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Abstract 

This study aimed to identify which physical and technical-tactical performance 

indicators (PI) can classify between levels of rugby league match-play. Data were 

collected from 46 European Super League (ESL) and 36 under-19 Academy 

(Academy) level matches over two competitive seasons. Thirty-one male ESL players 

and 41 male Academy players participated. Microtechnology units were used to 

analyse the physical PI and matches were videoed and coded for the individual 

technical-tactical PI, resulting in 157 predictor variables. Data were split into training 

and testing datasets (70:30). Random forests (RF) were built to reduce the 

dimensionality of the data, identify the variables of importance and build classification 

models. To aid practical interpretation, conditional inference (CI) trees were built. Nine 

variables were identified as the most important for backs, classifying between levels 

with 83% (RF) and 78% (CI tree) accuracy. The combination of variables with the 

highest classification rate was: PlayerLoad2D, PlayerLoadSLOW per Kg body mass and 

high-speed running distance. Four variables were identified as most important for 

forwards, classifying with 68% (RF) and 64% (CI tree) accuracy. Defensive play-the-

ball losses alone had the highest classification rate for forwards. The identified PI and 

their unique combinations, can be developed during training to aid in progression 

through the rugby league playing pathway. 
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Introduction 

Elite playing pathways and talent development programmes are crucial in the pursuit 

of sporting excellence1. To enhance success, organisations aim to understand the 

differences between the levels of competition within specific playing pathways1. This 

is important in professional team sports such as rugby league, as young players are 

often required to compete at the higher level whilst still training and competing at their 

contracted level. The process of determining which aspects of team sport performance 

are the most important to develop is complex, requiring a dynamic and 

multidimensional approach.  

Many studies have quantified the characteristics of match-play using 

microtechnology2,3 and video analysis4. In rugby league, differences in the whole-

match5,6, and duration-specific peak locomotive characteristics6 of match-play have 

been reported between playing standards (i.e., Super League vs. Championship) and 

levels (i.e., Under 19s vs. Senior); although there is inconsistency in which physical 

characteristics are deemed important for performance and development5,7. For 

example, McLellan and Lovell5 found National Rugby League (NRL) match-play to 

have a greater average match speed, and cover more total and sprint (> 6.1 m·s-1) 

distance than National Youth Cup (NYC) and Queensland-cup match-play. In contrast, 

Gabbett7 found no differences in average match speeds or distances covered between 

NRL and NYC match-play.  

Differences in video analysis derived technical-tactical performance indicators (PI) 

have also been identified between playing standards and levels4,8,9. It has been found 

that more successful (i.e., higher standard) teams perform more ‘play the balls’ and 
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less ‘missed tackles’ than the less successful teams8,9. Collectively, such research has 

revealed a number of important aspects of both physical- and technical-tactical-

performance that can differentiate between playing standards and levels in rugby 

league. 

Recently, studies4,10 have employed machine learning techniques to allow for 

multivariate patterns to be revealed within the characteristics of rugby league match-

play. For example, Woods et al.4 identified that senior professional (NRL) match-play 

was classified by a greater number of ‘all runs’ and ‘tackles’, and lower number of 

‘missed tackles’ relative to the elite youth competition. However, studies using both the 

physical and technical-tactical PI are limited across team sports11. To our knowledge, 

no study in rugby league has investigated the combined importance of technical-

tactical and physical PI of match-play to determine differences between playing levels 

using appropriate methods that consider the interaction between the predictor 

variables and overcome the common issues of complex datasets (e.g. 

multicollinearity)12. Therefore, this study aimed to (1) build a comprehensive data set 

of both physical and technical-tactical PI of rugby league match-play across two levels 

(i.e., academy and senior) within the English professional playing pathway, and (2) use 

machine learning techniques to determine which physical and technical-tactical PI best 

discriminate between the two levels of competition.  

Methods 

A longitudinal, observational study design was used to determine differences between 

senior and academy rugby league match-play using 157 explanatory variables 

(physical and technical-tactical PI). Data were collected from one professional rugby 
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league club during 46 European Super League senior (ESL) and 36 ESL Under-19 

Academy (Academy) matches across two competitive seasons. Thirty-one male ESL 

players (height: 186.0 ± 7.0 cm, body mass: 98.28 ± 10.73 kg, age: 27.3 ± 4.8 years) 

and 41 male Academy players (height: 178.6 ± 6.4 cm, body mass: 90.1 ± 13.2 kg, 

age 17.7 ± 1.0 years) participated. The study was approved by the Institutions Ethics 

Committee, and written informed consent was obtained from all participants. 

