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Machine learning approach for prediction 
of crimp in cotton woven fabrics 

 

Authors 

Abstract 

The interlacements of yarns in woven fabrics cause the yarn to follow a wavy path that produces 

crimp. Off-loom width of the fabric is determined by the percentage of the induced crimp. 

Therefore, the final width of the fabric will be less or surplus than required if crimp percentage is 

not precisely measured. Both excessive or recessive fabric width is unwanted and leads to huge 

loss of cost (profit), manufacturing time, energy (electricity) and ultimately loss of competition. 

Crimp percentage in yarns is determined by physically measuring the extra yarn length or by 

predicting it based on fabric structural parameters. Existing methods are mainly post-production, 

time and resource intensive that require specialized skills and tangible fabric samples. The 

proposed framework applies supervised machine learning for crimp prediction to cater for the 

limitations of the existing techniques. The framework has been cross-validated and has prediction 

accuracy (R2) of 0.86 and 0.79 for warp and weft yarn crimp respectively. It has prediction 

accuracy (R2) for warp & weft yarns crimp of 0.99 & 0.81 respectively for the unseen industrial 

dataset. The proposed prediction model shows better performance when compared with an existing 

standard system. 

Introduction 

Woven fabrics are produced by the interlacements of warp and weft yarns. These interlacements 

of yarns cause the yarns to follow a wavy path in fabric. Extra yarn length is required to overcome 



these undulations or waviness. The waviness or contraction in the yarns is called crimp [1] which 

leads to fabric shrinkage when it is removed from the loom after weaving (Off-loom fabric). 

Off-loom width of the fabric is determined by the percentage of crimp present in the weft 

yarn. Therefore, the final width of the fabric will be less or surplus than required if crimp 

percentage is not precisely measured. Both excessive or recessive fabric width is unwanted and 

leads to huge loss of cost (profit), manufacturing time, energy (electricity) and ultimately loss of 

competition [2]. In addition to fabric width, several other mechanical properties like weight, 

thickness, cover factor, drape, flexibility, stiffness, bending, air permeability, impact loading, shear 

and hygral expansion are influenced by the yarn crimp. At the point of contacts of yarns, crimp 

interchange is affected due to interlacements or weave design. The difference between the crimp 

percentage values of warp and weft yarns influence the strength, elongation and energy absorption 

levels of woven fabrics differently in both warp and weft directions [3]. All these properties are 

important while designing fabrics for high end technical applications like heat and radiation 

protected firefighter clothing, molten metal protection for welders, stab protection & bulletproof 

vests, and spacesuits [4]. 

The yarn crimp is highly dependent on the variations in structural parameters of the fabric 

such as warp and weft yarn linear densities, weave design, reed count and several others. Among 

structural parameters the weave design that causes crimp is characterized by its float length i.e. the 

number of yarns passing without interlacement over the other set of yarns. Moreover, the selection 

of raw material (i.e. fibre) and the yarn spinning techniques (carded or combed) directs the physical 

and mechanical properties of the fabric [5]. In addition, several factors related with weaving 

machine i.e. warp yarn tension, heald-crossing time, the position of backrest, cloth support, and 

shed geometry also induces their effects on the fabric [6]. For example, a high warp yarn tension 



or warp linear density will result in a low crimp percentage in the warp but on the other hand, 

causes a higher crimp percentage in the weft. 

At the present, the textile industry uses standardized measurement method to measure the 

crimp percentage from the weaved fabric. ASTM Standard test method D3883 [7], [8] and its 

variations are the most widely used methods in the textile industry for measuring crimp from the 

woven fabric. These measurement methods are mainly post-production, time and resource 

intensive that require specialized skills and tangible fabric samples. However, researchers have 

proposed methods for pre-production prediction of the yarn crimp using recorded data of the fabric 

structural parameters [9]. Prediction is made through statistical methods [2], [10] or using neural 

networks [11], [12]. An existing prediction model [2] based on linear regression is unable to handle 

fabric structural parameters that are inter-dependent and multi-correlated. For predicting the yarn 

crimp percentage, existing techniques have used small sized samples that do not reflect the true 

variations of the fabric parameters. 

