
Citation:
Gorbenko, A and Karpenko, A and Tarasyuk, O (2020) "Analysis of Trade-offs in Fault-Tolerant
Distributed Computing and Replicated Databases." In: 2020 IEEE 11th International Conference
on Dependable Systems, Services and Technologies (DESSERT). IEEE. ISBN 978-1-7281-9958-0,
978-1-7281-9957-3 DOI: https://doi.org/10.1109/dessert50317.2020.9125078

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/7186/

Document Version:
Book Section (Accepted Version)

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/7186/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

The 11th IEEE International Conference on Dependable Systems, Services and Technologies, DESSERT’2020

14-18 May, 2020, Kyiv, Ukraine

978-1-7281-9957-3/20/$31.00 ©2020 IEEE

Analysis of Trade-offs in Fault-Tolerant Distributed

Computing and Replicated Databases

Anatoliy Gorbenko1,2
1Leeds Beckett University

Leeds, UK

A.Gorbenko@leedsbeckett.ac.uk

Andrii Karpenko
2National Aerospace University

Kharkiv, Ukraine

A.Karpenko@student.csn.khai.edu

Olga Tarasyuk
2National Aerospace University

Kharkiv, Ukraine

O.Tarasyuk@csn.khai.edu

Abstract—This paper examines fundamental trade-offs in

fault-tolerant distributed systems and replicated databases built

over the Internet. We discuss interplays between consistency,

availability, and latency which are in the very nature of globally

distributed systems and also analyse their interconnection with

durability and energy efficiency. In this paper we put forward

an idea that consistency, availability, latency, durability and

other properties need to be viewed as more continuous than

binary in contrast to the well-known CAP/PACELC theorems.

We compare different consistency models and highlight the role

of the application timeout, replication factor and other settings

that essentially determine the interplay between above

properties. Our findings may be of interest to software engineers

and system architects who develop Internet-scale distributed

computer systems and cloud solutions.

Keywords—distributed system, replication, trade-offs,

consistency, availability, latency, durability, energy-efficiency

I. INTRODUCTION

Internet-scale distributed computer systems are now
extensively used in business-critical applications and critical
infrastructures. In such application domains, system failures
affect businesses and people’s lives. Thus, ensuring
dependability of distributed computer systems is a must, as
well as a challenge. However, by their nature, large-scale
distributed systems running over the Internet are subject to
components failures, packets loss, network disconnections,
congestions and other accidents.

High availability requirements for many Internet
applications call for the use of data replication and system
redundancy. Traditional fault tolerance mechanisms such as
N-modular, cold- and hot-spare redundancy usually rely on a
synchronous communication between replicated components.
This suggests that system replicas are synchronized over a
short and well-predicted amount of time [1]. This is a
reasonable assumption for embedded applications and for
those distributed computer systems which components are
located, for instance, within the same data center or in the
same local area network. However, this does not apply to
globally distributed computer systems, which replicas are
deployed across the Internet and their updates cannot be
propagated immediately. This circumstance makes it difficult
to guarantee consistency across replicas.

The Internet and globally distributed computer systems are
characterized by a high level of uncertainty of network delays.
This makes it almost impossible to guarantee that network
messages will always be delivered between system
components within a certain time. It have been previously
shown that there is a significant uncertainty of response time
in service-oriented systems invoked over clouds and the
Internet [2]. Besides, in our practical experiments and as

discussed by other researchers [3, 4, 5], failures occur
regularly on the Internet, clouds and in scale-out data center
networks.

When system architects employ replication and other fault
tolerant techniques for the Internet- and cloud-based systems,
they have to care about additional delays and their uncertainty
and also understand energy and other overheads. Besides,
maintaining consistency between replicas is another important
issue that needs to be addressed in fault-tolerant distributed
computing and replicated data storages.

Maintaining several system replicas inevitably increases
the overall energy, consumed by the system. The bigger the
replication factor, the higher availability can be ensured at
higher energy costs. Moreover, necessity of data
synchronization between replicas to guaranty their
consistency causes additional energy overheads spent for
parallel requests processing and transferring larger amount of
data over the network.

