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Abstract—This paper examines fundamental trade-offs in 

fault-tolerant distributed systems and replicated databases built 

over the Internet. We discuss interplays between consistency, 

availability, and latency which are in the very nature of globally 

distributed systems and also analyse their interconnection with 

durability and energy efficiency. In this paper we put forward 

an idea that consistency, availability, latency, durability and 

other properties need to be viewed as more continuous than 

binary in contrast to the well-known CAP/PACELC theorems. 

We compare different consistency models and highlight the role 

of the application timeout, replication factor and other settings 

that essentially determine the interplay between above 

properties. Our findings may be of interest to software engineers 

and system architects who develop Internet-scale distributed 

computer systems and cloud solutions. 

Keywords—distributed system, replication, trade-offs, 

consistency, availability, latency, durability, energy-efficiency 

I. INTRODUCTION 

Internet-scale distributed computer systems are now 
extensively used in business-critical applications and critical 
infrastructures. In such application domains, system failures 
affect businesses and people’s lives. Thus, ensuring 
dependability of distributed computer systems is a must, as 
well as a challenge. However, by their nature, large-scale 
distributed systems running over the Internet are subject to 
components failures, packets loss, network disconnections, 
congestions and other accidents. 

High availability requirements for many Internet 
applications call for the use of data replication and system 
redundancy. Traditional fault tolerance mechanisms such as 
N-modular, cold- and hot-spare redundancy usually rely on a 
synchronous communication between replicated components. 
This suggests that system replicas are synchronized over a 
short and well-predicted amount of time [1]. This is a 
reasonable assumption for embedded applications and for 
those distributed computer systems which components are 
located, for instance, within the same data center or in the 
same local area network. However, this does not apply to 
globally distributed computer systems, which replicas are 
deployed across the Internet and their updates cannot be 
propagated immediately. This circumstance makes it difficult 
to guarantee consistency across replicas. 

The Internet and globally distributed computer systems are 
characterized by a high level of uncertainty of network delays. 
This makes it almost impossible to guarantee that network 
messages will always be delivered between system 
components within a certain time. It have been previously 
shown that there is a significant uncertainty of response time 
in service-oriented systems invoked over clouds and the 
Internet [2]. Besides, in our practical experiments and as 

discussed by other researchers [3, 4, 5], failures occur 
regularly on the Internet, clouds and in scale-out data center 
networks. 

When system architects employ replication and other fault 
tolerant techniques for the Internet- and cloud-based systems, 
they have to care about additional delays and their uncertainty 
and also understand energy and other overheads. Besides, 
maintaining consistency between replicas is another important 
issue that needs to be addressed in fault-tolerant distributed 
computing and replicated data storages. 

Maintaining several system replicas inevitably increases 
the overall energy, consumed by the system. The bigger the 
replication factor, the higher availability can be ensured at 
higher energy costs. Moreover, necessity of data 
synchronization between replicas to guaranty their 
consistency causes additional energy overheads spent for 
parallel requests processing and transferring larger amount of 
data over the network. 

This paper examines fundamental trade-offs between 
system latency, durability and energy consumption in addition 
to Consistency (C), Availability (A) and Partition tolerance 
(P) properties, as described by the CAP theorem [6]. In this 
work we put forward an idea that these properties need to be 
viewed as more continuous than binary. Understanding trade-
offs between them will allow systems developers to predict 
system response time depending on the used replication factor 
and/or the selected consistency level. Besides, it will enable 
balancing availability, durability and/or consistency against 
latency, power consumption and other properties. 

The rest of the paper is organized as follows. In Sections 2 
we discuss fundamental CAP and PACELC theorems and 
their qualitative implications. Section 3 discusses different 
consistency models and examines trade-offs in fault-tolerant 
distributed computing and replicated databases between CAP 
properties, latency, durability and energy consumption. 
Finally, we draw our conclusions in Section 4 where the role 
of the application timeout, replication factor and other settings 
that essentially determine the interplay between above 
properties is also discussed. 