 The present work proposes a technique for the prediction of yarn crimp in cotton fabric 

using a machine learning approach. In machine learning, classifier algorithms make predictions 

using a precisely build a mathematical model of sample data called the training set. Accuracy of 

the prediction is highly dependent on the quality of the training set. The present work presents 

modelling of the training set using data extracted from thousands of quality sheets of real fabric 

samples produced by a leading textile industry of Pakistan. Every quality sheet contains fabric 

parameters of the produced fabric and its crimp percentage (manual and standardized 

measurement). For the proposed training set, the fabric parameters (carefully selected) and the 

crimp percentage from the quality sheets are modelled as input vector (predictors) and the target 

(or the class label) respectively.  



The earlier attempts [13] were made to predict crimp from the geometry of yarns in the 

fabric. Geometrically, crimp percentage in the woven fabric is the percentage of extra yarn length 

over the fabric length. Mathematical models are incapable of explaining the exact geometrical 

forms of fibre, yarns, and fabrics. Due to several physical changes, yarns and fabrics change their 

behaviour and results deviate from the proposed mathematical model [13]. 

With the advancements in prediction tools, statistical (regression) and neural networks 

were used to predict the crimp percentage with reasonable high accuracy but on a small sized 

dataset. The dataset used by Lin [14] contain only 26 samples of cotton yarn. All the samples are 

with float length 1 and single yarn linear density only. Half of the samples were used as training 

and the rest for the test. The artificial neural network (ANN) model of the Lin [14] was constructed 

with an input layer having three nodes (Cover factor of fabric, warp and weft), the hidden layers 

having sixteen nodes and an output layer with two nodes for warp and weft crimp. Their model 

has an R2 value of 85.09% for warp crimp and 87.23% for the weft. Training a neural network is 

a time-consuming job. Authors have [11] attempted to predict the crimp percentages in warp and 

weft yarns of polyester fabric. This model was based on 56 fabric samples. Yarn Linear density, 

PPI, width, float length, shed closing time and loom speed were used as the input predictors to 

train the model. ASTM Standard D3883 was used to validate the results.  

A statistical model was developed based on 68 samples that were manufactured in a 

controlled environment [2]. Among those, sixty samples were used for training purpose and eight 

samples for validation/testing. Cotton yarn with float length varying from 1-4 was used. A linear 

regression equation was developed for both warp and weft yarn crimps separately with R2 values 

of 71.81 % and 67.05% respectively. MINITAB statistical software was used for the analysis. 

Significant factors identified for warp crimp were weft count, PPI, width, float length and reed 



count. While for weft crimp were warp count, weft count, float length, reed count, and reed 

denting.  

Table 1: Summary and comparison of previous methods and techniques of crimp measurement and 
prediction 

Related 
work 

Measurement 
(M) / 

Prediction (P) 
Technique 

Sampl
e Size 

Raw 
Material 

Float 
Length 

Validation Method 

ASTM 
Standard 
D3883 [7] 

M Manual Way - - - - 

Peirce 
(1937)  

P 
Geometry of yarn in 

fabric 
- - - - 

Lin [14] P Neural Networks 26 Cotton 1 
Holdout Method (13 

Traning - 13 test) 

Maqsood 
et. al. [2] 

P Linear Regression 68 Cotton 1, 2, 3, 4 
Holdout Method (60 

Traning - 8 test) 

Shahabi 
et. al. [15] 

M 
Tensile Strength Testing 
Machine (Instron) with 

Image Analysis 
9 

45:55 
Wool-

polyester 
blend 

2, 3 ASTM Standard D3883 

Mertova 
et. al. [13] 

P 
Tensile Strength Testing 

Machine (Instron) 
30 Polyester 1 

ASTM Standard D3883, 
Image Analysis 

Kaplan et. 
al. [16] 

M Image Analysis 12 Cotton 4 ASTM Standard D3883 

Malik et. 
al. [11] 

P Neural Networks 52 Polyester 1, 2 ASTM Standard D3883 

 