This paper examines fundamental trade-offs between
system latency, durability and energy consumption in addition
to Consistency (C), Availability (A) and Partition tolerance
(P) properties, as described by the CAP theorem [6]. In this
work we put forward an idea that these properties need to be
viewed as more continuous than binary. Understanding trade-
offs between them will allow systems developers to predict
system response time depending on the used replication factor
and/or the selected consistency level. Besides, it will enable
balancing availability, durability and/or consistency against
latency, power consumption and other properties.

The rest of the paper is organized as follows. In Sections 2
we discuss fundamental CAP and PACELC theorems and
their qualitative implications. Section 3 discusses different
consistency models and examines trade-offs in fault-tolerant
distributed computing and replicated databases between CAP
properties, latency, durability and energy consumption.
Finally, we draw our conclusions in Section 4 where the role
of the application timeout, replication factor and other settings
that essentially determine the interplay between above
properties is also discussed.

II. CAP AND PACELC THEOREMS AND THEIR IMPLICATIONS

The CAP theorem [6], first appeared in 1998-1999, defines
a qualitative trade-off between system Consistency,
Availability, and Partition tolerance. It declare that the only
two of the three properties can be preserved at once in
distributed replicated systems.

Gilbert and Lynch [7] consider the CAP theorem as a
particular case of a more general trade-off between consistency

and availability in unreliable distributed systems propagating
updates eventually over time.

Internet-scale distributed systems cannot avoid partitions
happened due to network failures and congestions, arbitrary
message losses and components crashes and, hence, have to
choose between strong consistency or high availability.

Thus, a distributed system working over the unreliable and
unpredictable network environment has to sacrifice one of
these properties. Failing to achieve consistency (i.e. receive
responses from all replicas) within the specified timeout causes
a partition of the replicated systems.

Timeout settings are of great importance in the context of
the CAP theorem. If timeout is less than the typical response
time, a system will likely enter a partition mode more often [8].
When a system detects a partition (e.g. when one of its replica
did not respond before the time out) it has to decide whether to
return a possibly stale result to a client or to reply with an
exception message notifying about service unavailability.
Thus, the CAP theorem suggests the following three types of
systems:

 CA, e.g. traditional ACID-oriented RDBMS systems
(MySQL, MS SQL, Oracle, PostgreSQL, etc.) which
preserve Consistency and Availability;

 AP, NoSQL databases such as Cassandra, Riak,
CouchDB, Voldemort, Dynamo which relax
Consistency in favor of Availability and Partition
tolerance;

 CP, NoSQL databases such as HBase, MongoDB,
Redis, BigTable, MemcacheDB, which preserve
Consistency when Partitioned.

The PACELC [9] theorem is a further refinement of the
CAP. It suggests that that in case of partitioning (P) of a
distributed computer system, one has to choose between
availability (A) and consistency (C), else (E) in the absence of
partitions the replicated systems still face a trade-off between
latency (L) and consistency (C). The PACELC theorem defines
the following types of distributed replicated systems:

 PC/EC, e.g. BigTable, HBase, VoltDB/H-Store,
Megastore;

 PC/EL, e.g. PNUTS;

 PA/EL, e.g. Dynamo, Cassandra, and Riak;

 PA/EC, e.g. MongoDB.

However, a notion of Partition is not well defined in the
PACELC as well. For instance, PC (PA) does not indicate that
the system is fully consistent (available). It should rather be
interpreted as ‘if partitioning happens it causes more
consistency (availability) issues than availability
(consistency) issues’.

Though CAP and PACELC theorem helps the developers
do understand the system trade-offs between consistency and
availability/latency, there are no methods available that allow
trading-off consistency against availability and latency in a
quantitative way. Besides, the CAP and PACELC theorems do
not take into account other fundamental trade-offs, e.g.
between durability and latency, energy consumption and
consistency, etc.

