of the body and mean skin 

temperature calculated from the equation by Ramanathan, 196429. HR was monitored 

continuously whilst TSS, RPE, TC, Tgi, Tsk were recorded at 5-minute intervals.  



NBM was measured post exposure and whole body sweat rate and total non-urinary fluid loss 

were calculated. Fluid intake was consumed ad libitum by participants and weighed to the 

nearest (g) to calculate whole body sweat rate ((preNBM – postNBM) + (fluid intake - urine 

output)/time). Following completion of the five-day acclimation/control the TTE, and PV was 

re-assessed within 24 hours.  

Statistical Analysis 

Measures were assessed for normality using the Shapiro–Wilk test prior to data analysis. 

Physical characteristics of the two groups were compared using an unpaired t-test. 

Physiological measures were compared between the HOT and TEMP groups on Day 1 and Day 

5 using a two-way ANOVA. Nominal categorical variables were measured using a Kruskal-

Wallis ANOVA on the Δ change (Day 5- Day 1) between HOT and TEMP.  

The difference in TTE measures (post exposure-pre exposure) was calculated and compared 

between HOT and TEMP groups. Cohen’s d effect size (ES) was calculated, together with 95% 

confidence intervals, using a threshold scale where an ES of 0-0.2 was considered trivial; 0.2-

0.6, a small effect; 0.6-1.2, a moderate effect; 1.2-2.0, a large effect; and >2, a very large 

effect30.  A 2-way ANOVA of TTE parameters was performed using HOT and TEMP and pre and 

post exposure. ES and CI were also calculated for the Δ change in PV between HOT and TEMP. 

The α level was set to 0.05. All statistical analyses were performed using GraphPad Prism 8.0, 

GraphPad Software, San Diego, California.  

Results 

All participants completed the exposures in their entirety. The mean age, body surface area 

(Mosteller) and V̇O2peak was 28.5 (±9.9), 1.93±0.1 m2 and 59.7±8.1ml·kg·min-1 respectively. 



There were no significant differences in age, height, body mass, body surface area, body fat 

percentage, or V̇O2peak between HOT and TEMP groups.  

There was a (9±12%) increase in PV in the HOT group with a -0.2±6% increase in the TEMP 

with a moderate, but insignificant, trend towards a Δ increase in PV ES 1.02 (CI -0.19 to 2.24) 

(p=0.102) as assessed by the Dill and Costill method24.  Following HA, the HOT group 

demonstrated increased sweat loss, from day 1 to day 5 (0.36±0.28 L/min), in comparison to 

the TEMP group (-0.07±0.19L/min)  (p=0.01) with Δ increases in total non-urinary fluid loss 

(TNUFL) (HOT; 548ml±430ml, TEMP; -110ml±291ml, p=0.01). There was no significant 

change, from day 1 to day 5, in resting heart rate (HOT; -5±4.6bpm, TEMP; 1±7.4bpm) or 

peak heart rate (HOT; -4.9±6.2bpm, TEMP; -2±9.4bpm) between groups. There was a 

significantly decreased RPE (p=0.01) in the HOT group (-2±1)in comparison to the TEMP 

group (0±1) but no significant difference in the Tgi, Tsk, TSS, TC or PSI. With regard to 

hydration status, there was no significant difference in urine osmolality, urine colour, urine 

specific gravity or body mass in comparing day 1 and day 5 exposure values between HOT 

and TEMP groups. 

TTE data are detailed in Table 1. Pre-exposure, indexed left ventricular volumes (LVEDV HOT 

80±7ml/m2, TEMP 80±11ml/m2)  and atrial volumes (LA HOT 30±6ml/m2, TEMP 31±11ml/m2) 

were elevated in both groups in comparison to normal reference values19. There were no 

significant differences between the HOT and TEMP groups in any of the baseline TTE 

variables. The change in significant echocardiographic variables (post exposure -pre 

exposure), comparing the HOT and TEMP group, for LA Volume, SV, e’, LVEDV and IVC 

diameter can be visualised in Figure 1 .   