A summary and comparison of previous prediction models and measurement techniques 

are shown in Table 1. It has been observed from the resultant comparison that fabric swatch is 

physically required for crimp measurement. The physical measurement methods are laborious, 

time-consuming and involve costly equipment (e.g., tensile strength testing machine, Instron & 

Charged Coupled Device (CCD) cameras). The calculated results deviate from the proposed 

mathematical model due to variations in the geometrical structure. Prediction inaccuracy prevails 

in results because existing prediction models are trained and tested on a small and controlled 

dataset. The linear regression model has been used in crimp prediction while the predictors are 



multiple correlated dependent variables. Neural network models are trained on very small dataset 

while neural networks perform well when it has been trained on a large dataset. Due to which these 

models are unable to handle all the variations that arise in real time. These models perform very 

well for the dataset on which they are trained but perform below par for the unseen data. 

 

Figure 1: A systematic predictor selection method. 

Materials and Methods 

The following section presents the details of fabric data used and the predictor selection 

method for the construction of a training model that predicts the crimp percentage. Accuracy of 

the prediction is highly dependent on the selection of appropriate predictors. The present work 

follows a systematic approach for the selection of predictors that has yielded a high accuracy.  

Figure 1 shows the sequence of steps (represented as rectangular blocks) that were carried out for 

the predictor selection process. At each step, several classifiers were executed to determine the 

significance of the underlying process towards predicted accuracy. For the present case, the 

predicted accuracy is the coefficient of determination (R2) i.e. the percentage of variance in the 

dependent variable (crimp percentage) that is predictable from the independent variable 

(predictors). Solid arrows in the Figure 1 represent that the modified predictor or a set of predictors 

after applying a process will be selected to the next process only if the applied process results in 

improved R2 value. Otherwise, the pre-processed data will be used (dashed line arrow in Figure 

1). The same procedure has been followed for both wrap and weft crimp prediction. Brief 



description of each step is presented in the following subsections. Later, the present section 

discusses the effect of individual processes in term of crimp prediction.  

Table 2: Fabric parameters recoded in the quality sheets 

Sr. Parameter Type of Data Values 

1 Warp Yarn linear density Categorical 7,10,12,14,16,20,24,30 

2 Weft Yarn linear density Categorical 7,10,12,14,16,18,20,22,24,30 

3 Warp density (Ends per inch, EPI) Continuous 38–144 

4 Weft density (Picks per inch, PPI) Continuous 25–102 

5 Weave Design (Float Length) Categorical 1,2,3,4 

6 GSM Continuous 81-386 

7 Reed Count Continuous 16.25–49.5 

8 Reed Denting (Ends per dent) Categorical 1,2,3,4,5 

 

Dataset and Pre-processing 

Fabric data has been collected from a textile factory located in Faisalabad, Pakistan. The 

factory is heavily involved in export and domestic quality fabric weaving. All fabrics are produced 

as per customer requirements and fabric domain of use. A quality sheet containing fabric 

parameters i.e. yarn linear densities, yarn densities, grams per square meter (GSM) etc. is 

maintained for record keeping with every fabric produced by the factory. Traditionally, the textile 

industry uses these quality sheets as an instrument for cost estimations of future orders. Predicting 

accurate crimp percentage is an important aspect of the profitable cost estimation. The collected 

quality sheets contain data of 5428 samples of different fabrics produced by the factory. The 

parameters of the quality sheet are shown in Table 2. These parameters are either categorial type 

or continuous having defined categories and ranges of values respectively.  

The present study focuses on fabric made up of carded cotton yarn on air-jet loom. The 

whole dataset contains 1390 cotton fabric samples. This raw data has been cleaned for missing 



values like empty spaces, alphabetical characters, anomalies etc. After exclusion of these records, 

the final sample size contains 1273 fabric samples. 

Normalization 

Normalization prepares data for the prediction model by bringing values of the predictors 

at a uniform scale or range. With normalized data, classifiers give equal weight to all predictors 

while constructing the prediction model [17]. However, not all predictors require normalization. It 

is applied to only those predictors that have different ranges of values. Mix-Max and Z-score 

normalization techniques were used separately for the normalization of selected data. Min-Max 

Normalization retains the relationship among original data. Whereas, Z-score normalization 

performs normalization based on the mean and standard deviation of the predictors. After each 

normalization, the normalized data is tested for its crimp prediction accuracy. 

