
Citation:
Gorbenko, A and Romanovsky, A and Tarasyuk, O (2020) Interplaying Cassandra NoSQL Con-
sistency and Performance: A Benchmarking Approach. Dependable Computing - EDCC 2020
Workshops. EDCC 2020. Communications in Computer and Information Science., 1279. pp.
168-184. ISSN 1865-0929 DOI: https://doi.org/10.1007/978-3-030-58462-7_14

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/7185/

Document Version:
Article (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/7185/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Interplaying Cassandra NoSQL Consistency and

Performance: a Benchmarking Approach

Anatoliy Gorbenko

Leeds Beckett University

Leeds, UK

A.Gorbenko@leedsbeckett.ac.uk

Alexander Romanovsky

Newcastle University

Newcastle-upon-Tyne, UK

Alexander.Romanovsky@ncl.ac.uk

Olga Tarasyuk

National Aerospace University

Kharkiv, Ukraine

O.Tarasyuk@csn.khai.edu

Abstract—This experience report analyses performance of

the Cassandra NoSQL database and studies the fundamental

trade-off between data consistency and delays in distributed

data storages. The primary focus is on investigating the

interplay between the Cassandra performance (response time)

and its consistency settings. The paper reports the results of the

read and write performance benchmarking for a replicated

Cassandra cluster, deployed in the Amazon EC2 Cloud. We

present quantitative results showing how different consistency

settings affect the Cassandra performance under different

workloads. One of our main findings is that it is possible to

minimize Cassandra delays and still guarantee the strong data

consistency by optimal coordination of consistency settings for

both read and write requests. Our experiments show that

(i) strong consistency costs up to 25% of performance and

(ii) the best setting for strong consistency depends on the ratio

of read and write operations. Finally, we generalize our

experience by proposing a benchmarking-based methodology

for run-time optimization of consistency settings to achieve the

maximum Cassandra performance and still guarantee the

strong data consistency under mixed workloads.

Keywords—NoSQL, Cassandra database, CAP theorem,

trade-off, consistency, performance, latency, benchmarking

I. INTRODUCTION

NoSQL (Non SQL or Not Only SQL) databases have
become the standard data plat-form and a major industrial
technology for dealing with enormous data growth. They are
now widely used in different market niches, including social
networks and other large-scale Internet applications, critical
infrastructures, business-critical systems, IoT and industrial
applications. NoSQL databases designed to provide horizontal
scalability are often offered as a service by Cloud providers.
The concept of NoSQL databases [1] has been proposed to
effectively store and provide fast access to the Big Data sets
whose volume, velocity and variability are difficult to deal
with by using the traditional Relational Database Management
Systems. Most NoSQL stores sacrifice the ACID (atomicity,
consistency, isolation and durability) guarantees in favour of
the BASE (basically available, soft state, eventually
consistent) properties [2], which is the price to pay for
distributed data handling and horizontal scalability.

The paper discusses the trade-offs between consistency,
availability and latency, which is in the very nature of NoSQL
databases. Although these relations have been identified by
the CAP theorem in qualitative terms [3, 4], it is still necessary
to quantify how different consistency settings affect system
latency and throughput. Understanding this trade-off is key for
the effective usage of NoSQL solutions. While there are many
NoSQL databases on the market, various industry trends
suggest that Apache Cassandra is one of the top three in use
today together with MongoDB and HBase [5]. There have
been a number of studies, e.g. [6, 7, 8, 9, 10], evaluating and
comparing the performance of different NoSQL databases.

Most of them use general competitive benchmarks of usual-
and-customary application workloads (e.g. Yahoo! Cloud
Serving Benchmark, YCSB). The reported results show that
depending on the use case scenario, deployment conditions,
current workload and database settings any NoSQL database
can outperform the others. Other recent related works, such as
[11, 12, 13], investigate the measurement-based performance
prediction of NoSQL data stores. However, the studies
mentioned above, do not analyse an interdependency between
consistency and performance, that is in the very nature of such
distributed database systems and do not study how consistency
settings affect database latency.

In this paper we put a special focus on quantitative
evaluation of the fundamental Big Data trade-offs between
data consistency and performance using the Cassandra
database as a typical example of distributed data storages.
Apache Cassandra offers a set of unique features (e.g. tuneable
consistency, extremely fast writes, ability to work across
geographically distributed data centres, etc.) and provides
high availability with no single point of failure which makes
it one of the most flexible and popular NoSQL solutions.
Moreover, we would like to equip the developers of
distributed systems that use Cassandra as the distributed data
storage with the practical guidance allowing them to predict
the Cassandra latency taking into account the required
consistency level and to coordinate consistency settings of
read and write requests in an optimal manner. In the paper we
propose a benchmarking approach to optimising the
Cassandra performance with guaranteeing the strong data
consistency under mixed workloads. Because the real
workload mix can evolve and change over time impacting the
desirable Cassandra settings, we propose to monitor the
current workload mix and chose the optimal consistency
setting at run time to get the highest throughput by making use
of benchmarking results collected during system load testing.

The rest of the paper is organized as follows. In the next
section, we briefly discuss the fundamental CAP trade-off for
distributed systems and replicated data storages, and analyse the
Cassandra tuneable consistency feature. In Section III, we
describe our methodology and the experimental setup, and
present the results of the Cassandra performance benchmarking
for different consistency levels. Sections IV and V discuss the
optimal consistency settings and propose a methodology for
optimal coordination of consistency settings for read and write
requests under different workloads. Finally, some practical
lessons learnt from our work are summarized in Section VI.