Discussion 



The significant positive findings of this study are that a relatively short 5-day isothermic HA 

protocol, compared to equivalent temperate exercise, increases LA volume, SV, LVEDV, e’ 

and IVC diameter. The LA and LV volumes were elevated in both groups at baseline, 

consistent with trained amateur athletes at performance Level 3. In this context, it is striking 

that the left atrial volumes and SV rose further following active HA in the HOT group; an 

effect that was not seen in the TEMP group who underwent matched exercise exposure in 

temperate conditions. The significant differences in thermal comfort, sweat loss and TNUFL 

following the active HA in the HOT group suggest at least partial acclimation. 

The significant increase in LA volume and IVC diameter would suggest an increase in preload 

secondary to increased PV6. PV expansion is also likely to be at least partially responsible for 

the elevated SV1,6,31. However, despite a moderate effect size, the trend towards increased 

PV in the HOT group was insignificant when assessed by the Dill and Costill method24. This 

apparent contradiction might be explained by the small sample size as well as inaccurate 

methodology where the haemoconcentration effect is estimated by calculations based on 

haemoglobin concentration and haematocrit before and after exposure using the Dill and 

Costill method. Whilst inexpensive and rapidly repeatable there are multiple potential errors 

associated with this method32–35. Alternatively, trained individuals, such as in this study, may 

also have a lower PV adaptation response as measured by this methodology due to higher 

levels of background adaption secondary to the physical training36 so requiring a longer 

acclimation protocol, and more participants, to exhibit the full phenotype.  

PV expansion alone may not account for all the observed TTE data. The rise in the speed of 

early LV relaxation (e’) during diastole reflects increased ventricular compliance or reduced 

LV stiffness. Increased compliance permits the heart to convert an elevated venous return, 

and consequently increased LV preload, into a higher end-diastolic volume, without elevation 



of LV end-diastolic pressure (LVEDP). It is known that e’, the average of septal and lateral peak 

mitral annular velocity during early LV relaxation, increases following long-term physical 

training37 and increases further during exercise38. However e’ transiently decreases 

immediately following high-volume exercise39. HA appeared to protect against this effect 

when comparing e’ between HOT and TEMP groups. In rats, HA redistributes cardiac myosin 

isoenzymes from the fast V1 isoform with high ATPase activity to the predominance of the 

slow V3 form with low ATPase activity resulting in increased contractile efficiency9 and 

increased LV compliance. This is not thought to be due to volume increases but a true change 

in heat-acclimated myocardial elastic properties9. The combined heat exposure in the HOT 

group (450 minutes) was significantly less than the stimulus in rodent studies10,11 where 

intrinsic myocardial effects were demonstrated and arguably insufficient to alter myocardial 

elastic properties. However a high level of physical fitness is thought to improve the 

physiological response to exercise in the heat40, perhaps by ‘priming’, leading to a more rapid 

acclimation36 although possibly a lower magnitude of response36 following full HA.  

Furthermore e’ is a relatively, but not absolutely, load (preload and afterload) independent 

measure of LV relaxation41. There was a non-significant (p=0.099) moderate increase in E 

(rapid early diastolic filling) in the HOT group post-exposure which was mediated, in part, by 

a reduction in E (post-exposure) in the TEMP group. Albeit non-significant, the increase in E-

wave velocity following HOT exposure and the relative fall in E-wave following TEMP 

exposure appear to reflect the LV filling effects of increased and decreased PV respectively. 

These parallel changes in E and e’ within the HOT group explain the minimal change in their 

ratio: E/e’. E/e’ is commonly recognised as a surrogate of LV filling pressure and a predictor 

of LA pressure42. This would indicate that following isothermic HA, the increased preload, 

potentially mediated by an increased PV, was balanced by an increase in LV compliance so as 

to permit increased LV filling without an increase in LA pressure43. This balanced response is 



mirrored by the behaviour of the left ventricle during exercise. In the healthy heart, the 

increase in velocity of early mitral inflow (E) during exercise, is balanced by the energy-

requiring increase in the velocity of early ventricular relaxation (e’). The overall effect is that 

the ratio E/e’ is maintained, or even falls slightly, during exertion. This reflects a 

maintenance of (or slight reduction in) LA pressure, in stark contrast to the rise in E/e’ seen 

in the failing ventricle. 