Predictors Enhancement 

The prediction accuracy can be enhanced by increasing the number of predictors. Original 

predictors can be enhanced by creating new predictors using different mathematical techniques. 

The enhancement can be performed either through experts using domain knowledge or by 

mathematical expressions. For the present case, two mathematical expressions i.e. product and 

square are used separately to develop new predictors. The number of predictors has increased from 

eight to thirty-six by using product techniques. Whereas, the number of predictors was doubled in 

number through square enhancement technique. 

Table 3: Data Fragmentation and number of instances in each fragment 

Data Fragments Float length 
Initial No. of 

Instances 

After Outliers 

Removal 
After Data Enrichment 

Fragment 1 1 390 377 658 

Fragment 2 2 355 324 685 

Fragment 3 3 472 461 652 

Fragment 4 4 56 37 203 



Combine Dataset 1,2,3,4 1273 1199 2198 

 

Data Fragmentation 

Our dataset comprises of fabric samples with four different float lengths. Range of crimp 

percentage induced in the yarns is different for each float length. To reduce the variations within 

the dataset, Data is divided into four fragments based on float length values as shown in Table 3. 

Fragmenting the data will improve the prediction accuracy of the model, as data within the 

fragments is more coherent and homogeneous. Traditionally, woven fabrics having the same float 

length possess the crimp percentage of warp and weft yarns in the same range. 

Outliers Detection 

Outliers are the anomalies in the dataset. Removal of the outliers results in improved 

prediction accuracy [18]. Basic data descriptions (measures of central tendency and measures of 

dispersion) and statistical visualization (histograms and scatter plots) are outlier detection methods 

that provide valuable insight into the overall behaviour of data. The outlier detection methods (data 

description and visualization) used in the present work does not account the multivariate nature of 

the data as all predictors were independently examined. Moreover, another technique used for the 

detection of outliers is the use of a linear regression model. The linear regression model takes into 

account the multivariate nature of the dataset. Responses are dependent on predictors and a linear 

regression model is built on this assumption. Observations that shows a large deviation from the 

fitted model was considered as outliers. 

Data Enrichment 

The number of samples in each fragment-set got reduced with the removal of noise and 

outliers. Prediction models considerably work well with a large number of instances in the dataset. 

To further enhance the dataset, a statistical technique considering mean and standard deviation of 

the continuous variables (predictors) was used. More instances are generated with the provided 



mean and standard deviation. A certain noise is added to avoid any potential duplication of 

instances.  

Table 4: Warp and weft yarn crimp percentages (response variables)  

Sr. Response Type of Data Range 

1 Warp crimp percentage Continuous 6–19.80 

2 Weft crimp percentage Continuous 1–11.5 

 

Prediction Models 

The response variables are the warp and weft yarn crimp percentages that are of the type 

continuous variable. The range of both variables for cotton fabric is shown in Table 4. For the 

present case, the prediction model is a regression predictive model that performs the task of 

approximating a mapping function from input variables (predictors) to a continuous output 

variable (response or the class label). Every prediction model is provided with a set of N training 

instances of the form [(f1,y1),…,(fn,yn)] where fi is the predictor vector of the ith training instance 

and yi is its labelled crimp percentage. The prediction model constructs a function Y(fi) that best 

fits the data. The loss function evaluates how well any prediction models have fitted the given 

training data. The loss function is minimized to increase the accuracy of the prediction model. 

Present work is focused to use state of the art machine learning algorithms like Ridge 

regression, Kernel tricks (Polynomial and Radial Based Function (RBF)), K-nearest neighbours 

(KNN), Decision tree (Random Forest), Ensemble method (AdaBoost) and Deep learning (Neural 

Networks). Anaconda 64-bit windows python 3.6.3 data science platform is used to apply machine 

learning techniques on our data to build models. PyCharm community edition which is a freeware 

integrated development environment (IDE) is used for the application of selected techniques. 