III. TRADE-OFFS IN FAULT-TOLERANT DISTRIBUTED

COMPUTING AND REPLICATED DATABASES

In this paper we put forward an idea that CAP/PACELC
properties need to be viewed as more continuous than binary.

Indeed, the availability is measured as usual between 0%
and 100%. Latency (response time) can theoretically vary
between zero and infinity. Though, in practice it is restricted
from the right by the application timeout and from the left by
some minimal response time higher than zero. Consequently,
the replica’s timeout defines system partitioning.

Consistency is also a continuum, ranging from weak
consistency at one extreme to strong consistency on the other,
with varying points of eventual consistency in between.

In this section we describe different consistency models
and discuss trade-offs between core properties of distributed
storage systems.

A. Consistency Models and Levels

Data consistency models define a contract between a
replicated data store and its users, in which the data store
specifies guarantees on the results of read and write operations
in the presence of concurrent users’ requests.

There are two major groups of consistency models [10]:
the first one guarantees data store state for all users (data-
centric models); the second one provides guarantees only for
an individual user (client-centric models) while the data seen
can be varying from users to users. There is a variety of
different consistency models used in distributed computing
and storage systems [10] which are structured in Fig. 1.

Consistency models

Data-centric Client-centric

without synchronization with synchronization

Eventual consistency

S
tr

ic
t

L
in

e
a
ri

z
a
b
il

it
y

S
e
q
u
e
n
ti

a
l

C
a
u
sa

l

F
IF

O

W
e
a
k

R
e
le

a
s
e

E
n
tr

y

M
o
n
o
to

n
ic

re

a
d
s

M
o
n
o
to

n
ic

w

ri
te

s

R
e
a
d
 y

o
u

r
w

ri
te

s

W
ri

te
s

fo
ll

o
w

 r
e
a
d
s

Fig. 1. The CAP trade-offs

The strong consistency cannot be efficiently achieved in
replicated systems. Thus, many distributed database systems
implements different kinds of relaxed/eventual consistency
models.

Unfortunately, there are no general rules for relaxing
consistency. As a result, different vendors implement different
consistency models, which are hardly compatible and are
difficult to match.

For example, Apache Cassandra defines a discrete set of
consistency levels specifying a number of replicas queried in
each read and write operation (see Table I). The strong
consistency guaranteeing that a read will always reflect the
most recent write is achieved when a sum of nodes written and
nodes read is higher than data replication factor.

 MongoDB’s consistency model is based on tuning w
(write concern) and j (journaling) parameters as shown in
Table II. Writes are always replicated asynchronously from
primary to secondary replicas. By default, reads are done on
primary replica. Enabling reads from secondaries makes
MongoDB always eventually consistent.

Azure Cosmos DB is a cloud-based storage system which
can be globally distributed across multiple Azure regions. It
can be configured for a single- (single write region; by default)
or multi-master replication and supports five consistency
levels described in Table III.

B. Trade-offs Between Consistency, Availability and

Latency

System consistency, availability, partition and latency are
tightly connected. A system is considered as partitioned when
some of its part does not respond until timeout due to arbitrary
message loss or delay or replica failure. Availability can be
interpreted as a probability that each request eventually
receives a response. Though, in many real systems a response
that is too late (i.e. beyond the application timeout) is treated
as a failure.

High latency has an undesirable effect for many interactive
web applications. In [11] authors showed that if a response
time increases even as small as 100 ms it dramatically reduces
the probability that a customer will continue to use the system.

A system or its replica can be considered as unavailable if
the actual response time exceeds the application time out. I.e.
a partition can be considered as a time bound on replica’s
response time. Thus, in term of CAP a slow network
connection or slow responding replica can cause a decision
that the system is partitioned.

Nowadays, architects of distributed database management
systems and large-scale web applications like Facebook,
Twitter, etc. often decide to relax consistency requirements by
introducing asynchronous data updates in favour of high
system availability and low response time. However, the most
promising approach is to try to balance these properties with
regards to the desired latency and required consistency.

