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ANN Based Sensor and Actuator Fault Detection in Nuclear Reactors 

Abstract— In the nuclear power plants (NPPs), fault detection 

and diagnosis (FDD) methods are very important to improve the 

safety and reliability of plants. Researchers have established 

various FDD methods such as, model-based methods, data-driven 

methods, and signal-based methods. In practical applications 

model-based methods are very difficult to achieve. Thus, various 

data-driven methods and signal-based methods have been applied 

for monitoring key subsystems in NPPs. In this paper a brief 

overview of Artificial Neural Network (ANN) based FDD method 

is presented. Simulated data have been generated to train the 

ANNs as per requirement and to compare with the plant signal 

during fault. A technique has been proposed analyzing two sensors 

data (power sensor and coolant sensor) to determine the sensor 

and actuator fault in closed loop in presence of robust 

(Proportional-Integral-Derivative) PID controller. Results are 

produced with credible MATLAB simulation.  

 
Index Terms— ANN, Fault Detection, NPP, PWR 

I. INTRODUCTION 

A Nuclear Power Plant (NPP) is a highly complex process 

plant where a number of sensors and actuators are used to 

monitor and control different parameters, respectively. 

However, sensors and actuators endure various faults such as 

component failure and variations in operating conditions over 

time due to their inner structural modifications which leads to 

precision degradation of measurement and efficiency of plants. 

Therefore, reliable functioning of sensors and actuators is 

crucial for optimal process control. To maintain high level of 

performance of NPPs, it is necessary to detect and diagnose 

faults promptly so that corrective action can be taken to 

accommodate the system alternation to prevent the certain 

shutdown or any big accidental scenario [1].  

Over the past decades, researchers have devoted them to 

fault detection and isolation modelling. Many methods for faults 

detection and isolation have already been established. Model 

based fault detection is extremely popular among those methods. 

Raphaela et al. in [2] proposed a fault detection method based 

on physical redundancy where the output is compared with that 

of the redundant sensor. Gautam et al. in [3] has shown a 

statistical algorithm for time-varying incipient fault detection 

and isolation of sensors. Extended Kalman filter has been used 

here to formulate the fault detection index and fault signature. 

Another technique proposed by Zhao et al. in [4] is based on 

an integrated approach to detect and isolate the fault of the field 

devices like sensors, actuators, controllers in NPPs. With this 

procedure, nuclear plants are described as a causal graph where 

individual process variable is in connection with adaptive fuzzy 

inference system models. Support vector machine and improved 

particle swarm optimization (PSO) have been applied for hybrid 

fault diagnosis in [5]. Ma et al. [6] has published a review on 

applications of fault detection and diagnosis methods on NPPs. 

Effectiveness of fault tolerant techniques in digital instruments 

was studied in [7]. Chao et al. [8] has combined deep neural 

networks with system performance models for hybrid deep fault 

detection and isolation. An improved Principal Component 

Analysis (PCA) method for detecting and isolating sensor faults 

in a NPP has been proposed in [9]. Mandal et al. [10] has 

proposed a statistical method for fault detection and isolation 

where an enhanced reconstruction method is presented using 

Enhanced Singular Value Decomposition (ESVD) for a Fast 

Breeder Test Reactor (FBTR). 

ANN is capable of solving nonlinear problems and hence it 

can be used effectively in fault detection and classification [11]. 

ANN is widely accepted and it has following features:  

1) ANN can predict fast, reliably, and accuratly depending 

on the training, because its working depends upon a series of 

very simple operations. 

2) The nature of the nuclear reactor system changes with 

disturbances. Hence a neural network can incorporate the 

dynamic changes in the reactor systems.  

Artificial Neural network (ANN) based fault detection 

technique for nuclear reactors has been proposed by Hwang et 

al. [11] and Elnokity et al. [12]. However, this technique deals 

mainly with sensor faults. 