II. BIG DATA TRADE-OFFS BETWEEN CONSISTENCY,

AVAILABILITY AND LATENCY

A. CAP Theorem

The CAP conjecture [3], which first appeared in 1998-
1999, defines a trade-off between system availability,
consistency and partition tolerance, stating that only two of the

three properties can be preserved in distributed replicated
systems at the same time. Gilbert and Lynch [4] view the CAP
theorem as a particular case of a more general trade-off
between consistency, availability and latency in unreliable
distributed systems which, nevertheless, assume that updates
are eventually propagated.

System partitioning, availability, consistency and latency
(response time) are tightly connected. Moreover, we believe
that these properties need to be viewed as more continuous
than binary. A replicated fault-tolerant system becomes
partitioned when one of its parts does not respond due to
arbitrary message loss, delay or replica failure, resulting in a
timeout. System availability can be interpreted as the
probability that each client request eventually receives a
response. Failure to receive responses from some of the
replicas within the specified timeout causes partitioning of the
replicated system. Thus, partitioning can be considered as a
bound on the replica latency/response time [14, 15]. A slow
network connection, a slow-responding replica or the wrong
timeout settings can lead to an erroneous decision that the
system has become partitioned. When the system detects a
partition, it has to decide whether to return a possibly
inconsistent response to a client or to send an exception
message in reply, which undermines system availability.
Consistency is also a continuum, ranging from weak
consistency at one extreme to strong consistency on the other,
with varying points of eventual consistency in between.

The designers of distributed fault-tolerant systems cannot
prevent partitions which happen due to network failures,
message losses, hacker attacks or components crashes and,
hence, have to choose between availability and consistency.
One of these two properties has to be sacrificed. The architects
of modern distributed database management systems and
large-scale web applications such as Facebook, Twitter, etc.
often decide to relax consistency requirements by introducing
asynchronous data updates in order to achieve higher system
availability and allow a quick response. Yet the most
promising approach is to balance these properties [16, 17]. For
instance, the Cassandra NoSQL database supports a tuneable
replication factor and an adjustable consistency model so that
a user can choose a particular level of consistency to fit with
the desired system latency.

B. Cassandra’s Tuneable Consistency

The Cassandra NoSQL database extends the concepts of
strong [18] and eventual [19] consistency by offering tuneable
[20] consistency. Consistency in Cassandra can be configured
to trade-off availability and latency versus data consistency.

The consistency level among replicated nodes can be
controlled on a per-operation basis. Thus, for any given read
or write operation, a client can specify how consistent the
requested data must be. The read consistency level specifies
how many replica nodes must respond to a read request before
returning data to the client application. In turn, the write
consistency level determines the number of replicas on which
the write must succeed before returning an acknowledgment
to the client.

It is worth noting that Cassandra supports two types of
write operations with the tiny difference between them: insert
and update. Cassandra treats both insert or update operations
as upserts (update-or-insert) [21]. It adds each new row to the
database without really checking on whether a duplicate
record exists. This makes it possible that many versions of the

same row may exist in the database. Periodically, the rows
stored in memory (in a structure called memtable) are
streamed to disk into structures called SSTables. At certain
intervals, Cassandra compacts smaller SSTables into larger
SSTables. If Cassandra encounters two or more versions of the
same row during this process, it only writes the most recent
version to the new SSTable and drops the original SSTables,
deleting the outdated rows.

All Cassandra read and write requests support the following
basic consistency settings [22]:

 ONE: data must be written to the commit log and
memtable of at least one replica node before
acknowledging the write operations to a client; when
reading data, Cassandra queries and returns a response
from a single replica (the nearest replica with the least
network latency);

 TWO: data must be written to at least two replica nodes
before being acknowledged; read operations will
return the most recent record from two of the closest
replicas (the most recent data is determined by
comparing timestamps of records returned by those
two replica);

 THREE: similar to TWO but for three replicas;

 QUORUM: a quorum of nodes needs to acknowledge
the write or to return a response for a read request; a
quorum is calculated by rounding down to a whole
number the following estimate: replication_factor/2+1;

 ALL: data must be written to all replica nodes in a
cluster before being acknowledged; read requests
return the most recent record after all replicas have
responded. The read operation will fail even if a single
replica does not respond.

If Cassandra runs across multiple data centres, a few
additional consistency levels become available:
EACH_QUORUM, LOCAL_QUORUM, LOCAL_ONE.

The sum of nodes written and read being greater than the
replication factor always ensures strong data consistency
when a read never misses a preceding write [22]. Thus, if data
consistency is of a top priority, one can ensure that a read
always reflects the most recent updates by using the following:

 (nodes_written + nodes_read) > replication_factor

otherwise, the eventual consistency occurs. For example, if
Cassandra uses a replication factor of 3, the strong consistency
is ensured if, either:

 the QUORUM consistency level is set for both write
and read requests;

 the ONE consistency level is set for writes and ALL
for reads or;

 the ALL consistency level is set for writes and ONE
for reads.

The weaker consistency level, the faster Cassandra should
perform read and write requests. Balancing between
nodes_written and nodes_read in (1), Cassandra users can give
the priority to read or write performance still guaranteeing the
strong data consistence.

III. CASSANDRA PERFORMANCE BENCHMARKING

A. Methodology and Experimental Setup

In this section we describe our performance benchmarking
methodology and report the experimental results showing how
consistency settings affect latency of the read and write
requests for the Cassandra NoSQL database.

Cassandra deployment setup. As a testbed we deploy the 3-
replicated Cassandra 2.1 cluster in the Amazon EC2 cloud (Fig.
2). Replication factor equal to 3 is the most typical setup for many
modern distributed computing systems and Internet services,
including Amazon S3, Amazon EMR, Facebook Haystack,
DynamoDB, etc. The cluster is deployed in the AWS US-West-2
(Oregon) region on с3.xlarge instances (vCPUs – 4, RAM – 7.5
GB, SSD – 2x40 GB, OS – Ubuntu Server 16.04 LTS).