II. CAP AND PACELC THEOREMS AND THEIR IMPLICATIONS 

The CAP theorem [6], first appeared in 1998-1999, defines 
a qualitative trade-off between system Consistency, 
Availability, and Partition tolerance. It declare that the only 
two of the three properties can be preserved at once in 
distributed replicated systems.  

Gilbert and Lynch [7] consider the CAP theorem as a 
particular case of a more general trade-off between consistency 



 

 

and availability in unreliable distributed systems propagating 
updates eventually over time. 

Internet-scale distributed systems cannot avoid partitions 
happened due to network failures and congestions, arbitrary 
message losses and components crashes and, hence, have to 
choose between strong consistency or high availability. 

Thus, a distributed system working over the unreliable and 
unpredictable network environment has to sacrifice one of 
these properties. Failing to achieve consistency (i.e. receive 
responses from all replicas) within the specified timeout causes 
a partition of the replicated systems.  

Timeout settings are of great importance in the context of 
the CAP theorem. If timeout is less than the typical response 
time, a system will likely enter a partition mode more often [8]. 
When a system detects a partition (e.g. when one of its replica 
did not respond before the time out) it has to decide whether to 
return a possibly stale result to a client or to reply with an 
exception message notifying about service unavailability. 
Thus, the CAP theorem suggests the following three types of 
systems: 

 CA, e.g. traditional ACID-oriented RDBMS systems 
(MySQL, MS SQL, Oracle, PostgreSQL, etc.) which 
preserve Consistency and Availability; 

 AP, NoSQL databases such as Cassandra, Riak, 
CouchDB, Voldemort, Dynamo which relax 
Consistency in favor of Availability and Partition 
tolerance; 

 CP, NoSQL databases such as HBase, MongoDB, 
Redis, BigTable, MemcacheDB, which preserve 
Consistency when Partitioned. 

The PACELC [9] theorem is a further refinement of the 
CAP. It suggests that that in case of partitioning (P) of a 
distributed computer system, one has to choose between 
availability (A) and consistency (C), else (E) in the absence of 
partitions the replicated systems still face a trade-off between 
latency (L) and consistency (C). The PACELC theorem defines 
the following types of distributed replicated systems: 

 PC/EC, e.g. BigTable, HBase, VoltDB/H-Store, 
Megastore; 

 PC/EL, e.g. PNUTS; 

 PA/EL, e.g. Dynamo, Cassandra, and Riak; 

 PA/EC, e.g. MongoDB. 

However, a notion of Partition is not well defined in the 
PACELC as well. For instance, PC (PA) does not indicate that 
the system is fully consistent (available). It should rather be 
interpreted as ‘if partitioning happens it causes more 
consistency (availability) issues than availability 
(consistency) issues’. 

Though CAP and PACELC theorem helps the developers 
do understand the system trade-offs between consistency and 
availability/latency, there are no methods available that allow 
trading-off consistency against availability and latency in a 
quantitative way. Besides, the CAP and PACELC theorems do 
not take into account other fundamental trade-offs, e.g. 
between durability and latency, energy consumption and 
consistency, etc. 

 

III. TRADE-OFFS IN FAULT-TOLERANT DISTRIBUTED 

COMPUTING AND REPLICATED DATABASES 

In this paper we put forward an idea that CAP/PACELC 
properties need to be viewed as more continuous than binary. 

Indeed, the availability is measured as usual between 0% 
and 100%. Latency (response time) can theoretically vary 
between zero and infinity. Though, in practice it is restricted 
from the right by the application timeout and from the left by 
some minimal response time higher than zero. Consequently, 
the replica’s timeout defines system partitioning. 

Consistency is also a continuum, ranging from weak 
consistency at one extreme to strong consistency on the other, 
with varying points of eventual consistency in between.  