In this paper, a fault detection technique of power sensors, 

coolant temperature sensors and actuators (control rod) has 

been established by analyzing only two sensor data in closed 

loop in presence of a robust PID controller. The fault detection 

problem becomes more challenging due to the robust PID 

controller, which can reject disturbances and has good tracking 

capability.  

The remainder of the paper is organized as follows: Section 

II describes a Pressurized Water Reactor (PWR) type of NPPs. 

In Section III, details of ANN, data generation, training and 

detection technique are established. Section IV presents the 

credible MATLAB simulation for three cases: power sensor 

fault, coolant temperature sensor fault and actuator fault. 

Finally, Section IV concludes this work. 

II. PWR WITH THERMAL HYDRAULIC MODEL  

In this section, it is attempted to obtain an interval state space 

model for a PWR. A normalized point kinetic model of a PWR 

has been considered with a thermal hydraulic model. The 
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Xenon and Iodine dynamics are of less consequence during 

total power control, so they are not considered here.  

The dynamic model is given by: 
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where P is neutronic power, t   is total reactivity,    is 

neutron generation time, i  , i  , and iC   are decay constant, 

fraction of delayed neutrons, and delayed neutron precursors’ 

concentration of 
thi   group, respectively. 

The core thermal-hydraulics model is given by Mann’s 

model [13] which considers two coolant lumps for every fuel 

lump, 
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where fT   is average fuel temperature; 1cT   and 2cT  are average 

coolant temperatures in node 1 and node 2, respectively; cinT  is 

inlet temperatures of the first coolant node; fH  characterizes 

the rate of rise of fuel temperatures; f   and c  are time 

constants representing mean time for heat transfer from fuel to 

coolant and from core outlet to inlet, respectively while r   

represents coolant residence time in the core. The heat transfer 

coefficient from fuel to coolant is assumed to be constant. 

In this paper only the power control loop without secondary 

side coolant heat transfer has been considered. The change in 

total reactivity is considered due to the control rod movement 

and reactivity feedback due to fuel and coolant temperature. 

Here, a control rod acts as an actuator and this actuator 

movement can be represented by:  

 

exd
Gz

dt


=  (6) 

where ex  is the external reactivity injected to the reactor core 

due to the control rod movement, G is the reactivity worth of 

control rod while z  is the speed of the control rod movement. 

The total reactivity can be obtained by: 

1 2t ex f f c c c cT T T    = + + +  (7) 

where, f  and c  represent the temperature coefficients of 

reactivity due to fuel and coolant, respectively. Then (1)-(7) 

have been used to develop a nonlinear model of PWR. In this 

case itis assumed that, the input variable is controlling rod speed 

and the output variables are reactor power and coolant average 

temperature. In this paper, avoiding the detailed design of the 

sensor, sensor gain has been incorporated to the system, which 

is assumed to be linear for corresponding output. Next section 

will describe the procedure of the fault detection modeling. 

III. FAULT DETECTION MODELLING  

ANN has powerful non-linear mapping properties, noise 

tolerance, self-learning and parallel processing capabilities 

which add an important feature of a neural network used for 

prediction or estimation. It will also learn the dynamics of the 

system either to be linear or non-linear dynamic behaviour 

during the learning session made over several learning cycles. 

a. Structure of ANN 

In this case, two networks are required as shown in table1 

and every network is built with two-layer feed-forward 

networks with sigmoid hidden neurons and linear output 

neurons. For the given consistent data and enough neurons in 

its hidden layer, this structure can fit multi-dimensional 

mapping problems. 

 

 
Fig.1 Structure of Neural Network (NN) 

Fig. 1 describes the structure of the each NN. The number of 

neurons in hidden layer for each network is different and it has 

been chosen by several runs of trial and error procedure and the 

best result has been taken for training. Table 1 shows the details 

of the network. 

b. Data generation and training: 

For ANN based fault detection, fault free input and output data 

are required for training purpose of ANN. The training data sets 

have been generated from the system simulation model 

described in section II, rather than actual operational plant data. 