Scikit-learn, numpy, and pandas libraries of python are used. 



    Table 5: Summary of prediction accuracies R2 values for warp crimp prediction models 
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Linear 

Regression 
0.63 0.64 0.64 0.65 0.63 0.58 0.59 0.75 0.21 0.56 0.64 0.76 -0.1 0.69 0.71 0.82 0.74 0.39 0.68 

Ridge 

Regression 
0.64 0.64 0.64 0.66 0.63 0.58 0.6 0.75 0.22 0.56 0.64 0.76 -0 0.69 0.71 0.82 0.7 0.38 0.68 

KNN 0.66 0.66 0.66 0.66 0.67 0.64 0.61 0.69 0.16 0.57 0.67 0.7 0.2 0.73 0.8 0.9 0.67 0.8 0.85 

Kernel 

Ridge 

(poly) 

-0.5 -0.5 -0.5 0.68 0.67 0.62 -1.4 0.75 0.36 0.58 0.63 0.76 0.24 0.77 0.79 0.88 0.71 0.54 0.78 

Kernel 

Ridge 

(RBF) 

0.7 0.7 0.7 0.67 0.64 0.65 0.55 0.76 0.12 0.62 0.66 0.76 -0.1 0.8 0.72 0.86 0.7 0.4 0.72 

Random 

Forest 
0.69 0.69 0.69 0.7 0.7 0.67 0.61 0.72 0.17 0.61 0.65 0.72 0.35 0.74 0.67 0.88 0.71 0.69 0.9 

AdaBoost 0.65 0.65 0.65 0.68 0.66 0.64 0.6 0.71 -0.1 0.54 0.62 0.71 0.36 0.75 0.78 0.84 0.67 0.69 0.82 

Neural 

Network 
0.69 0.7 0.7 0.69 0.69 0.68 0.64 0.7 -0.2 0.63 0.67 0.66 -0.7 0.73 0.81 0.9 0.29 0.7 0.9 

 



Table 6: Summary of prediction accuracies R2 values for weft crimp prediction models 
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Linear 

Regressio

n 

-0.42 -0.42 -0.42 0.59 0.61 0.61 0.55 0.18 0.36 0.54 0.49 0.13 0.72 0.69 0.49 0.35 0.88 0.58 0.58 

Ridge 

Regressio

n 

-0.36 -0.36 -0.36 0.6 0.6 0.61 0.55 0.18 0.37 0.54 0.49 0.13 0.72 0.69 0.48 0.35 0.88 0.58 0.58 

KNN -15.29 -15.29 -15.29 0.57 0.57 0.64 0.57 0.21 0.38 0.6 0.54 0.12 0.7 0.79 0.71 0.71 0.89 0.78 0.79 

Kernel 

Ridge 

(poly) 

-0.06 -0.06 -0.06 0.58 0.6 0.65 0.58 0.16 0.36 0.56 0.56 0.1 0.73 0.77 0.61 0.34 0.9 0.65 0.65 

Kernel 

Ridge 

(RBF) 

0.11 0.11 0.11 0.59 0.59 0.64 0.52 0.17 0.25 0.58 -0.04 0.13 0.75 0.81 0.61 0.24 0.88 0.61 0.61 

Random 

Forest 
-8.97 -9.39 -8.97 0.59 0.62 0.69 0.63 0.18 0.51 0.63 0.53 0.14 0.66 0.78 0.75 0.63 0.9 0.78 0.78 

AdaBoost 0.51 0.51 0.51 0.6 0.63 0.68 0.59 0.24 0.21 0.62 0.49 0.15 0.5 0.78 0.69 0.5 0.87 0.74 0.75 

Neural 

Network 
-0.93 -0.93 -0.93 0.62 0.63 0.7 0.61 0.13 0.01 0.61 0.49 0.12 0.52 0.8 0.58 0.62 0.87 0.7 0.69 

  



Validation 

The validation of the crimp prediction through constructed training model was performed using i) 

k-fold cross-validation technique, ii) ASTM Standard D3883 method and iii) comparative analysis 

with state-of-the-art crimp prediction technique. 