In this section we describe different consistency models 
and discuss trade-offs between core properties of distributed 
storage systems. 

A. Consistency Models and Levels 

Data consistency models define a contract between a 
replicated data store and its users, in which the data store 
specifies guarantees on the results of read and write operations 
in the presence of concurrent users’ requests. 

There are two major groups of consistency models [10]: 
the first one guarantees data store state for all users (data-
centric models); the second one provides guarantees only for 
an individual user (client-centric models) while the data seen 
can be varying from users to users. There is a variety of 
different consistency models used in distributed computing 
and storage systems [10] which are structured in Fig. 1. 

Consistency models

Data-centric Client-centric
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Fig. 1. The CAP trade-offs 

The strong consistency cannot be efficiently achieved in 
replicated systems. Thus, many distributed database systems 
implements different kinds of relaxed/eventual consistency 
models. 

Unfortunately, there are no general rules for relaxing 
consistency. As a result, different vendors implement different 
consistency models, which are hardly compatible and are 
difficult to match. 

For example, Apache Cassandra defines a discrete set of 
consistency levels specifying a number of replicas queried in 
each read and write operation (see Table I). The strong 
consistency guaranteeing that a read will always reflect the 
most recent write is achieved when a sum of nodes written and 
nodes read is higher than data replication factor. 



 

 

 MongoDB’s consistency model is based on tuning w 
(write concern) and j (journaling) parameters as shown in 
Table II. Writes are always replicated asynchronously from 
primary to secondary replicas. By default, reads are done on 
primary replica. Enabling reads from secondaries makes 
MongoDB always eventually consistent. 

Azure Cosmos DB is a cloud-based storage system which 
can be globally distributed across multiple Azure regions. It 
can be configured for a single- (single write region; by default) 
or multi-master replication and supports five consistency 
levels described in Table III. 

B. Trade-offs Between Consistency, Availability and 

Latency 

System consistency, availability, partition and latency are 
tightly connected. A system is considered as partitioned when 
some of its part does not respond until timeout due to arbitrary 
message loss or delay or replica failure. Availability can be 
interpreted as a probability that each request eventually 
receives a response. Though, in many real systems a response 
that is too late (i.e. beyond the application timeout) is treated 
as a failure.  

High latency has an undesirable effect for many interactive 
web applications. In [11] authors showed that if a response 
time increases even as small as 100 ms it dramatically reduces 
the probability that a customer will continue to use the system. 

A system or its replica can be considered as unavailable if 
the actual response time exceeds the application time out. I.e. 
a partition can be considered as a time bound on replica’s 
response time. Thus, in term of CAP a slow network 
connection or slow responding replica can cause a decision 
that the system is partitioned. 

Nowadays, architects of distributed database management 
systems and large-scale web applications like Facebook, 
Twitter, etc. often decide to relax consistency requirements by 
introducing asynchronous data updates in favour of high 
system availability and low response time. However, the most 
promising approach is to try to balance these properties with 
regards to the desired latency and required consistency. 

Our interpretation of the CAP and PACELC theorems and 
the trade-offs resulting from them is depicted in Fig. 2. The 
consistency level in this model determines the number of 
replicas which are invoked simultaneously to return the 
adjudicated (consistent) result to a client application (pretty 

TABLE I.     APACHE CASSANDRA CONSISTENCY MODEL 

Consistency level Definition and consistency guarantee 

ONE Data must be written to the commit log and memtable of at least one replica node before acknowledging the write operations to a 

client; when reading data, Cassandra queries and returns a response from a single replica (the nearest replica with the least network 

latency); the strong consistency is guaranteed when a sum of nodes written and nodes read is higher than data replication factor. 