Our interpretation of the CAP and PACELC theorems and
the trade-offs resulting from them is depicted in Fig. 2. The
consistency level in this model determines the number of
replicas which are invoked simultaneously to return the
adjudicated (consistent) result to a client application (pretty

TABLE I. APACHE CASSANDRA CONSISTENCY MODEL

Consistency level Definition and consistency guarantee

ONE Data must be written to the commit log and memtable of at least one replica node before acknowledging the write operations to a

client; when reading data, Cassandra queries and returns a response from a single replica (the nearest replica with the least network

latency); the strong consistency is guaranteed when a sum of nodes written and nodes read is higher than data replication factor.

TWO Data must be written to at least two replica nodes before being acknowledged; read operations will return the most recent record

from two of the closest replicas (the most recent data is determined by comparing timestamps of records returned by those two

replica)

THREE Similar to TWO but for three replicas

QUORUM A quorum of nodes needs to acknowledge the write or to return a response for a read request; a quorum is calculated by rounding down to a

whole number the following estimate: replication_factor/2+1

ALL Data must be written to all replica nodes in a cluster before being acknowledged; read requests return the most recent record after

all replicas have responded. The read operation will fail even if a single replica does not respond

EACH_QUORUM,

LOCAL_QUORU

M, LOCAL_ONE

Additional consistency levels which become available if Cassandra runs across multiple data centres

TABLE II. MONGODB CONSISTENCY MODEL

Consistency level Definition and consistency guarantee

w:0, j:false The weakest consistency setting (writes can be lost even without partition) which provides the lowest latency

w:1, j:false Writes are guaranteed onto disk of the primary replica; this provides very low latency but very weak consistency

w:2, j:false Writes are guaranteed on the primary replica’s disk and in the memory of one of the secondary replicas; this provides low latency

and low consistency

w:2, j: true Writes are guaranteed on the disks of primary replica and one of the secondary replicas; this provides medium latency and

consistency

w:majority, j: false Writes are guaranteed on the primary replica’s disk and in the memory of a majority of secondary replicas; this provides medium

latency and consistency

w:majority, j: true Writes are guaranteed on the disks of primary replica and a majority of secondary replicas; this provides high latency and

consistency

TABLE III. AZURE COSMOS DB CONSISTENCY MODEL

Consistency level Definition and consistency guarantee

STRONG

(Reads: local minority; Writes: global majority)

Strong consistency offers a linearizability guarantee, e.g. the reads are guaranteed to return the most

recent committed writes with a zero staleness window.

BOUNDED STALENESS

(Reads: local minority; Writes: local majority)

It is guaranteed that reads never see out-of-order writes. Though, reads might lag behind writes by at most

K updates of a record or by T time interval (i.e. a staleness window) whichever is less.

SESSION (Reads: single replica with session

token; Writes: local majority)

Within a single client session it is guaranteed that reads never see out-of-order writes; monotonic reads,

writes, write-follows-reads and read-your-writes are also guaranteed; For other client sessions

CONSISTENT PREFIX

(Reads: single replica; Writes: local majority)

It is guaranteed that read never see out-of-order writes or writes with gaps; e.g. it is guaranteed to

observe an ordered sequence of writes (starting with the first one) that stored at the master replica at

some time in the past; more recent writes can be missed.

EVENTUAL

(Reads: Single replica; Writes: local majority)

There is no ordering guarantee for reads. In the absence of any further writes, the replicas eventually

converge; users may read the values that are older than the ones it had read before.

similar to Cassandra consistency model; see Table I).
In particular, the following settings are possible:

 ONE (equivalent of a hot-spare redundancy) – when
the FASTEST response is received the system
forwards it to the client. This is the weakest
consistency level though it guarantees the minimal
latency.

 ALL (equivalent of a N-modular redundancy) – the
system must wait until ALL replicas return their
responses. In this case the response time is constrained
by the slowest replica though the strongest consistency
is provided.

 QUORUM (equivalent of two-out-of-three or majority
systems) – the system must wait for the responses from
a QUORUM of replica web services. It provides a
compromise between the ONE and ALL options
trading off latency versus consistency.