It is known that HA leads to relative bradycardia7. It is not possible, in the current study, to 

distinguish whether heat-induced bradycardia, resulting in prolonged diastole has enhanced 

filling, so as to augment SV, or whether a combination of enhanced LV preload and 

contractility have augmented SV sufficiently to permit the attainment of the body’s cardiac 

output at a lower resting heart rate. Regardless of the relative contribution of these two 

mechanisms, it is interesting to observe the trend (p=0.056) toward a lower peak HR in the 

HOT group in comparison to the TEMP condition. Heat-mediated decrease in sympathetic 

outflow5 is another potential mechanism for the augmentation of SV, via enhanced cardiac 

compliance.  

Whilst changes of increased LA volume, LVEDV, SV and increased e' seen in the HOT group 

may all be seen following exercise training37,44 we believe there are a number of reasons that 

a HA effect is a much more compelling explanation. First, the TEMP group underwent a very 

similar training stimulus over the 5-day intervention and they did not exhibit the same 

augmented chamber volumes or improved diastolic function. Second, all participants were 

performance Level 3 athletes and exhibited a degree of cardiac adaptation to exercise, which 

did not differ betwen groups. Finally, the speed of adaptation is more in keeping with HA than 

training adaptation, which can take up to a year44. 



Overall, these data demonstrate several concurrent cardiovascular adaptations occurring in 

response to HA. These findings are supported by the only other study, to our knowledge, to 

assess echocardiographic responses to heat exposure. These include a significantly increased 

LA volume, LVEDV and LV lateral e’ following passive heat exposure in 12 male participants 

without a control group or markers of HA45. A further study assessed the effects of 14 – 21 

days of passive HA with mild exercise routines in 8 patients prior to bypass surgery in 

comparison to ambient non-exercising controls. Here there was less diastolic dysfunction- by 

generated diastolic pressure curves in comparison to LV area- following surgery in the HA 

group in comparison to controls.  

There are several limitations to this study which mean that whilst these data is hypothesis 

forming drawing firm conclusions on the observed changes on echocardiographic parameters 

is not possible. Our sample size was small (and curtailed by COVID-19 pandemic) and so likely 

lacked statistical power to show statistically significant changes in PV as well as HR (both peak 

and resting). Due to the limited prior studies assessing echocardiography in heat acclimation 

no formal power calculations were performed prior, however similar changes were observed 

in twelve participants without a control group with less robust passive heat stimulus45. 

Furthermore echocardiography  has significant interobserver and intraobserver variability 

particularly in the measurement of LV volumes46. The measurement of SV by doppler 

assessment of the LVOT can be compromised by technical factors such as angular acuity of 

aortic blood flow, and/or off-axis aortic annular dimensions but has been shown to be 

reproducible. Studies have shown reasonable reproducibility with respect to diastolic function 

however47.  

A longer acclimation protocol may have more effectively demonstrated the underlying 

mechanisms. We chose a deliberately short but stressful humid isothermic HA exposure in 



trained individuals which we considered might induce more rapid HA, particularly when 

incorporated with physical exercise48–50, in comparison to passive heat exposure1,51–53. 

Furthermore the cardiac adaptations to HA are thought to manifest in the first 4-7 days5. 

Whilst we instructed participants to continue normal training patterns before initial measures, 

and not to exercise during the interventions, we did not record their exercise activity outside 

of the study nor ensure that there was no significant changes between groups which 

potentially could have introduced bias- particularly if the TEMP group continued to exercise. 

This may explain the trend in reductions in echocardiographic parameters in the TEMP group 

(Figure 1, Table 1).  