Match observations per player were 22 ± 13 (range: 1 – 43) and 14 ± 9 (range: 1 – 36) 

in the ESL and Academy teams respectively, with a total of 1,236 match files. Three 

players competed in both ESL and Academy level match-play and so, the players 

Academy match files were excluded from analysis. Match-observations with any 

missing data (due to poor GPS quality [n = 5], players in both datasets [n = 4], missing 

collision or  PlayerLoadTM data [n = 152], and missing technical-tactical PI [n = 30]) 

were removed due to the systematic bias it could induce in the random forest analysis, 

resulting in 1,045 match files and match observations per player of 18 ± 11 (range: 2 

to 38) and 11 ± 7 (range: 1 to 31) for ESL and Academy teams respectively. Players 

were split into two positional groups to provide position specific findings, whilst 

maintaining a sufficient sample size to build accurate models: forwards (ESL, n = 325; 

Academy, n = 259) and backs (ESL, n = 240; Academy, n = 221). The ESL team won 

62% of matches, with a score difference of 3.7 ± 18.7. The Academy team won 68% 

of matches, with a score difference of 11.1 ± 26.6. 

Physical PI  

Microtechnology units (Optimeye S5, Catapult Innovations, Melbourne, Victoria), 

housing a 10-Hz Global Positioning System (GPS) receiver, a 100-Hz tri-axial 
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accelerometer, gyroscope and magnetometer (firmware version 5.27), were used to 

quantify the physical PI. The validity and reliability of microtechnology devices for 

measuring instantaneous velocity13, collision count14, and accelerometer derived 

PlayerLoadTM 15 has been established. Players wore the units in specifically designed 

pouches within the players tight fitted playing jersey, with the device positioned 

between the scapulae. The same units were worn for repeated observations, and the 

devices were switched on 30-minutes prior to the commencement of match-play16.  

For both levels, data were downloaded from the microtechnology devices using the 

proprietary software (Catapult Openfield, v.1.21.1). Speed was calculated via the 

Dopler shift method, and the minimum effort duration was set at 1-second13. Data 

during periods of substitution were removed, but natural stoppages in play (e.g., try, 

injury, video replay) were included. The minimum length of match-play to be included 

in the analysis was 10-min. The instantaneous 10-Hz speed data and collision event 

files were exported, and all further analysis was carried out in R (v 3.5.1, R Foundation 

for Statistical Computing). Rows of instantaneous speed data were removed if any of 

the following criteria were met: (1) velocity > 10 m·s-1; (2) connection to less than 10 

satellites; (3) horizontal dilution of precision was > 2.0; (4) acceleration/ deceleration 

values of > ± 6 m·s-2 16. When the total number of excluded rows exceeded more than 

10% of the match file, that instantaneous speed data file was removed (n = 5), thus 

the match observation was removed from the dataset given the missing data.  

A comprehensive analysis of physical PIs was carried out to include the range of 

microtechnology derived variables are commonly rugby league research and capture 

the demands of the sport 3,5,7,14. A range of mircrotechnology derived locomotive, 
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collision and PlayerLoadTM variables were analysed for the whole-match. Speed 

thresholds were set at 5 – 7 m·s-1 for high-speed running (HSR) and > 7 m·s-1 for sprint 

speed distances17. The PlayerLoadTM variables were calculated relative to the players 

individual body mass, to take into consideration the differences in body mass between 

the levels18. The duration-specific peak characteristics (60- to 600-s), and their 

concurrent demands (e.g., the collisions completed during the peak average speed 

period17), were calculated in the zoo package19, using the moving averages (or moving 

sum for collision count) approach3, as per previous methods6,17. The maximum value 

of each variable was extracted for each duration for each match. The collision event 

files were aligned with the 10-Hz instantaneous speed data via the UNIX timestamps, 

and the time-stamp of the identified peak demand was obtained to determine the 

concurrent characteristics of the period. Variables derived from a power law 

relationship20 were used to quantify the relationship between the investigated moving 

average durations and peak average running speeds for each player per match. 

Supplementary Table 1 lists, and describes, the physical PI analysed (137 total).  