Benchmark. Our work uses the YCSB (Yahoo! Cloud
Serving Benchmark) framework which is considered to be a
de-facto standard benchmark to evaluate performance of
various NoSQL databases like Cassandra, MongoDB, Redis,
HBase and others [6]. YCSB is an open-source Java project.

The YCSB framework includes six out-of-the-box
workloads [6], each testing different common use case
scenarios with a certain mix of reads and writes (50/50, 95/5,
read-only, read-latest, read-modify-write, etc.). In our
experiments we use the read-only Workload C, and the
Workload A, which is parametrized to execute write-only
operations.

Replica 1

Replica 2

Replica 3

YCSB client

Cassandra 2.1

Cluster

Location: Amazon WS,

 US-West-2 (Oregon) region

VM instance: с3.xlarge

 (vCPUs – 4, RAM – 7.5 GB,

 SSD – 2x40 GB)

OS: Ubuntu Server 16.04 LTS

Fig. 1. Experimental setup: Cassandra cluster.

All the rest Cassandra and YCSB parameters (e.g. request
distribution, testbed database, etc.) were set to their default
values. The testbed YCSB database is a table of records. Each
record is identified by a primary key and includes F string
fields. The values written to these fields are random ASCII
strings of length L. By default, F is equal 10 and L is equal
100, which constructs 1000 bytes records. The final size of the
testbed database reached 70GB by the end of our experiments.

The YCSB Client is a Java program that generates data to be
loaded to the database, and runs the workloads. It is deployed on
a separate VM in the same Amazon region to reduce the
influence of the unstable Internet delays.

Fig. 2. A fragment of the READ delay graph, 500 threads.

Fig. 3. A fragment of the WRITE delay graph, 500 threads.

0

100000

200000

300000

400000

500000

600000

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001 13001 14001 15001 16001 17001 18001 19001 20001

Time, us

Response no

Read delay

5000

15000

25000

35000

45000

55000

65000

75000

Time, us
ALL QUORUM ONE

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001 13001 14001 15001 16001 17001 18001 19001 20001

Time, us

Response no

Write delay

5000

10000

15000

20000

25000

30000

35000

40000
Time, us

ALL QUORUM ONE

Benchmarking scenario. Some examples of general
methodologies for benchmarking Cassandra and other
NoSQL databases with YCSB can be found in [5, 23].
However, unlike these and other works (e.g. [6, 7, 8, 9, 10])
studying and comparing the maximum databases throughput
we put the focus on analysing the dynamic aspects of the
Cassandra performance under different consistency settings.
In particular, we analyse how the database latency and
throughput depend on a current workload (i.e. number of
concurrent requests/threads). To achieve this we run a series
of YSCB read and write performance tests on Apache
Cassandra with a number of threads varying from 10 to 1000.
The operation count within each thread is set to 1000. The
same scenario is run for read and write workloads on the 3-
replicated Cassandra cluster with the three different
consistency settings: ONE, QUORUM and ALL.

B. Raw Data Cleansiing

YCSB supports different measurement types including
‘histogram’, ‘timeseries’ and ‘raw’. In our experiments we set
it to ‘raw’ when all measurements are output as raw data
points in the following csv format: operation
(READ|WRITE), timestamp of the measurement (ms),
latency (us). This allows us to plot the response delay graphs,
see the examples in Figs. 2 and 3 (each graph superimposes
three curves corresponding to different consistency settings:
ONE, ALL, QUORUM).

The ‘Raw’ measurement type, used in our experiments,
requires further manual analysis of the benchmarked data.
Though, it also provides a great flexibility for a posterior
analysis and allows us to get important insights rarely

discussed by other researchers. In particular, we noticed that the
cold start phenomenon can have a significant effect on the
results of the Cassandra performance analysis. This
phenomenon exhibits itself through the initial period of low
performance observed at the beginning of each read and write
tests (see Figs. 2-3). In general, its duration depends on the
database size, available RAM, intensity of read and write
requests and their distribution and other factors. In all our
experiments this period lasts approximately 800-1000
milliseconds. This phenomenon is explained by the fact that
Cassandra uses three layers of data store: memtable (stored in
RAM and periodically flushed to disk), commit log and SSTable
(both are stored on disk). If the requested row is not in memtable,
a read needs to look-up in all the SSTable files on disk to load
data to memtable. In addition, Cassandra also supports integrated
cacheing and distributes cache data around the cluster. Thus,
during the cold start period Cassandra reads data from SSTables
to memtables and warms up cache.

This period is taken out of consideration in our further
statistical analysis. Otherwise, the average performance
estimates would be significantly biased. For instance, in our
experiments the delays measured during the cold start are on
average 5-8 times longer than the ones measured during the
rest of time.

IV. DATA ANALYSYS. INTERDEPENDENCY BETWEEN

PERFORMANCE AND CONSISTENCY

A. Read/Write Latency and Throughput Statistics

Results of the Cassandra performance benchmarking are
summarised in Tables I and II and depicted in Figs. 4 and 5.