 
TABLE I. DIFFERENT NETWORK STRUCTURE 

Network Input Hidden 

Layer 

Output 

Layer 

Output 

NN1 Normalised 

demand power 

(X1) 

5 1 Reactor 

Power (Y1) 

NN2 Normalised 

demand power 

(X1) 

6 1 Coolant 

Temperature 

(Y2) 



Fig.2. Random input signal 
 

Fig 2 depicts the random different combinations of demand 

power which is used as an input data for the reactor system. 

Here, the power change has been considered within the range 

of 60% Full Power (FP) – 100%FP for 5000 seconds with 

different pattern and magnitude between above range as shown 

in Fig.2. Next, the reactor model has been simulated without 

any fault with this random demand power described above. In 

this case, it has also been considered that a robust PID controller 

as described in [14] is working with the reactor model. The 

reactor output power (Y1) and the coolant temperature (Y2), 

corresponding to this input signal (X1), have been generated 

and stored in MATLAB workspace. 

The networks are trained to adjust the weights to minimize 

the performance function. The gradient of the performance is 

determined using Levenberg–Marquardt (LM) back 

propagation technique which involves performing 

computations backward through the network. Mean Square 

Error (MSE) and Regression analysis (R) are used to test the 

performance. The average squared difference between outputs 

and targets is called MSE, lower values are better and zero 

means no error. The correlation between outputs and targets is 

measured by R values. R value= 1 means a close relationship 

while the same of 0 indicates a random relationship. The LM 

algorithm is the most used for adjustment of the parameters of 

the Multi-Layer Perceptron neural networks.  

 

 
Fig.3. Regression analysis of NN1. 

 

Fig.4. Performance analysis of NN1 using MSE. 

 

The training response curves of two networks are shown in 

Fig.3–Fig.6. ANN training response for NN1 has been shown 

in Fig.3 and Fig.4 while Fig.5 and Fig.6 are for the NN2. Fig.3 

and Fig.5 having four subplots represent the regression analysis 

during training at one epoch interval. Fig.4 and Fig.6 show the 

corresponding training performance. Those graphs depict that 

all networks have optimal successful results of training. 

 

 
Fig. 5 Regression analysis of NN2. 

 

Actual power sensor output and NN1 output have been 

compared and generated a percentage error ( 1e ). Similarly, 

actual coolant sensor output has been compared with NN2 and 

generated a % error ( 2e ). The comparisons of NN1 and NN2 

with the corresponding actual outputs are shown in Fig.7 and 

Fig.8 respectively. 

c. Failure and detection technique 

In this work the sensor output of coolant temperature is not 

feedback to the reactor and only output from power sensor is 



considered for the feedback. Thus, during fault in the 

temperature sensor there is no variation in 1e . Only 2e  will 

Fig.6. Performance analysis of NN2 using MSE 

 
 

 
Fig.7. Network prediction with actual output with different data set of 

NN1 

 
Fig.8. Network prediction with actual output with different data set of 

NN2 

 

have a change in magnitude. But in case of power sensor failure, 

both 1e  and 2e  show a significant change. However, a PID 

controller in the closed loop will try to minimise 1e . As a result, 

in 1e  a sharp peak will appear while 2e  has a persistent value. 

In case of actuator saturation fault, the complete tracking is not 

possible so 1e  and 2e  both have a significant persistent value. 

1e  and 2e for all three faults have been shown in detail in 

Section IV in Fig.12-13, Fig.16-17 and Fig.20-21 respectively. 

This technique has been depicted in Fig.9 and used for the fault 

detection. 

IV. SIMULATION AND RESULTS  

The trained ANNs based fault detection technique described 

in Section III is used to determine the faults in this section. In 

this paper three fault cases have been carried out. 