Conclusion 

This study is the first to show differences in TTE parameters following active HA and the first 

to control for a training effect with a temperate exercise arm. It also gives further insight 

into the cardiovascular adaptations to HA which are characterised by an increase in both 

pre-load and ventricular compliance as demonstrated by elevated LV chamber volumes, 

increased SV and an increase in e’, with no concomitant change in E/e’. TTE is a useful tool to 

demonstrate and quantify cardiac adaptation. This has several implications to utilise TTE as a 

research tool in elite athletes1,5  firefighters, miners, the military or aid workers54 particularly 

in the development of tailored rapid HA regimes. Echocardiography in heat acclimation 

merits further study.  
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Figure 1: The change in significant (p<0.05) echocardiographic parameters from pre exposure 

to post exposure in the HOT (heat acclimation) and TEMP (temperate exercise) groups. LV; 

left ventricle, IVC; inferior vena cava.  



TEMP HOT 

Δ Cohen's D P value Mean (SD) Mean (SD) 

Pre Post Pre Post 

LV volumes 

EDV (ml) 154 (13) 150 (15) 152 (21) 161 (16) 1.65 (0.39-2.91) 0.03* 

ESV (ml) 63 (4) 62 (6) 62 (12) 66 (12) 0.98 (-0.18-2.13) 0.17 

SV (LVEDV-LVESV) (ml) 91 (10) 88 (12) 90 (13) 96 (13) 1.29 (0.09-2.49) 0.05 

SV (LVOT area x LVOT VTI) (ml) 108 (16) 103 (9) 102 (9) 113 (8) 1.69 (0.42-2.96) 0.01* 

Ejection fraction (%) 59 (2) 58 (4) 60 (5) 59 (5) 0.17 (-0.92-1.27) 0.77 

LV longitudinal function 

MAPSE (lateral) (cm) 1.9 (0.4) 1.8 (0.2) 1.7 (0.3) 1.8 (0.3) -0.06 (-1.19-1.07) 0.56

MAPSE (medial) (cm) 1.4 (0.1) 1.5 (0.4) 1.5 (0.2) 1.4 (0.1) 0.11 (-1.02-1.24) 0.86 

LV S' (cm/s) 14 (2) 12 (1) 12 (2) 12 (2) 0.77 (-0.45-2.00) 0.97 

RV longitudinal function 

TAPSE (cm) 2.5 (0.3) 2.6 (0.3) 2.4 (0.2) 2.3 (0.3) -0.75 (-1.88- 0.37) 0.17

RV S' (cm) 16 (3) 13 (2) 15 (2.2) 13 (2.0) 0.41 (-1.71- 2.53) 0.50 

Diastology cm 

E (cm/s) 83 (20) 74 (8) 78 (13) 83 (6) 1.12 (-0.14-2.38) 0.10 

A (cm/s) 39 (12) 35 (7) 44 (14) 37 (7) -0.29 (-1.48- 0.9) 0.11

E/A 2.3 (0.9) 2.2 (0.6) 1.8 (0.4) 2.3 (0.6) 1.08 (-0.18-2.33) 0.11 

E' (cm/s) 23 (4) 16 (4) 19 (2) 16 (4) 1.40 (0.10-2.71) 0.04* 

A' (cm/s) 10 (2) 8 (3) 10 (3) 9 (2) 0.65 (-0.57 -1.86) 0.31 

Atrial Volumes Cm/s 

LA volume (ml) 57 (10) 53 (11) 58 (20) 67 (19) 1.91 (0.6-3.23) 0.005** 

RA Volume (ml) 60 (17) 60 (19) 68 (16) 76 (19) 0.57 (-0.54-1.68) 0.33 

Inferior Vena Cava 

IVC diameter expiration (cm) 2.0 (0.3) 1.7 (0.5) 1.8 (0.4) 2.5 (0.6) 1.60 (0.26-2.94) 0.03* 

IVC diameter inspiration (cm) 0.9 (0.2) 0.6 (0.4) 0.9 (0.3) 1.2 (0.3) 1.98 (0.6-3.36) 0.03* 