TABLE I. CASSANDRA READ PERFORMANCE STATISTICS

Threads
Average latency, us Coefficient of variation, % Average throughput, ops/s

ONE QUORUM
(slowdown,

% of ONE)
ALL

(slowdown,

% of ONE)
ONE QUORUM ALL ONE QUORUM

(slowdown,

% of ONE)
ALL

(slowdown,

% of ONE)

10 8120 8150 (+1%) 8311 (+2%) 17% 17% 15% 1136 1023 (+11%) 959 (+19%)

50 12207 13077 (+7%) 14732 (+21%) 29% 27% 21% 3525 3295 (+7%) 3181 (+11%)

100 15768 18139 (+15%) 21428 (+36%) 32% 30% 24% 6323 5489 (+15%) 5180 (+22%)

200 21853 26350 (+21%) 29218 (+34%) 56% 43% 38% 7959 7022 (+13%) 6271 (+27%)

300 31038 35996 (+16%) 41326 (+33%) 63% 48% 45% 9025 7815 (+15%) 7011 (+29%)

400 38928 48054 (+23%) 52921 (+36%) 58% 49% 44% 9561 7998 (+20%) 7313 (+31%)

500 49931 59799 (+20%) 65569 (+31%) 54% 46% 40% 9723 8173 (+19%) 7438 (+31%)

600 56433 72083 (+28%) 77215 (+37%) 50% 42% 39% 10221 8496 (+20%) 7586 (+35%)

700 69527 79919 (+15%) 84427 (+21%) 49% 39% 37% 9899 8567 (+16%) 7956 (+24%)

800 74766 87445 (+17%) 93092 (+25%) 47% 39% 35% 10487 9041 (+16%) 8322 (+26%)

900 89479 98086 (+10%) 107238 (+20%) 48% 39% 36% 10248 8906 (+15%) 8281 (+24%)

1000 96854 106762 (+10%) 117367 (+21%) 45% 41% 38% 10508 9072 (+16%) 8398 (+25%)

Average:: (+15%) (+26%) 46% 38% 34% (+15%) (+25%)

TABLE II. CASSANDRA WRITE PERFORMANCE STATISTICS

Threads
Average latency, us Coefficient of variation, % Average throughput, ops/s

ONE QUORUM
(slowdown,

% of ONE)
ALL

(slowdown,

% of ONE)
ONE QUORUM ALL ONE QUORUM

(slowdown,

% of ONE)
ALL

(slowdown,

% of ONE)

10 8941 8988 (+1%) 9116 (+2%) 20% 18% 16% 1066 1053 (+1%) 921 (+4%)

50 11198 11317 (+1%) 12591 (+12%) 28% 28% 26% 4043 3861 (+5%) 3720 (+9%)

100 14550 14747 (+1%) 16235 (+12%) 37% 32% 28% 6384 6228 (+3%) 5937 (+8%)

200 19825 20464 (+3%) 22064 (+11%) 51% 42% 32% 8803 8361 (+5%) 8074 (+9%)

300 24119 26078 (+8%) 27458 (+14%) 68% 58% 40% 10679 10334 (+3%) 9871 (+8%)

400 29944 33338 (+11%) 35319 (+18%) 61% 55% 49% 12041 11294 (+7%) 10380 (+16%)

500 36831 38784 (+5%) 41364 (+12%) 60% 53% 46% 12686 12200 (+4%) 11530 (+10%)

600 41412 44240 (+7%) 46963 (+13%) 58% 47% 45% 13444 12548 (+7%) 12054 (+12%)

700 48256 53276 (+10%) 55192 (+14%) 56% 51% 46% 13533 12714 (+6%) 12287 (+10%)

800 55629 61712 (+11%) 64856 (+17%) 54% 51% 47% 13369 12572 (+6%) 11913 (+12%)

900 61410 67329 (+10%) 69615 (+13%) 53% 49% 44% 13552 13051 (+4%) 12568 (+8%)

1000 65254 72726 (+11%) 78333 (+20%) 51% 49% 46% 13428 12985 (+3%) 12141 (+11%)

Average:: (+7%) (+13%) 50% 44% 39% (+5%) (+10%)

Fig. 4 shows that the average delay for both read and write
requests increases almost linearly as the number of threads
increases. The average values have been computed over a
thousand of requests sent within each thread.

A coefficient of variation (CV) is a ratio between the delay
standard deviation and its average value. It is used as the measure
of uncertainty. This uncertainty is caused by noise (coming from
the underlying platforms and technologies) and natural
uncertainty and variability which is intrinsic to a cloud
environment and the Internet [24, 25, 26]. The CV value (as it is
shown in Tables I and II) depends on the workload (the higher
the workload, the higher the latency variation) and consistency
settings (the stronger the level of consistency, the lower latency
variation). It varies between 34 and 50% on average, which does
not affect the statistical significance of the reported average
latency.

 When Cassandra is configured to provide consistency
level ONE, the latency of both read and write operations is
lower (by 13% and 26% respectively) than the average
response time of the ALL consistency setting. The QUORUM
setting demonstrates a rational balance between delays and
data consistency. Besides, our results confirm the claim that
Cassandra has very high write speed especially under the heavy
workload. Indeed, write operations are almost 25% faster on
average than read requests independently of consistency
settings. However, reads are slightly over-performing writes
when a number of concurrent requests is below 10.

Cassandra writes executed under the ONE consistency
level reach the maximum throughput of 13552 requests per
second. For the QUORUM and ALL consistency settings it
fluctuates around 13000 and 12500 requests per second. The
maximum throughput of read operations is lower by 21%,
33% and 38% correspondingly.

A combination of average delay and average throughput
columns of Tables I and II allow us to analyse how the average
read and write delays depend on the current workload. When
the workload reaches the maximum Cassandra throughput,
delays increase in exponential progression (see Fig. 5). Figs. 4
and 5 clearly show performance benefits offered by weaker
consistency settings in case of the heavy workload. It is also
shown that the system is saturated with around 800 threads and
delays become highly volatile when Cassandra operates close
to its maximal throughput.

B. Theoretical Regressions of the Cassandra Latency

Benchmarking results reported in Tables I and II are a
discrete set of measured values. They do not allow system
developers to precisely estimate the database latency
throughout a range of possible workloads. A regression
function estimated from the experimental data (see Fig. 4) will
effectively solve this problem. Table III reports the R-squared
values (often referred to as the goodness-of-fit [27]) estimating
extrapolation accuracy of different regression functions. It shows
that the polynomial regression of the forth order (2-7) fits the
experimental statistics with the high accuracy.