TWO Data must be written to at least two replica nodes before being acknowledged; read operations will return the most recent record 

from two of the closest replicas (the most recent data is determined by comparing timestamps of records returned by those two 

replica) 

THREE Similar to TWO but for three replicas 

QUORUM A quorum of nodes needs to acknowledge the write or to return a response for a read request; a quorum is calculated by rounding down to a 

whole number the following estimate: replication_factor/2+1 

ALL Data must be written to all replica nodes in a cluster before being acknowledged; read requests return the most recent record after 

all replicas have responded. The read operation will fail even if a single replica does not respond 

EACH_QUORUM, 

LOCAL_QUORU

M, LOCAL_ONE 

Additional consistency levels which become available if Cassandra runs across multiple data centres 

TABLE II.     MONGODB CONSISTENCY MODEL 

Consistency level Definition and consistency guarantee 

w:0, j:false The weakest consistency setting (writes can be lost even without partition) which provides the lowest latency 

w:1, j:false Writes are guaranteed onto disk of the primary replica; this provides very low latency but very weak consistency 

w:2, j:false Writes are guaranteed on the primary replica’s disk and in the memory of one of the secondary replicas; this provides low latency 

and low consistency 

w:2, j: true Writes are guaranteed on the disks of primary replica and one of the secondary replicas; this provides medium latency and 

consistency 

w:majority, j: false Writes are guaranteed on the primary replica’s disk and in the memory of a majority of secondary replicas; this provides medium 

latency and consistency 

w:majority, j: true Writes are guaranteed on the disks of primary replica and a majority of secondary replicas; this provides high latency and 

consistency 

TABLE III.     AZURE COSMOS DB CONSISTENCY MODEL 

Consistency level Definition and consistency guarantee 

STRONG 

(Reads: local minority; Writes: global majority) 

Strong consistency offers a linearizability guarantee, e.g. the reads are guaranteed to return the most 

recent committed writes with a zero staleness window. 

BOUNDED STALENESS 

(Reads: local minority; Writes: local majority) 

It is guaranteed that reads never see out-of-order writes. Though, reads might lag behind writes by at most 

K updates of a record or by T time interval (i.e. a staleness window) whichever is less.  

SESSION (Reads: single replica with session 

token; Writes: local majority) 

Within a single client session it is guaranteed that reads never see out-of-order writes; monotonic reads, 

writes, write-follows-reads and read-your-writes are also guaranteed; For other client sessions  

CONSISTENT PREFIX 

(Reads: single replica; Writes: local majority) 

It is guaranteed that read never see out-of-order writes or writes with gaps; e.g. it is guaranteed to 

observe an ordered sequence of writes (starting with the first one) that stored at the master replica at 

some time in the past; more recent writes can be missed. 

EVENTUAL 

(Reads: Single replica; Writes: local majority) 

There is no ordering guarantee for reads. In the absence of any further writes, the replicas eventually 

converge; users may read the values that are older than the ones it had read before. 

 



 

 

similar to Cassandra consistency model; see Table I).  
In particular, the following settings are possible: 

 ONE (equivalent of a hot-spare redundancy) – when 
the FASTEST response is received the system 
forwards it to the client. This is the weakest 
consistency level though it guarantees the minimal 
latency. 

 ALL (equivalent of a N-modular redundancy) – the 
system must wait until ALL replicas return their 
responses. In this case the response time is constrained 
by the slowest replica though the strongest consistency 
is provided. 

 QUORUM (equivalent of two-out-of-three or majority 
systems) – the system must wait for the responses from 
a QUORUM of replica web services. It provides a 
compromise between the ONE and ALL options 
trading off latency versus consistency. 

If minimum latency is the top priority, users should 
consider a weaker consistency level, e.g. ONE when the only 
one replica node is requested to respond to a read or write 
request. If one intentionally decides to give up system 
consistency its latency could be further improved by requesting 
more replicas at once than it is necessary. For instance, all 
replica nodes can be requested but only the fastest response 
will be returned to a client without waiting for other replica 
responses that should be ignored. 