Technical-tactical PI 

Each match was filmed using a Cannon xF105 camera, and subsequently coded 

(Sportscode, version 10) by an expert analyst (8 years’ experience). Individual 

technical-tactical PI were reduced from those coded based on the requirements of the 

club, to include only PI that had been used in previous research4,8,10, resulting in 20 PI. 

Each technical-tactical PI was clearly defined by the performance analysts carrying out 

the coding of match-play. The intra-rater reliability was established through the same 

rater coding a game more than six months apart and assessed using intra-class 
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correlation coefficient (ICC). The definitions and ICC (range: 0.57 to 1.00) for the 20 

PIs are shown in Supplementary Table 2. 

Data analyses 

All data analyses were carried out using R. A correlation matrix was built to assess the 

level of multicollinearity of the predictor variables within the data set21. Supervised 

machine learning classification techniques (random forest, conditional inference [CI] 

trees) were used to build models of the distribution of class labels (i.e., ESL or 

Academy) in terms of the predictor features. The random forest algorithm22 is a 

classification technique that uses an ensemble approach; it is robust in nature, can 

handle a mixture of data types, and provides information on relative variable 

importance22,23. Therefore, it was used to: (1) reduce the dimensionality of the training 

dataset and (2) build classification models using the identified ‘important’ variables.  

The data were split into training and testing (70:30) datasets for each positional group. 

Random forests were carried out using the default settings of the randomForest 

package (v4.6-14) 24 with the ‘set.seed’ command set at ‘123’, 500 trees used in each 

model and with the number of variables tried at each split equal to the square root of 

the number of variables inputted. Firstly, to identify the variables of greatest importance 

for forwards and backs, relative variable importance was determined on the training 

data by the Gini index; with a greater decrease in Gini index signifying greater variable 

importance. Pairs of variables with an r > 0.95 were considered for removal, with the 

variable with the lowest Gini-index removed22, resulting in the removal of nine variables 

for backs, and seven for forwards. The top variables of relative importance were 

determined independently by two researchers, agreeing on a visual break (i.e. the 
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‘elbow’) within the Gini-index plot. These variables were inputted into a final random 

forest model to classify between the two levels of match-play. Confusion matrices 

(caret package)25 and receiving operating characteristics (ROC) were generated to 

summarise and assess the accuracy of the models, respectively, for both training and 

testing datasets. Interpretation of the ROC curves were as follows: 0.5 (no value), 0.51-

0.69 (poor), 0.7 to 0.79 (fair), 0.8 to 0.89 (good), 0.9 to 0.99 (excellent) and 1 

(perfect)26. 

Conditional inference trees were grown in the party package27 on the training dataset, 

using the identified important variables, to provide more practical interpretation of how 

the PI interact to classify between levels. The alpha value was set at 0.01 to prune the 

tree. The testing datasets were used validate the CI trees identified from the training 

dataset.  

Results 

Random Forests 

For the backs, the random forest identified nine variables that created the largest 

decrease in Gini impurity and were therefore deemed as important: PlayerLoad2D, 

number of quick play-the-balls (PTBs), PlayerLoadSLOW, HSR distance covered, 

number of carries, total distance covered, number of collisions, average match-speed 

and PLSLOW per Kg body mass. These predictor variables could correctly classify 

Academy match observations  on unseen data (i.e., the testing dataset) 79% of the 

time and ESL match observations 86% of the time providing an overall accuracy of 

83%, with an OOB error rate of 10.85% (Table 1).  
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For the forwards, four variables were identified as important: number of defensive PTB 

losses, peak 60-second AveAcc, number of defensive collisions lost. These variables 

could correctly classify Academy matches on unseen data 62% of the time, and ESL 

matches 72% of the time providing an overall accuracy of 68% and OOB error rate of 

32% (Table 1). The summary statistics and ROC results of the random forest models 

are shown in Table 1.  

*** Table 1 here*** 

Conditional Inference Trees 

Figure 1 highlights the CI tree for backs including only the variables deemed important 

from the random forest. This CI tree had  an overall accuracy of 78% within the testing 

dataset demonstrating slightly less overall accuracy than the random forest. However, 

only five out of the nine variables identified as important within the random forest were 

retained in the final tree (Figure 1). Progressing to the left of the root node 

(PlayerLoad2D), terminal node 8 indicates that when a player had a PlayerLoad2D of > 

466 AU, a PlayerLoadSLOW/kg of ≤ 3.87 AU·kg-1 and covered > 384 m of HSR, this was 

correctly identified as ESL match-play for 109/110 (99.1%) observations. Terminal 

node 4 indicates that when a player had a PlayerLoad2D of ≤ 466 AU and completed > 

3 quick PTBs this was correctly identified as ESL match-play for 95% of 41 

observations. Conversely, where PlayerLoad2D was ≤ 466 AU but players completed 

≤ 3 quick PTBs, 75% of 259 observations were Academy match-play. 