Fig. 4. Average Cassandra delay depending on the current workload: (a) reads; (b) writes.

Fig. 5. Average Cassandra delay vs average throughput: (a) reads; (b) writes.

y = 9E-08x4 - 0.0002x3 + 0.1005x2 + 94.648x + 8870.3
R² = 0.9984

y = 9E-08x4 - 0.0002x3 + 0.1605x2 + 64.185x + 8761.6
R² = 0.999

y = -2E-08x4 + 2E-05x3 + 0.0159x2 + 70.201x + 8002
R² = 0.9979

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 100 200 300 400 500 600 700 800 900 1000

Delay, us

Number of threads

ALL
QUORUM
ONE
Poly. (ALL)
Poly. (QUORUM)
Poly. (ONE)

y = -6E-08x4 + 0.0001x3 - 0.0802x2 + 79.259x + 8608.1
R² = 0.9988

y = -1E-07x4 + 0.0002x3 - 0.1073x2 + 78.402x + 7897.9
R² = 0.9991

y = -1E-07x4 + 0.0002x3 - 0.0958x2 + 70.308x + 8141.8
R² = 0.9994

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 100 200 300 400 500 600 700 800 900 1000

Delay, us

Number of threads

ALL
QUORUM
ONE
Poly. (ALL)
Poly. (QUORUM)
Poly. (ONE)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 2000 4000 6000 8000 10000 12000 14000

Delay, us

Number of requests pes second

ALL

QUORUM

ONE

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 2000 4000 6000 8000 10000 12000 14000

Delay, us

Number of requests pes second

ALL

QUORUM

ONE

(a) Read

(a) Read

(b) Write

(b) Write

 y
ALL

Read(x)=9E-08x4 - 0.0002x3 + 0.1005x2 + 94.648x + 8870.3 (2)

y
QUORUM

Read (x)=-9E-08x4 -0.0002x3 + 0.1605x2 + 64.185x + 8761.6 (3)

 y
ONE

Read(x)=-2E-08x4 + 2E-05x3 + 0.0159x2 + 70.201x + 8002 (4)

 y
ALL

Write(x)=-6E-08x4 + 0.0001x3 - 0.0802x2 + 79.259x + 8608.1 (5)

y
QUORUM

Write (x)=-1E-07x4 + 0.0002x3 - 0.1073x2 + 78.402x + 7897.9 (6)

 y
ONE

Write(x)=-1E-07x4 + 0.0002x3 - 0.0958x2 + 70.308x + 8141.8 (7)

where 𝑦ALL
𝑅𝑒𝑎𝑑

, 𝑦QUORUM
𝑅𝑒𝑎𝑑

, 𝑦ONE
𝑅𝑒𝑎𝑑

, 𝑦ALL
𝑊𝑟𝑖𝑡𝑒

, 𝑦QUORUM
𝑊𝑟𝑖𝑡𝑒

, 𝑦ONE
𝑊𝑟𝑖𝑡𝑒

 –

Cassandra read/update response time for different consistency
settings [us]; x – the number of threads (e.g. concurrent requests).

TABLE III. GOODNESS-OF-FIT FOR READ/WRITE REGRESSIONS

Polynomial regression Linear
regression order=2 order=3 order=4

Read

statistics

ALL 0.9982 0.9982 0.9984 0.9979

QUORUM 0.9981 0.9988 0.9990 0.9976

ONE 0.9978 0.9979 0.9980 0.9952

Write

statistics

ALL 0.9985 0.9985 0.9988 0.9970

QUORUM 0.9981 0.9983 0.9991 0.9972

ONE 0.9982 0.9986 0.9994 0.9978

Obviously, regression functions (2-7) and their coefficients
are unique for our experimental setup and will not exactly suit
other installations. System developers performing predictive
modelling and forecasting system performance will need to
find equations which theoretically fit their own benchmarking
results using a variety of tools and APIs. If needed, more
sophisticated regression techniques, like multivariate adaptive
regression splines, support vector regression or artificial neural
networks can be also applied [12].

V. FINDING THE OPTIMAL SETTINGS GUARANTYING

THE STRONG DATA CONSISTENCY

As it was discussed in Section II.B Cassandra can
guarantee the strong data consistency model if a sum of
replicas written and read is higher than the replication factor.
It means that for a three-replicated system (which is a default
standard for many large-scale distributed systems including
Facebook, Twitter, etc.) there are 6 possible read/write
consistency settings guaranteeing the strong data consistency:

1) ‘Read ONE – Write ALL’ (1R-3W);

2) ‘Read QUORUM – Write QUORUM’ (2R-2W);

3) ‘Read ALL – Write ONE’ (3R-1W);

4) ‘Read QUORUM – Write ALL’ (2R-3W);

5) ‘Read ALL– Write QUORUM’ (3R-2W);

6) ‘Read ALL – Write ALL’ (3R-3W).

Besides, the two settings: ‘Read

ONE – Write QUORUM’ (1R-2W) and
‘Read QUORUM – Write ONE’ (2R-
1W) provide 66.6% consistency
confidence (e.g. a probability that a read
request returns the most recent data).
Finally, the ‘Read ONE – Write ONE’
(1R-1W) setting can guarantee only the
33.3% consistency confidence.

If a system developer would like to
ensure that a read operation always
reflects the most recent update he/she
can opt for one of the first six settings.
However, our experiments clearly show
that the fewer replicas are invoked the

faster Cassandra performs read/write operations. Thus, in
practice one should choose between the three following
settings: 1R-3W, 2R-2W and 3R-1W.

As all three settings guarantee the strong consistency a
system developer could be interested in choosing one
providing the minimal response delay on average. In turn, the
response delay and the Cassandra throughput depend on the
current workload and the ratio between read/write requests.