If consistency is the top priority, users should opt for a 
stronger consistency setting, which, however, will worsen 
system latency. One can ensure the strong consistency when a 
read will always reflect the most recent write by using the 
following equation: 

 (nodes_written + nodes_read) > replication_factor

For example, QUORUM consistency level used for both 
write and read operations always ensures the strong read 
consistency, trading off between reads and writes latencies. 
The strong read consistency is also provided when the ALL 
consistency level is used to read data while the ONE 
consistency level is used to write them and vice versa. In the 
first case the preference is given to minimizing writes latency, 
while in the second case the minimum reads latency is 
ensured.  
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Fig. 2. The CAP/PACELC trade-offs 

Application timeout is considered as a bound between 
system availability and partition/performance (in term of 
latency or response time) [12]. Thus, system designers should 
be able to set up timeouts according to the desired system 
response time also keeping in mind a choice between 
consistency and availability. 

C. Trade-offs Between Performance, Consistency and 

Durability 

Durability is the ability of a system to keep the committed 
data consistent after crashes, drive failures, power outages, or 
other forms of corruption. Storing data in memory reduce 
querying time and provides more predictable and faster 
performance than storing data on a hard or solid state drive. 

Many NoSQL databases store data in memory which 
improves performance giving up durability. Even traditional 
RDBMS like PostgreSQL, Oracle, MS SQL or MySQL can 
be configured to enable periodic durable commits or in-
memory data storage.  

Durability of such systems is ensured by 
transaction/commit logging, which records changes to the 
database in a journal file. It is used for in-memory data 
recovery in case of power loss or rollback operation. However, 
a database can be configured to store the commit/transaction 
log in memory and flush it to disk only periodically which 
improves performance however creates so called ‘data loss 
window’ [13]. 

For example, Cassandra NoSQL flushes commit log to 
disk every 10 seconds by default. Thus, if a power outage 
happens right before writing the commit log to disk a system 
could potentially lose up to ten seconds of data. 

Nevertheless, transaction/commit logging does not 
prevent data loss in the event of a disk failure. If this happens, 
lost data could be restored on the crashed node (when it is 
being repaired) only if the system replicates data across 
multiple nodes (e.g. a replication factor is above one). 

Thus, a higher replication factor improves durability 
property of a system. However, it affects system consistency 
and latency depending on the chosen consistency level, as it is 
shown in Fig. 3. 
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Fig. 3. Trade-offs between Durability, Performance  

and Consistency 



 

 

D. Trade-offs Between Energy Comsumption and CAP 

properties 

The global information and communications technology 
industry, according to Gartner’s investigation [14], is 
responsible for approximately 2 percent of global CO2 
emissions that is, for example, equivalent to the CO2 
emissions of the whole aviation sector of economy. There are 
several more facts highlighting the importance of IT 
contribution into the word’s energy consumption and CO2 
emission. 

Alex Wissner-Gross investigated [15] that a typical 
Google search request generates about 7g of CO2 (Google 
contradicts that it is only about 0.2 g) that is half as much as 
boiling a kettle, while visiting a Web site takes on average 
about 20 milligrams of CO2 per second. 

The total power supply of the all computing and 
communication equipment in the world accounts for 160 GW 
per year that is about 8% of the total generated energy in the 
world [16]. It is also worth to note that 1W of application 
computing requires 27W of data center power and the 
aggregated energy loss can reach up to 97% [17]. 

Thus, enhancing power effectiveness of information and 
communication equipment, servers and data centers is one of 
the key issues in modern IT industry. 

The interplay between Energy Consumption (EC), Fault-
Tolerance (FT) and other CAP properties is shown in Fig. 2. 
Replication factor defines the main trade-off between fault 
tolerance and energy consumption which is proportional to the 
number of replicas. 

Replication (i.e. redundancy) is introduced to the 
distributed computer systems with the two main purposes. 
Firstly, it is an effective approach to tolerate errors, failures 
and other abnormal situations, occurred in such systems. 
Secondly, replication increases performance of high loaded 
client-server systems by balancing users’ requests between 
server’s replicas. 