If minimum latency is the top priority, users should
consider a weaker consistency level, e.g. ONE when the only
one replica node is requested to respond to a read or write
request. If one intentionally decides to give up system
consistency its latency could be further improved by requesting
more replicas at once than it is necessary. For instance, all
replica nodes can be requested but only the fastest response
will be returned to a client without waiting for other replica
responses that should be ignored.

If consistency is the top priority, users should opt for a
stronger consistency setting, which, however, will worsen
system latency. One can ensure the strong consistency when a
read will always reflect the most recent write by using the
following equation:

 (nodes_written + nodes_read) > replication_factor

For example, QUORUM consistency level used for both
write and read operations always ensures the strong read
consistency, trading off between reads and writes latencies.
The strong read consistency is also provided when the ALL
consistency level is used to read data while the ONE
consistency level is used to write them and vice versa. In the
first case the preference is given to minimizing writes latency,
while in the second case the minimum reads latency is
ensured.

C

+

-

Consistency level

 ONE ALL

...A

P

Availability Consistency

Partition Performance
(latency)

 QUORUM

+

-

- +

Fig. 2. The CAP/PACELC trade-offs

Application timeout is considered as a bound between
system availability and partition/performance (in term of
latency or response time) [12]. Thus, system designers should
be able to set up timeouts according to the desired system
response time also keeping in mind a choice between
consistency and availability.

C. Trade-offs Between Performance, Consistency and

Durability

Durability is the ability of a system to keep the committed
data consistent after crashes, drive failures, power outages, or
other forms of corruption. Storing data in memory reduce
querying time and provides more predictable and faster
performance than storing data on a hard or solid state drive.

Many NoSQL databases store data in memory which
improves performance giving up durability. Even traditional
RDBMS like PostgreSQL, Oracle, MS SQL or MySQL can
be configured to enable periodic durable commits or in-
memory data storage.

Durability of such systems is ensured by
transaction/commit logging, which records changes to the
database in a journal file. It is used for in-memory data
recovery in case of power loss or rollback operation. However,
a database can be configured to store the commit/transaction
log in memory and flush it to disk only periodically which
improves performance however creates so called ‘data loss
window’ [13].

For example, Cassandra NoSQL flushes commit log to
disk every 10 seconds by default. Thus, if a power outage
happens right before writing the commit log to disk a system
could potentially lose up to ten seconds of data.

Nevertheless, transaction/commit logging does not
prevent data loss in the event of a disk failure. If this happens,
lost data could be restored on the crashed node (when it is
being repaired) only if the system replicates data across
multiple nodes (e.g. a replication factor is above one).

Thus, a higher replication factor improves durability
property of a system. However, it affects system consistency
and latency depending on the chosen consistency level, as it is
shown in Fig. 3.

C

+

-

Replication factor

D

P

Durability Consistency

1n 2

Performance
(latency)

3

+

-

- +
Higher

durability
Higher

consistency

Fig. 3. Trade-offs between Durability, Performance

and Consistency

D. Trade-offs Between Energy Comsumption and CAP

properties

The global information and communications technology
industry, according to Gartner’s investigation [14], is
responsible for approximately 2 percent of global CO2
emissions that is, for example, equivalent to the CO2
emissions of the whole aviation sector of economy. There are
several more facts highlighting the importance of IT
contribution into the word’s energy consumption and CO2
emission.

Alex Wissner-Gross investigated [15] that a typical
Google search request generates about 7g of CO2 (Google
contradicts that it is only about 0.2 g) that is half as much as
boiling a kettle, while visiting a Web site takes on average
about 20 milligrams of CO2 per second.

The total power supply of the all computing and
communication equipment in the world accounts for 160 GW
per year that is about 8% of the total generated energy in the
world [16]. It is also worth to note that 1W of application
computing requires 27W of data center power and the
aggregated energy loss can reach up to 97% [17].

Thus, enhancing power effectiveness of information and
communication equipment, servers and data centers is one of
the key issues in modern IT industry.