Using regression functions (2-7) we can predict the
average Cassandra latency under the mixed read-write
workload:

 y
1R-3W

(x) = PRead∙y
ONE

Read(x) + PWrite∙yALL

Write(x) (8)

 y
2R-2W

(x) = PRead∙y
QUORUM

Read (x) + PWrite∙yQUORUM

Write (x) (9)

 y
3R-1W

(x) = PRead∙y
ALL

Read(x) + PWrite∙yONE

Write(x) (10)

where 𝑃𝑅𝑒𝑎𝑑 , 𝑃𝑊𝑟𝑖𝑡𝑒 – probabilities of read/write requests,
PRead + PWrite = 1.

Table IV provides some estimates of the Cassandra latency
for different settings guaranteeing the strong consistency
under a mixed read/write workload using (2-7) and (8-10).
The Cassandra database is known for extremely fast
writes/updates. Thus, one might decide to use 1R-3W as the
best setting, among others (e.g. 2R-2W, 3R-1W), which
guaranty the strong consistency. However, as it follows from
Table IV, the 1R-3W setting does not provide the lowest
response time in all possible scenarios. For instance, if a
probability of reads is less than 0.5 (50%), the 2R-2W
consistency setting provides the lowest delay for workloads less
than 50 threads. However, with the increase of the percentage
of write requests (higher than 50%) the 1R-3W setting becomes
optimal independently on the current workload. Increasing the
number of requests per second and the percentage of read
requests make the 2R-2W and especially the 3R-1W setups very
inefficient demonstrating the exponential grow of the
Cassandra latency. However, the 3R-1W setup still provide the
lowest delay in heavy ‘write mostly’ workloads when the
percentage of read requests is less than 25%.

The 3D surface plot shown in Fig. 6 demonstrates the
domains in the input workload where the particular consistency
setting provides the best performance. It is shown that opting for
2R-2W and 3R-1W in certain scenarios would allow us to
improve the Cassandra performance (up to 14% on average in
our case – see Fig. 7). This information can be extremely useful
for system developers allowing them to dynamically change
consistency settings of read and write requests in an optimal way
still guaranteeing the strong data consistency.

TABLE IV. ESTIMATED CASSANDRA DELAY UNDER DIFFERENT WORKLOADS DEPENDING
ON READ/WRITE RATIO

Threads
Read/Write = 10/90% Read/Write = 30/70% Read/Write = 50/50% Read/Write = 90/10%

1R-3W 2R-2W 3R-1W 1R-3W 2R-2W 3R-1W 1R-3W 2R-WU 3R-1W 1R-3W 2R-2W 3R-1W

10 9324 8746 8935 9187 8896 9133 9049 9045 9331 8774 9345 9728

50 12304 11651 11679 12137 11806 12157 11970 11960 12636 11637 12269 13593

100 15794 15027 14863 15661 15372 15820 15529 15717 16777 15264 16407 18691

200 22281 21286 20741 22397 22433 22917 22512 23580 25093 22743 25874 29446

300 28532 27402 26428 29051 29622 29938 29570 31842 33447 30609 36283 40466

400 34928 33804 32322 35926 37104 37075 36924 40405 41828 38921 47006 51335

500 41709 40714 38628 43204 44930 44425 44700 49146 50222 47690 57578 61815

600 48976 48149 45371 50952 53035 51989 52928 57921 58607 56879 67694 71843

700 56686 55914 52385 59115 61239 59672 61544 66564 66959 66403 77214 81534

800 64655 63610 59319 67523 69247 67285 70392 74885 75250 76128 86160 91182

900 72561 70628 65636 75888 76650 74541 79216 82672 83447 85872 94716 101258

1000 79937 76154 70612 83803 82922 81061 87670 89691 91510 95403 103228 112407

*delays are measured in [us]; **the minimal values are underlined

Fig. 6. Workload domains with the optimal consistency settings.

Fig. 7. Box-and-whisker diagrams showing Cassandra average speedup

(latency decrease as compared to 1R-3W) due to optimal coordination of

consistency settings depending on a read/write ratio.

VI. EXPERIMENTAL-BASED METHODOLOGY FOR

OPTIMAL COORDINATION OF CONSISTENCY SETTINGS

One might note that the data reported and the regression
functions used in the previous sections are unique for our
experimental setup and might not exactly match other
installations. This is generally true. It is obvious that the
Cassandra latency depends on many factors including the size
and structure of the column family, used hardware, number of
nodes and their geographical distribution, etc. In this section
we generalize the experimental data reported by proposing a
methodology to be used by system engineers for predicting the
Cassandra latency and coordinating
consistency settings at run time for
read and write requests in an
optimal manner.

A. Methodology

The methodology employs a
benchmarking approach to
quantify the Cassandra latency and
throughput. The benchmarking
here aims at estimating the system
performance in order to find how
efficient the system can serve the
certain mixed workload when
using different consistency
settings. The methodology consists

of the following steps (steps 1-5 can be performed once as a
part of system load testing; step 6 should be performed at run-
time during system operation):

1) Deploying and running a Cassandra database in a

real production environment.

2) Modifying the YCSB workloads to execute application-

specific read and write queries. This helps evaluate the

Cassandra performance in the realistic application

scenarios.

3) Benchmarking the Cassandra database under

different workloads (threads per second) with different

consistency settings following the benchmarking scenario

described in Sections III.A-B.

4) Finding regression functions that accurately

interpolate the average read/write latency measured

experimentally depending on the workload for different

consistency settings (see Section IV.B).

5) Identifying the optimal consistency settings by using

functions (8)–(10) to provide the minimum Cassandra latency

depending on the workload and the ratio of read and write

requests (e.g. workload mix) as described in Section V. As a

result, system developers are able to identify the workload

domains with the optimal consistency settings (e.g. see Fig. 6).