  

a. Case1: Fault in temperature sensor 

First it is assumed that the reactor is running at 100%FP. After 

60sec demand power is reduced to 80%FP at 10%FP/min ramp. 

The controller for power loop is working well to handle this 

power manoeuvring. Then at 200 sec a random fault in 

temperature sensor bias within limit 10%  has been injected. 

Actual output power and coolant temperature has been shown 

in Fig.10 and Fig.11. Fig.12 and Fig.13 depict the error 1e  and 

2e  respectively. 

 
 

Fig.9. Flowchart for fault detection technique 

 



 
Fig.10. Actual normalized reactor power during fault in coolant temperature 

sensor. 

 

As only reactor power is acting as a feedback element, so 

during fault in temperature sensor 2e  is not affecting the 

reactor power. So 1e will remain in its tolerant limit, whereas 

2e
 
has a persistent value as shown in Fig.12 and Fig.13. 

From Fig.9 it can be referred as a fault in temperature sensor.  

 

 
Fig.11. Actual coolant temperature during fault in coolant temperature 

sensor. 

 
Fig.12. 1e  during fault in coolant temperature sensor. 

 
Fig.13. 2e during fault in coolant temperature sensor. 

b. Case2: Fault in power sensor 

In this case, the initial condition of the reactor and the 

reduction of demand power scenario have been considered and 

are same with earlier ones. At 210 sec a random bias fault 

having limit 5%  has been injected. Corresponding actual 

reactor power, coolant temperature, 1e  and 2e  have been 

depicted in Fig.14-Fig.17 respectively. 

 
Fig.14. Actual normalised reactor power during fault in power sensor 

 
Fig.15. Actual coolant temperature during fault in power sensor 



 
Fig.16. 1e  during fault in power sensor 

As described in earlier section, output from power sensor is 

attached as a feedback connection. During a fault in power 

sensor, controller will try to track the reference signal which 

minimizes the process fault and 1e  as well. So, a peak will 

appear in 1e  as shown in Fig.14. Again, this peak may appear 

as a prediction error during transition period of fast ramping 

power maneuvering. 

 

 
Fig.17. 2e  during fault in power sensor 

To avoid this confusion, 2e  also is observed. If there is a fault 

in power sensor, the controller will try to minimise the error by 

introducing more positive or negative reactivity depending 

upon the direction of the fault which will ultimately affect the 

coolant temperature. Thus, there always a non-zero steady 

deviation will appear in 2e  as depicted in Fig.17. Owing to this 

situation it can be referred as a fault in power sensor. 

c. Case3: Fault in actuator (control rod) 

In this case, again it assumed that the reactor is running at 

100% FP and change in demand power is considered as earlier. 

During this transient it is assumed that control rod has been 

stuck in 90% of its actual position. Fig.18-Fig.21 depict the 

respective actual reactor power, coolant temperature, 1e and 2e

respectively. 

 
Fig.18. Actual normalized reactor power during fault in actuator. 

In this case the actual reactor power could not reach to 

80%FP due to actuator saturation which will also affect the 

coolant temperature. Thus, in this case 1e and 2e  both will 

have a significant persistent value as shown in Fig.20 and 

Fig.21. which only happens due to actuator fault. 

 

 
Fig.19. Actual coolant temperature during fault in actuator. 

 

 
Fig.20. 1e  during fault in power actuator. 



 
Fig.21. 2e  during fault in actuator. 

 

V. CONCLUSION  

In this work, fault detection in sensors and actuators of a 

PWR based NPP has been established only using the power 

sensor data and coolant sensor data. Well performing ANNs 

have been created for power sensors and coolant sensors. Three 

faults and their detection technique have been shown with a 

credible simulation. However, this methodology is tested with 

sensor bias fault only. As the sensor drift is a slow process it is 

a challenging task to apply this technique for detection of sensor 

drift. Further work can be carried out in that direction and 

isolation process. 
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