The interplay between Energy Consumption (EC), Fault-
Tolerance (FT) and other CAP properties is shown in Fig. 2.
Replication factor defines the main trade-off between fault
tolerance and energy consumption which is proportional to the
number of replicas.

Replication (i.e. redundancy) is introduced to the
distributed computer systems with the two main purposes.
Firstly, it is an effective approach to tolerate errors, failures
and other abnormal situations, occurred in such systems.
Secondly, replication increases performance of high loaded
client-server systems by balancing users’ requests between
server’s replicas.

At the same time, the high degree of redundancy (large
replication factor) which assumes better fault-tolerance does
not necessary ensure the high availability, which can be
treated as a probability of a system to return response before
the time-out (see Fig. 4).

The second important trade-off is the consistency level,
defining a number of replicas invoked simultaneously during
the execution of a particular read or write request. Higher
consistency level increases system latency especially if
replicas are distributed over the Internet (hosting all replicas
in the same data center, in general case, reduces the deviation
between their response times; though the probability of
common-mode failure is increased).

Concurrent execution of redundant replicas additionally
increases the overall power consumption.

Besides, in the global sustainability context the amount of
energy spending on network transfer of the increased amount
of data is also need to be accounted.

If one of the replicas returns its response beyond the
specified application timeout the system enters a partition
mode, causing timeout exception, or returns possibly incorrect
(inconsistent) response to the client.

 pdf

1

n

3

EC

 ALL

 QUORUM

 ONE

2

Response time
(System latency)

Timeout

+-
 A

 FT
 P
 C

Fault-
Tolerance

Energy
Comsumption

Fig. 4. Trade-offs between energy consumption

and CAP properties

Thus the replication factor and consistency level
contribute together to the overall energy consumption. We can
consider the replication factor as the dominating factor in
energy increase, while the consistency level is adding a
variable component.

IV. CONCLUSION

When employing replication and other fault-tolerance
techniques over the Internet and clouds, engineers have to deal
with delays, their uncertainty, timeouts, adjudication of
asynchronous replies from replicas, and other specific issues
involved in global distributed systems. The overall aim of this
work was to study fundamental trade-offs in distributed database
systems and fault tolerant Internet computing and also between
CAP properties, durability and energy consumption.

Distributed nature of modern computer application increases
the failure probability. Replication helps to ensure system fault
tolerance and to increase its performance by load balancing. At
the same time, running several replicas proportionally increase
energy consumption. Besides, replicated system cause the
consistency issue. Necessity to provide better consistency
requires concurrent invocation of several replicas that
additionally increases the overall energy consumption.
Consequently, stronger data consistency worsens system latency
as well as increases energy consumption. This finding confirms
one of the generally adopted qualitative implications of the CAP
theorem [6].

In the paper we discussed key system settings that can be used
to interplay CAP properties, latency, durability and energy
consumption. They include:

 Replication factor (number of system replicas).

 Consistency level (in terms of consistency model used by
the system).

 Time-out settings (e.g. how long a client should wait for
read/write operations to complete; how long the system
should wait for replicas responses before it is considered
partitioned).

 Commit log synchronization time (e.g. how often the
commit log buffer stored in memory is synchronized to
disk).

One should note that these settings are tightly connected and
should not be considered individually. For instance, a replication

factor higher than one always causes consistency issue. However,
depending on the consistency settings higher replication factor
can further increase system latency (if a system is configured to
provide more strict consistency guarantees) or reduce it (if

consistency is more relaxed).

Though existing researches help to define a series of useful
qualitative implications of the CAP/PACELC theorems (e.g.
‘better consistency worsens system availability and latency’),
developers have not provided yet with adequate quantitative
models helping to predict system response time corresponding
to the chosen consistency level and to precisely trade-off
between them.

Estimation of the system worst-case execution time still
remains a common practice for many applications (e.g. embedded
computer systems, server fault-tolerance solutions, like
STRATUS, etc.). However this approach is no longer a viable
solution for the large-scale computer systems which
replicas/components are globally distributed across the Internet.