6) Monitoring the current workload and the read/write

ratio during system operation and setting the optimal

consistency taking into account the workload domains

identified at the previous step.

The proposed methodology enables a run-time optimization
of consistency settings to achieve the maximal Cassandra
performance and still guarantee the strong consistency.

B. Verification

To verify the proposed methodology we benchmarked the
Cassandra performance under mixed read/write workloads
(Read/Write = 10/90%, 30/70%, 50/50% and 90/10%) using the
same methodology described in Section III.A-B. Obtained
experimental results were compared with the estimated data
reported in Table IV. Table V shows a deviation between
experimentally measured and estimated (see Table IV) delays.
Cells with consistency settings that provided the minimal latency
among {1R-3W, 2R-2W and 1R-3W} are underlined in the
table. It is shown that accuracy between experimental and
estimated data are considerably high. A deviation never exceeds
17% (the worst case: Read/Write = 90/10%; threads=10; 3R-
1W) and is reducing with the increase of a number of threads.

051
01
52
02
53
03
54
04
55
06
07
08
09
0

1
0

0

5000

15000

25000

35000

45000

55000

65000

75000

85000

95000

105000

1
0 1
0

0 2
0

0 3
0

0 4
0

0 5
0

0 6
0

0 7
0

0 8
0

0 9
0

0

1
0

0
0

9
0
0
0

TABLE V. A DEVIATION BETWEEN ESTIMATED AND EXPERIMENTALLY MEASURED CASSANDRA DELAYS
UNDER DIFFERENT WORKLOADS DEPENDING ON READ/WRITE RATIO

Threads
Read/Write = 10/90% Read/Write = 30/70% Read/Write = 50/50% Read/Write = 90/10%

1R-3W 2R-2W 3R-1W 1R-3W 2R-2W 3R-1W 1R-3W 2R-WU 3R-1W 1R-3W 2R-2W 3R-1W

10 -3.4% 1.8% -0.6% -4.2% -1.8% -4.3% -5.0% -5.6% -8.2% -6.7% -13.5% -16.2%

50 2.0% -1.4% -1.1% 2.7% 0.3% 0.8% 3.5% 1.9% 2.5% 5.0% 4.9% 5.5%

100 2.4% 0.4% 2.5% 2.7% 2.5% 4.8% 3.0% 4.4% 6.7% 3.5% 7.8% 9.9%

200 -1.1% -1.1% 0.1% -1.8% -0.9% -1.2% -2.5% -0.7% -2.3% -4.0% -0.4% -4.1%

300 -2.6% -1.2% -2.3% -1.8% -2.0% -2.2% -1.1% -2.6% -2.2% 0.2% -3.7% -2.2%

400 2.1% 2.9% -0.2% 1.3% 1.7% -0.6% 0.5% 0.7% -1.0% -0.9% -0.9% -1.4%

500 1.2% 0.4% 2.7% 1.7% 0.4% 2.3% 2.1% 0.3% 1.9% 2.8% 0.2% 1.4%

600 -2.2% -2.4% -0.8% -2.3% -0.8% 0.3% -2.4% 0.4% 1.2% -2.5% 2.3% 2.4%

700 -0.1% 0.0% -1.0% 0.6% 0.0% -1.0% 1.3% 0.0% -0.9% 2.5% 0.1% -0.9%

800 1.8% 1.1% 0.1% 0.5% 0.3% -0.6% -0.8% -0.4% -1.2% -3.2% -1.5% -2.1%

900 -1.3% -0.3% 0.5% -0.4% -0.1% 0.8% 0.4% 0.0% 1.0% 1.9% 0.3% 1.4%

1000 0.3% 0.0% -0.2% 0.1% 0.0% -0.2% -0.1% 0.1% -0.2% -0.4% 0.1% -0.2%

*deviations for the measured minimum delays are underlined

Finally, by matching the cells with the underlined values in
Tables IV and V one should note that the proposed methodology
suggests optimal consistency settings in 92%.

VII. CONCLUSION AND LESSONS LEARNT

Our work experimentally investigates the interplay
between different consistency settings and performance of the
Cassandra NoSQL database. This is an important part of the
fundamental trade-off between Consistency, Availability and
Partition tolerance which is in the very nature of globally-
distributed systems and large-scale replicated data storages.

The reported results show that used consistency settings
can significantly affect the Cassandra response time and
throughput that have to be accounted during system design
and operation. The strong data consistency settings can
increase database latency by 26% and degrade its throughput
by 25% on average for read requests and by 13% and 10% for
write requests correspondingly.

The Cassandra database offers developers a unique
opportunity to tune the consistency setting for each read or
write request. Besides, it is possible to guarantee the strong
data consistency by coordinating consistency settings for read
and write requests to ensure that the sum of nodes written and
read is greater than the replication factor. Developers of real
Big-Data applications where Cassandra is used as a NoSQL
storage are advised to benchmark the performance of different
consistency settings under different workloads and for
different ratios between read and write requests. This will
allow them to identify the domains in the space of the input
workload where the certain consistency setting provides the
minimum latency.

One of our major findings is the fact that the optimal
consistency settings maximizing the Cassandra performance
significantly depend on the current workload and a ratio of
read and write requests. They confirm our claim that none of
consistency settings always guaranties the minimum latency.

There could be no “cleanly” defined workload mixes which
approximate the operational system workloads to make the
best off-line decisions. The real workload mix can evolve and
change over time impacting the desirable Cassandra settings.
The proposed methodology aims at choosing the optimal
consistency setting dynamically at run-time by monitoring the
current workload mix and making use of the benchmarking
results collected offline during system load testing.

REFERENCES

[1] E. Evans, "NoSQL 2009," 12 May 2009. [Online]. Available:

http://blog.sym-link.com/2009/05/12/nosql_2009.html.