K-fold Cross-Validation 

Evaluation of prediction made through limited data is an on-going research area in machine 

learning and data mining. Many different techniques were proposed (holdout method, random 

subsampling, cross-validation, bootstrapping, etc.), among those the cross-validation is gaining 

popularity and considered by the researchers as a valid evaluation method for situations with small 

or medium scale data size. The k-fold cross-validation is a regression method in which training 

data is partitioned into a fixed number of splits or folds. For every iteration, one-fold of the data is 

taken as a test while the rest is used for the training. The procedure continues for the total number 

of folds so that, finally every instance has been tested at least one time. The debate is present in 

literature about setting the right number of folds i.e. the value of K. However, 10-fold cross-

validation is the most widely used method for evaluating the performance of the prediction model. 

In 10-fold cross-validation, the training data is split into ten equal parts. Each part is held out in an 

iteration as a test and the remaining nine-tenths are used for training. The training/learning 

procedure continues for ten times and finally, the performance measures are averaged to get the 

result. 

The 10-fold cross-validation results are used to measure the significance of a process that 

has been applied to the data during the construction of the training model. The 10-fold cross-

validation results (R2 value) for wrap and weft crimp prediction is shown in Table 5 & 6 



respectively for every process. As discussed, the predictor or a set of predictors are selected for 

the next process only if they show improved R2 value.   

Wrap crimp prediction 

The prediction accuracy (R2 value) of the wrap yarn crimp made by classifier algorithms 

after every process being applied to the data is shown in the Table 5. Initially, after pre-processing 

(filtering and cleaning) of the data – among classifiers – Kernel ridge (RBF) has resulted the 0.70 

R2 value. However, random forest (RF) and neural network (NN) resulted the same 0.69. The 

negative R2 value is produced by the Kernel ridge (poly) classifier i.e. -0.5.  After filtering and 

cleaning, the data was normalized using min-max and z-score methods. The results of 10-fold 

cross-validation for both normalization techniques shows no improvement in the R2 value for all 

classifiers. As proposed by the research framework, normalized data will be carried for further 

processing only if it helps in improving the prediction accuracy of the models. However, 

normalization shows no significant improvement, as a result, filtered and cleaned data is used for 

the predictor’s enhancement process. Even with the predictor enhancement, none of the classifiers 

has shown improvement in R2 value. Later, during the data fragmentation process, the whole data 

is split based on float length value (F-1, F-2, F-3 and F-4). A significant improvement has been 

shown by all classifiers for only the fragment with float length value equal to 3 (F-3). Since 

improvement is observed after applying the data fragmentation process, the fragmented data has 

been carried to the next process i.e. outlier detection.  

After removal of potential anomalies within the fragments, the prediction accuracies for F-

2 and F-3 were improved with a maximum R2 value of 0.67 and 0.76 respectively. However, 

prediction accuracies for F-1 and F-4 have decreased to 0.63 and 0.35 respectively. The reduction 

in prediction accuracies indicates that eliminated instances were not truly outliers for F1 and F4 



fragments and they were kept for the data enrichment process. The data enrichment process takes 

two fragments (F2 & F3) with excluded outliers and the other two fragments (F1 & F4) having 

original instances. After applying data enrichment over individual fragments, the highest predicted 

accuracy (0.78) for fragment (F-1) was resulted by Kernel Ridge (RBF) classifier. Similarly, for 

F-2 and F-3 fragments, KNN has resulted in the highest R2 values as 0.83 and 0.89 respectively. 

In the case of fragment F4, the Ridge Regression and Kernel Ridge (RBF) has resulted in a same 

highest R2 value i.e. 0.74. Individual fragments had shown improved results however, these 

fragments were combined together for evaluation. The evaluation of combined fragments with and 

without float length predictor was carried out. For all combined fragments but without the float 

length predictor, the KNN classifier had resulted in an accuracy of 0.75. The accuracy has 

improved further when combining fragments and including the float length predictor. The highest 

accuracy for combined fragments with float length was resulted by Random Forest and Neural 

Network classifiers as 0.75 and 0.86 respectively. The predictor selection process presented by the 

present work has shown a clear improvement in the prediction accuracy of wrap crimp from 

initially 0.69 to finally 0.9 R2 value.  