In our previous works we demonstrated that unpredictable
extreme delays exceeding the value of ten average response times
could happen in such system quite often. Thus, system architects
need novel analytical models providing a quantitative basis for
the system response time prediction depending on the consistency
level provided to (or requested by) clients.

REFERENCES

[1] P. Lee and T. Anderson, Fault Tolerance. Principles and Practice,

Wien - New-York: Springer-Verlag, 1990, p. 320.

[2] A. Gorbenko, A. Romanovsky, O. Tarasyuk, V. Kharchenko and S.

Mamutov, "Exploring Uncertainty of Delays as a Factor in End-to-

End Cloud Response Time," in 9th European Dependable Computing

Conference (EDCC’2012), Sibiu, Romania, 2012.

[3] R. Potharaju and N. Jain, "When the Network Crumbles: An Empirical

Study of Cloud Network Failures and their Impact on Services," in 4th

ACM Symposium on Cloud Computing (SOCC'2013), Santa Clara,

CA, 2013.

[4] C. Scott, D. Choffnes, I. Cunha and e. al, "LIFEGUARD: practical

repair of persistent route failures," in ACM SIGCOMM 2012

conference on Applications, technologies, architectures, and

protocols for computer communication, New York, USA, 2012.

[5] A. Gorbenko, V. Kharchenko, O. Tarasyuk, Y. Chen and A.

Romanovsky, "The threat of uncertainty in Service-Oriented

Architecture," in RISE/EFTS Joint International Workshop on

Software Engineering for Resilient Systems, SERENE'08, Newcastle,

2008.

[6] E. Brewer, "Towards Robust Distributed Systems," in 19th Annual

ACM Symposium on Principles of Distributed Computing, Portland,

USA, 2000.

[7] S. Gilbert and N. Lynch, "Brewer’s Conjecture and the Feasibility of

Consistent, Available, Partition-Tolerant Web Services," ACM

SIGACT News, vol. 33, no. 2, pp. 51-59, 2002.

[8] A. Gorbenko, A. Romanovsky and O. Tarasyuk, "Fault tolerant

internet computing: Benchmarking and modelling trade-offs between

availability, latency and consistency," Journal of Network and

Computer Applications, vol. 146, p. 102412, 2019.

[9] D. Abadi, "Consistency Tradeoffs in Modern Distributed Database

System Design," IEEE Computer, vol. 45, no. 2, pp. 37-42, 2012.

[10] A. Tanenbaum and M. Van Steen, Distributed systems: Principles and

Paradigms, Pearson Prentice Hall, 2006, p. 704.

[11] J. Brutlag, "Speed Matters for Google Web Search," Google, Inc., 22

June 2009. [Online]. Available:

http://services.google.com/fh/files/blogs/google_delayexp.pdf.

[Accessed 01 07 2019].

[12] A. Gorbenko and A. Romanovsky, "Time-outing Internet Services,"

IEEE Security & Privacy, vol. 11, no. 2, pp. 68-71, 2013.

[13] R. Alagappan, A. Ganesan, Y. Patel, T. S. Pillai, A. C. Arpaci-

Dusseau and R. H. Arpaci-Dusseau, "Correlated Crash

Vulnerabilities," in 12th USENIX Symposium on Operating Systems

Design and Implementation, Savannah, USA, 2016.

[14] Gartner, Inc. , "Gartner Estimates ICT Industry Accounts for 2 Percent

of Global CO2 Emissions," 2007. [Online]. Available:

http://www.gartner.com/newsroom/id/503867.

[15] J. Leake and R. Woods, "Revealed: the environmental impact of

Google searches," 11 January 2009. [Online]. Available:

https://www.thetimes.co.uk/article/revealed-the-environmental-

impact-of-google-searches-xvcc72q8t2z.

[16] T. Jörg, "Efficiency starts with the power supply," Journal of network

solutions/LAN, vol. 4, 2013.

[17] D. Neilson, "IBM and Dynamic Infrastructure," IBM Systems Group,

March 2009. [Online]. Available:

www.nesc.ac.uk/talks/968/NESC_Neilson.ppt.