At the same time, the high degree of redundancy (large 
replication factor) which assumes better fault-tolerance does 
not necessary ensure the high availability, which can be 
treated as a probability of a system to return response before 
the time-out (see Fig. 4). 

The second important trade-off is the consistency level, 
defining a number of replicas invoked simultaneously during 
the execution of a particular read or write request. Higher 
consistency level increases system latency especially if 
replicas are distributed over the Internet (hosting all replicas 
in the same data center, in general case, reduces the deviation 
between their response times; though the probability of 
common-mode failure is increased). 

Concurrent execution of redundant replicas additionally 
increases the overall power consumption. 

Besides, in the global sustainability context the amount of 
energy spending on network transfer of the increased amount 
of data is also need to be accounted. 

If one of the replicas returns its response beyond the 
specified application timeout the system enters a partition 
mode, causing timeout exception, or returns possibly incorrect 
(inconsistent) response to the client. 
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Fig. 4. Trade-offs between energy consumption  

and CAP properties 

Thus the replication factor and consistency level 
contribute together to the overall energy consumption. We can 
consider the replication factor as the dominating factor in 
energy increase, while the consistency level is adding a 
variable component. 

IV. CONCLUSION 

When employing replication and other fault-tolerance 
techniques over the Internet and clouds, engineers have to deal 
with delays, their uncertainty, timeouts, adjudication of 
asynchronous replies from replicas, and other specific issues 
involved in global distributed systems. The overall aim of this 
work was to study fundamental trade-offs in distributed database 
systems and fault tolerant Internet computing and also between 
CAP properties, durability and energy consumption. 

Distributed nature of modern computer application increases 
the failure probability. Replication helps to ensure system fault 
tolerance and to increase its performance by load balancing. At 
the same time, running several replicas proportionally increase 
energy consumption. Besides, replicated system cause the 
consistency issue. Necessity to provide better consistency 
requires concurrent invocation of several replicas that 
additionally increases the overall energy consumption. 
Consequently, stronger data consistency worsens system latency 
as well as increases energy consumption. This finding confirms 
one of the generally adopted qualitative implications of the CAP 
theorem [6]. 

In the paper we discussed key system settings that can be used 
to interplay CAP properties, latency, durability and energy 
consumption. They include: 

 Replication factor (number of system replicas). 

 Consistency level (in terms of consistency model used by 
the system). 

 Time-out settings (e.g. how long a client should wait for 
read/write operations to complete; how long the system 
should wait for replicas responses before it is considered 
partitioned). 

 Commit log synchronization time (e.g. how often the 
commit log buffer stored in memory is synchronized to 
disk). 

One should note that these settings are tightly connected and 
should not be considered individually. For instance, a replication 



 

 

factor higher than one always causes consistency issue. However, 
depending on the consistency settings higher replication factor 
can further increase system latency (if a system is configured to 
provide more strict consistency guarantees) or reduce it (if 

consistency is more relaxed). 

Though existing researches help to define a series of useful 
qualitative implications of the CAP/PACELC theorems (e.g. 
‘better consistency worsens system availability and latency’), 
developers have not provided yet with adequate quantitative 
models helping to predict system response time corresponding 
to the chosen consistency level and to precisely trade-off 
between them.  

Estimation of the system worst-case execution time still 
remains a common practice for many applications (e.g. embedded 
computer systems, server fault-tolerance solutions, like 
STRATUS, etc.). However this approach is no longer a viable 
solution for the large-scale computer systems which 
replicas/components are globally distributed across the Internet. 

In our previous works we demonstrated that unpredictable 
extreme delays exceeding the value of ten average response times 
could happen in such system quite often. Thus, system architects 
need novel analytical models providing a quantitative basis for 
the system response time prediction depending on the consistency 
level provided to (or requested by) clients. 
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