Weft crimp prediction 

The training model for weft crimp prediction has been trained similarly as wrap crimp 

prediction model. The initial accuracy results after filtering and cleaning of the data for weft crimp 

prediction is 0.51 R2 value by the Adaptive Boost (AdaBoost) classifier. The data is then passed 

through the data normalization process and had been evaluated for prediction accuracy. The 

highest prediction accuracy after normalization is 0.51 by the AdaBoost classifier. The accuracy 

value improved from 0.51 to 0.63, after applying the predictor enhancement process. Later, 

fragmentation of the data based on float length values had shown improvement in prediction 

accuracy. The Neural Network classifier had resulted in a highest accuracy of 0.70 for the fragment 



F-1. Random forest classifier had outperformed all others for F2 & F4 with R2 values of 0.63 & 

0.51 respectively. The fragment F3 had a very low prediction accuracy among all fragments with 

a 0.24 R2 value, resulted by the AdaBoost classifier. Outlier detection and removal process had 

shown decreased prediction accuracies for fragments F-1, F-2 and F-3 with the R2 values 0.63, 

0.56 and 0.15 respectively. However, fragment F4 gained an improvement in R2 value from 0.51 

to 0.75 for Kernel Ridge (RBF) classifier after passing through outlier detection and removal 

process. As per results, the fragments F1, F2 and F3 with all instances and fragment F4 with 

excluded outliers were carried further to data enrichment process. The highest prediction 

accuracies of the individual fragment after applying data enrichment were 0.81, 0.75, 0.71 and 

0.90 for fragment F1, F2, F3 and F4 respectively. Finally, all fragments were combined together 

for collective weft crimp prediction. The perdition accuracy of combined fragments with float 

length was 0.78 and 0.79 for combined fragments without float length. The predictor selection 

process presented by the present work has shown a clear improvement in the prediction accuracy 

of weft crimp from initially 0.51 to finally 0.79 R2 value. 

Table 7: Parameters and crimp percentage of test fabrics 

         Actual 

(D3883) 

Predicted 

Test 

Fabric 

Wrap 

Linear 

Density 

Weft 

Linear 

Density 

EPI PPI Float 

Length 

GSM Reed 

Count 

Reed 

Denting 

Wrap 

Crimp 

Weft 

Crimp 

Wrap 

Crimp 

Weft 

Crimp 

1 14 16 94 62 1 320 23.28 4 18.25 1.5 18.61 1.98 

2 30 30 130 69 2 175 42 3 10.30 2.5 10.34 2.84 

3 21 21 108 56 3 210 26.32 4 12.25 3.15 11.79 3.04 

4 40 40 140 70 4 140 34 4 8.15 2.2 8.66 2.09 

 

ASTM Standard D3883 Method 

In this subsection, the proposed prediction model is validated by comparing the predicted 

crimp values with actual crimp values i.e. measured through ASTM standard D3883 crimp 

measurement method [7]. Any crimp prediction technique is prone to error as the weaving of fabric 



is highly associated with its weaving methods and raw materials used that induces noise. This error 

can be measured by comparing the predicted crimp values with the actual crimp values. Moreover, 

a small difference between these two values provides validation of the prediction technique. For 

this purpose, four fabric samples were made in weaving lab at National Textile University. Fabrics 

were weaved from cotton carded yarn on the air-jet loom and fabric parameters were recorded as 

shown in Table 7. The predicted crimp values for each sample is computed from the proposed 

model whereas the actual crimp percentage of warp and weft yarns are measured through ASTM 

standard D3883 method. 

  
(a) (b) 

Figure 2: Validation result with ASTM standard D3883 for a) warp crimp and b) weft crimp 
 

The Pearson correlation analysis is performed to determine the difference between 

predicted and actual crimp values. Figure 2 (a & b) shows fitted line plots of wrap and weft crimp 

differences between predicted and actual crimp values. The strong, positive correlation for both 

warp and weft was observed with a p-value of 0.000. The correlation values R2 = 0.9903 for wrap 

and R2 = 0.8175 for weft shows high accuracy of the proposed prediction model. 