*** Figure 1 here*** 



12 

Figure 2 highlights the CI tree for the forwards. The CI tree demonstrated an overall 

accuracy of 64% within the testing dataset suggesting similar overall accuracy to the 

random forest (Table 1). Three out of the four variables modelled were retained in the 

final tree. The root node is split at 5 defensive PTB losses; progressing to the left leads 

to terminal node 7 where 90% of 93 observations when a player has > 5 defensive 

PTB losses was during ESL match-play. Terminal node 4 indicates that 82% of 110 

observations, when a player has ≤ 5 defensive PTB losses, a peak 60-second AveAcc 

of ≤ 0.84 m·s-2 and ≤ 1 defensive collisions lost were during Academy match-play. 

*** Figure 2 here*** 

Discussion 

This is the first study to explore the combination of technical-tactical and physical PI to 

explain differences between playing levels in team-sport. It aimed to build a 

comprehensive dataset of PI in Academy and ESL level match-play to identify which 

are important when discriminating between match-play at the two levels within an 

English rugby league club. The initial 157 PI were reduced based on variable 

importance, and the key combination of these PI for forwards and backs were identified 

through the CI trees to aid in coaching practices.  

The random forest algorithms identified which PI are most important for the 

classification of match-play between the levels of competition within one professional 

club, whilst taking into account their complex interactions. They identified nine 

variables for backs and four for forwards out of the 157 investigated. While there were 

three common important PI between the positional groups, overall there were distinct 
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differences in the identified most important PI, supporting the need to approach talent 

development as separate positional groups5,6. When testing the importance of these 

identified variables on unseen data, for the backs, both the random forest and 

conditional inference trees produced strong models that could classify the two levels 

with good accuracy (78 to 83%; Table 1) demonstrating confidence in the PI for 

distinguishing between Academy and ESL match-play. For both the random forest and 

conditional inference trees, the forwards variables produced a model with poor 

accuracy (Table 1) which suggests that the current 157 PI are not sufficient for 

classifying between ESL and Academy match-play.    

The CI trees provide further practical insight into how the unique combination and 

interaction of these PI were able to classify between the players competing in ESL or 

academy match-play. For the backs, the combination of PI with the highest percentage 

classification was PlayerLoad2D, PlayerLoadSLOW/kg and HSR distance covered 

(terminal node 8; Figure 2). Given the relationships between the different PlayerLoadTM 

variables and total distance, change of direction and collisions28, terminal node 8 

suggests that ESL backs complete greater “global” external workloads (PlayerLoad2D), 

complete either more, or the same amount of high-intensity movements at low 

locomotor velocities (e.g., change of direction) but whilst carrying more body mass 

(PlayerLoadSLOWkg), and cover greater HSR distance than backs during Academy 

match-play. Therefore, Academy coaches and practitioners should prescribe training 

practices that expose players to HSR and high intensity acceleration and 

decelerations, such as manipulations of small-sided games. But alongside this players 

are required to increase their body mass whilst maintaining the intensity of training. 

The CI tree for the backs also indicated that a low PL2D (< 466 AU) and a low number 
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of quick PTBs (<3) are indicative of Academy match-play. Coaches can use this to 

guide Academy training practices with the inclusion of quick PTBs in training whilst the 

“global” external workload of training is high. These combinations of external load 

variables and quick PTBs identified can provide Academy coaches and practitioners 

with a refined  area of focus during training to aid in progression to ESL match-play. 

However, more research on how these skills can be optimally acquired during training 

through the manipulation of task constraints and then quantified using deeper levels of 

performance analysis indicators is required to explore how this process can be used 

effectively in practice29.  