[2] D. Pritchett, "Base: An Acid Alternative," ACM Queue, vol. 6, no. 3,

pp. 48-55, 2008.

[3] E. Brewer, "Towards Robust Distributed Systems," in 19th Annual

ACM Symposium on Principles of Distributed Computing, Portland,

USA, 2000.

[4] S. Gilbert and N. Lynch, "Brewer’s Conjecture and the Feasibility of

Consistent, Available, Partition-Tolerant Web Services," ACM

SIGACT News, vol. 33, no. 2, pp. 51-59, 2002.

[5] Github, "Benchmarking Cassandra and other NoSQL databases with

YCSB," [Online]. Available: https://github.com/cloudius-

systems/osv/wiki/Benchmarking-Cassandra-and-other-NoSQL-

databases-with-YCSB.

[6] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and R. Sears,

"Benchmarking Cloud Serving Systems with YCSB," in 1st ACM

Symposium on Cloud Computing, Indianapolis, Indiana, USA, 2010.

[7] R. Hecht and S. Jablonski, "NoSQL Evaluation. A Use Case Oriented

Survey," in IEEE International Conference on Cloud and Service

Computing, Washington, USA, 2011.

[8] V. Abramova, J. Bernardino and P. Furtado, "Testing Cloud

Benchmark Scalability with Cassandra," in IEEE 10th World

Congress on Services, Anchorage, USA, 2014.

[9] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham and C. Matser,

"Performance Evaluation of NoSQL Databases: A Case Study," in

1st ACM/SPEC International Workshop on Performance Analysis of

Big Data Systems, Austin, USA, 2015.

[10] G. Haughian, R. Osman and W. Knottenbelt, "Benchmarking

Replication in Cassandra and MongoDB NoSQL Datastores," in 27th

International Conference on Database and Expert Systems

Applications, Porto, Portugal, 2016.

[11] V. A. Farias, F. R. Sousa, J. G. R. Maia, J. P. P. Gomes and J. C.

Machado, "Regression based performance modeling and

provisioning for NoSQL cloud databases," Future Generation

Computer Systems, vol. 79, p. 72–81, 2018.

[12] F. Karniavoura and K. Magoutis, "A measurement-based approach

to performance prediction in NoSQL systems," in 25th IEEE Int.

Symposium on the Modeling, Analysis, and Simulation of Computer

and Telecom. Systems (MASCOTS’07), Banff, Canada, 2017.

[13] F. Cruz, F. Maia, M. Matos, R. Oliveira, J. Paulo, J. Pereira and R.

Vilaca, "Resource usage prediction in distributed key-value

datastores," in IFIP Distributed Applications and Interoperable

Systems (DAIS'2017), Heraklion, Crete, 2017.

[14] E. Brewer, "CAP twelve years later: How the "rules" have changed,"

Computer, vol. 45, no. 2, pp. 23-29, 2012.

[15] R. Guerraoui, M. Pavlovic and D. Seredinschi, "Trade-offs in

replicated systems," IEEE Bulletin of the Technical Committee on

Data Engineering, vol. 39, no. 1, pp. 14-26, 2016.

[16] D. Abadi, "Consistency Tradeoffs in Modern Distributed Database

System Design," IEEE Computer, vol. 45, no. 2, pp. 37-42, 2012.

[17] O. Tarasyuk, A. Gorbenko and A. Romanovsky, "The Impact of

Consistency on System Latency in Fault Tolerant Internet

Computing," in Distributed Applications and Interoperable Systems,

LNCS 9038, Berlin, Springer, 2015, pp. 179-192.

[18] A. Fekete and K. Ramamritham, "Consistency Models for Replicated

Data," in Replication, vol. LNCS 5959, B. Charron-Bost, F. Pedone

and A. Schiper, Eds., Berlin, Springer-Verlag, 2010, pp. 1-17.

[19] S. Burckhardt, "Principles of Eventual Consistency," Foundations

and Trends Programming Languages, vol. 1, no. 1-2, pp. 1-150,

2014.

[20] DataStax, Inc., "Apache Сassandra 2.1 for DSE. About data

consistency," 14 February 2018. [Online]. Available:

https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dmlAbou

tDataConsistency.html.

[21] N. Neeraj, Mastering Apache Cassandra, Birmingham: Packt

Publishing Ltd. , 2013.

[22] DataStax, Inc., "Apache Cassandra 2.1. Configuring data

consistency," 14 February 2018. [Online]. Available:

https://docs.datastax.com/en/cassandra/2.1/cassandra/dml/dml_conf

ig_consistency_c.html.

[23] B. Cooper, "Running a Workload," 2 Jul 2013. [Online]. Available:

https://github.com/brianfrankcooper/YCSB/wiki/Running-a-

Workload.

[24] Y. Chen, A. Gorbenko, A. Romanovsky and V. Kharchenko,

"Measuring and Dealing with the Uncertainty of the SOA Solutions,"

in Performance and Dependability in Service Computing: Concepts,

Techniques and Research Directions, V. Cardellini, Ed., Hershey,

USA, IGI Global, 2011, p. 265–294.

[25] A. Gorbenko, A. Romanovsky, O. Tarasyuk, V. Kharchenko and S.

Mamutov, "Exploring Uncertainty of Delays as a Factor in End-to-

End Cloud Response Time," in 9th European Dependable

Computing Conference (EDCC’2012), Sibiu, Romania, 2012.

[26] H. Mezni, S. Aridhi and A. Hadjali, "The uncertain cloud: State of

the art and research challenges," International Journal of

Approximate Reasoning, vol. 103, pp. 139-151, 2018.

[27] J. L. Devore, Probability and Statistics for Engineering and the

Sciences, 8th Edition, Boston (USA): Cengage Learning, 2011.