Table 8: Comparison between proposed model and state-of-the-art. 

 

Warp Crimp (R2) Weft Crimp (R2) 

Maqsood 2014 
Model 

Present Work 
Model 

Maqsood 2014 
Model 

Present Work 
Model 

Maqsood 2014 
Dataset 

0.98 0.97 0.98 0.97 



Present Work 
Dataset 

0.50 0.99 0.17 0.81 

 

Comparative Analysis with State-of-the-art  

The comparative analysis between state-of-the-art [2] and the proposed prediction 

technique provides further validation of the proposed technique. Maqsood et. al. [2] had predicted 

wrap and weft crimp percentage in woven cotton fabric using linear regression, a statistical model.  

The prediction accuracy was assessed by correlation analysis of the training and test sets using 

holdout evaluation method. Their dataset contains sixty instances of cotton woven fabric i.e. 

labelled with wrap and weft crimp percentages. Fabric parameters used by Maqsood [2] as 

predictors were yarn linear densities, yarn densities, the width of fabric, reed count and reed 

denting. These predictors are the same as the predictors used in present work except for fabric 

width where the present work used the GSM. The reason for choosing Maqsood et. al. [2] is 

because their dataset has the same specifications as the proposed dataset. Similarly, the proposed 

model can easily be applied to Maqsood dataset and vice versa. Table 8 shows the comparison 

analysis between Maqsood et. al. and the present model. An implementation of Maqsood’s model 

was made through MINITAB statistical software. Both datasets were loaded in the software. 

Maqsood’s model performs well on their own dataset with 0.98 R2 value for both wrap and weft 

crimp prediction. However, their model with the present dataset has resulted in a very low 

prediction accuracy i.e. 0.50 and 0.17 for wrap and weft crimp respectively. The reason for this 

low prediction accuracy is that their model is incapable of handling large size dataset. On the other 

hand, a high prediction accuracy (0.97) for both wrap and weft crimp was resulted by the proposed 

model when applied on the Maqsood dataset. The comparison in Table 8 shows the fact that 

previous models trained on very small and controlled datasets are unable to predict the unseen data 



with the same accuracy as reported. However, the proposed model has achieved an increased 

prediction accuracy for both small and medium size datasets. 

Conclusion 

The aim of the present work is to automate the decision making of crimp prediction in pre-

production cotton fabric. The proposed prediction model eliminates the requirement of expert 

involvement from the fabric manufacturing process. Moreover, the proposed approach ensures 

accurate, cost and time effective pre-production crimp prediction that improves the productivity 

of the textile industry. Prediction models for prediction of warp and weft yarn crimp percentages 

were developed using a machine learning technique. 

Previously, only neural networks and linear regression models were used to predict the 

crimp percentage in yarn. The major difference of present work from previous studies is the size 

and the nature of the sample dataset and predictor engineering for training data. Our dataset is 

quite large as compared to previous studies i.e. 1273 fabric samples. While previously the largest 

dataset used by Maqsood (2014) was of 68 samples. Moreover, fabric samples used previously 

were controlled samples manufactured at labs with predefined fabric parameters. The present 

dataset is the real data taken from the industry containing all the possible variations. Our dataset 

being large also takes care of float lengths 1, 2, 3 and 4, while most of the previous works are 

based on single float length value. The reason our proposed prediction model predicts unseen data 

with high accuracy of R2 value above 0.95. Among all classifiers, the prediction models which had 

outperformed others were KNN, Kernel ridge (RBF), Random Forest and Deep Neural Network. 

The proposed model was validated using three different methods i.e. K-fold cross-validation, 

ASTM standard D3883 and comparative analysis with state-of-the-art technique. 



The present system is trained on the fabric samples that are produced from cotton yarns 

manufactured with ring spinning (carded) on air-jet looms. However, further studies are needed 

for other types of fabrics. The scope of the present system can be further enhanced by including 

fabrics made up from other raw materials and yarn made from open-end spinning (combed yarn) 

and air vortex techniques on looms other than air-jet. 
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