For forwards, terminal node 7 of the CI tree demonstrated the highest classification 

rate (Figure 2); 90% of 93 observations with greater than 5 defensive PTB losses 

occurred during ESL match-play. This finding is surprising given the increased level of 

skill associated with higher playing levels30, but could be due to the different playing 

standards nested within the two levels of competition. Considering more defensive 

PTB losses occur in the ESL competition, Academy coaches should focus on creating 

scenarios of defensive PTB losses during training so that players can learn how to 

respond to such situations during match-play at the higher level. However, overall, the 

technical-tactical and physical PI investigated for the forwards produced poor 

classification models in comparison to the backs. This could be due to the unique 

technical-tactical roles within the positional group (e.g., middle vs. edge forwards)31, 

which aren’t captured when analysed as ‘forwards’ only.   

The technical-tactical PI identified as important in the current study differ to the 

research by Woods et al.4 which identified that ‘all runs’, ‘tackles’ and ‘missed tackles’ 
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were able to classify between playing levels in the Australian professional playing 

pathway. This could be due to the current study classifying player observations rather 

than team observations, or the fact that there are variances in the sport played at the 

senior professional level in Australia (NRL) compared to Europe (ESL), for example 

NRL match-play generates fewer ‘line breaks’, ‘errors’, ‘tackles’ and ‘dummy half runs’, 

suggesting different game strategies and skill capabilities10 and therefore likely 

differences in the development pathways. More importantly, the differences in findings 

could be due to the addition of the physical characteristics in the current study and the 

greater number of PI included. This further supports the need to consider both physical 

and technical-tactical PI together in both research and practice. 

Despite the current study being the first to use both physical and technical-tactical PI 

to classify between match-play at different playing levels in rugby league32, it is not 

without its limitations. The academy and senior teams being from only one professional 

club limits the generalisability of the findings. Additionally, contextual-related variables 

(e.g., match-location, match-outcome, opposition) were not accounted for and given 

their effect on physical and technical tactical PI33, this should be considered in future. 

Furthermore, further research with a larger sample is required to investigate more 

specific positional groupings within the broader forwards and backs categories used in 

the current study. The identified important PI and differences indicate areas of focus 

for Academy training to prepare players for ESL match-play however further research 

into what PI are important for success at the senior level (ESL) would further support 

training practices. Additionally, whilst the important PIs identified can be used to guide 

the focus of training practices, the use of technical-tactical PI counts only limits the 

practical application of the important PI identified to inform the design of specific drills. 
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Further research is required to align practice and performance analysis techniques to 

theories of motor learning to assist in the practical utility of these findings29,34. 

In conclusion, this is the first study to carry out a comprehensive analysis of both the 

physical and technical-tactical PI at different levels within rugby league. The 157 PI 

included were used to classify between the two levels of competition using machine 

learning techniques, allowing for the complex interactions to be considered. Nine and 

four important physical and technical-tactical PI were identified for backs and forwards 

respectively; these identified PI, and their unique combinations provide coaches and 

practitioners with distinct PI to focus on developing during training to aid in appropriate 

progression of players through the pathway to compete in ESL match-play.  

Practical applications 

• Physical and technical-tactical performance indicators of match-play should be

combined to determine differences between levels of competition in team-sports

and machine learning models should be applied to establish cut-off points for

specific PIs to aid in the design and prescription of training drills.

• Academy coaches should consider the greater external loads found in ESL

match-play for backs when planning training, specifically high speed running

and high intensity movements, whilst increasing their body mass

• Academy coaches should consider the greater number of defensive PTB losses

that have been identified for forwards in ESL match-play when planning training

for forwards.
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Figure 1. The conditional inference tree showing the classification of levels using the 

identified important variables for backs.  

Note Numbers in the square boxes denote the node number. 0 = Academy match-

play, 1 = European Super League match-play. n = the number of observations in 

each terminal node 

err = error percentage i.e., the percentage of the observations that do not meet the 

overall classification. PL2D = Player Load 2DTM, PTB = play-the-balls, PL.slow.kg = 

Player Load slowTM per kg of body mass, HSD = high speed running distance, MPM 

= meters per minute (average match-speed). 
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Figure 2. The conditional inference tree showing the classification of levels using the 

identified important variables for forwards.  

Note Numbers in the square boxes denote the node number. 0 = Academy match-

play, 1 = European Super League match-play. n = the number of observations in 

each terminal node 

err = error percentage i.e., the percentage of the observations that do not meet the 

overall classification. PTB = play-the-ball, AveAcc_60sec = peak 60-second average 

absolute acceleration and deceleration. 
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