
Citation:
Vergilio, T and Ramachandran, M and Mullier, D (2020) "Requirements Engineering for Large-Scale
Big Data Applications." In: Ramachandran, M and Mahmood, Z, (eds.) Software Engineering in the
Era of Cloud Computing. Computer Communications and Networks . Springer, pp. 51-84. ISBN
978-3-030-33623-3 DOI: https://doi.org/10.1007/978-3-030-33624-0_3

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/7581/

Document Version:
Book Section (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/7581/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Requirements Engineering for Large-Scale Big

Data Applications

Thalita Vergilio, Muthu Ramachandran, and Duncan Mullier

School of Computing, Creative Technology and Engineering

Leeds Beckett University, Leeds, UK

T.Vergilio@leedsbeckett.ac.uk

Abstract: As the use of smart phones proliferates, and human interaction through

social media is intensified around the globe, the amount of data available to process

is greater than ever before. As consequence, the design and implementation of sys-

tems capable of handling such vast amounts of data in acceptable timescales has

moved to the forefront of academic and industry-based research. This research rep-

resents a unique contribution to the field of Software Engineering for Big Data in

the form of an investigation of the big data architectures of three well-known real-

world companies: Facebook, Twitter and Netflix. The purpose of this investigation

is to gather significant non-functional requirements for real-world big data systems,

with an aim to addressing these requirements in the design of our own unique ref-

erence architecture for big data processing in the cloud: MC-BDP (Multi-Cloud Big

Data Processing). MC-BDP represents an evolution of the PaaS-BDP (Platform as

a Service for Big Data Processing) architectural pattern, previously developed by

the authors. However, its presentation is not within the scope of this study. The

scope of this comparative study is limited to the examination of academic papers,

technical blogs, presentations, source code and documentation officially published

by the companies under investigation. Ten non-functional requirements are identi-

fied and discussed in the context of these companies’ architectures: batch data,

stream data, late and out-of-order data, processing guarantees, integration and ex-

tensibility, distribution and scalability, cloud support and elasticity, fault-tolerance,

flow control, and flexibility and technology agnosticism. They are followed by the

conclusion and considerations for future work.

Keywords: Big Data, Requirements Engineering, Batch, Stream, Scalability, Fault

Tolerance, Flow Control, Technology Agnosticism, Processing Guarantees

1. Introduction

Big data is defined as data that challenges existing technology for being too large

in volume, too fast, or too varied in structure. Big data is also characterised by its

complexity, with associated issues and problems that challenge current data science

2

processes and methods [1]. Large internet-based companies have the biggest and

most complex data, which explains their leading role in the development of state-

of-the-art big data technology. It has been reported that, in one minute of internet

usage, 1 million people log into Facebook, 87,500 new tweets are posted, and

694,444 hours of videos are watched on Netflix [2]. Processing these vast amounts

of data presents challenges not only in terms of developing the most appropriate

algorithms to best inform these companies and their future decisions, but also in

terms of assembling the technology needed to perform these calculations in a timely

manner.

This paper contributes to the existing knowledge in the area of Software Engineer-

ing for Big Data by performing a search of the existing literature published by three

major companies, and an outline of the strategies devised by them to cope with the

technological challenges posed by big data in their production systems. Non-Func-

tional requirements are important quality attributes which influence the architec-

tural design of a system [3]. Ten non-functional requirements for big data systems

are identified and discussed in the context of these real-world implementations.

These requirements are used to guide the design and development of a new refer-

ence architecture for big data processing in the cloud: MC-BDP. The presentation,

evaluation and discussion of MC-BDP are addressed in a different publication.

The companies targeted for this study are Facebook, Twitter and Netflix. The meth-

odology used in this comparative study is explained in Section 2, which covers the

scope of this research, the criteria used for selecting the target companies, as well

as definitions for the non-functional requirements under examination. Section 3 dis-

cusses related work, and Section 4 addresses each non-functional requirement and

discusses how they are implemented by the three companies in their production

systems. Finally, Section 5 presents the conclusion and considerations for future

work.

2. Research Methodology Using Systematic Literature Review

This section describes this research’s methodology using a systematic literature re-

view, as illustrated in Figure 1. The first step is the definition of the scope of this

research. Since this research is literature-based, its scope is defined in terms of

which literature sources to use. The next step is an explanation of the criteria used

to select the companies under examination from a pool of potential matches. The

third step consists of explaining the comparison criteria used to evaluate the archi-

tectures of the selected companies. It describes the ten non-functional requirements

for large-scale big data applications which form the focus of this study. Finally, the

last step is an evaluation of the different approaches taken by these companies to

implement the aforementioned requirements.

3

Figure 1: Summary of Research Methodology

2.1 Scope

The scope of this paper is limited to academic papers, technical documentation, and

presentations or blog posts officially published by the companies under evaluation.

Although the authors recognise that direct observation of the systems under evalu-

ation by way of a set of case studies would have yielded more reliable, and perhaps

more valuable results, time and resource constraints limited the scope of the present

study. Aware of this limitation, this research endeavoured to use only sources offi-

cially published or endorsed by the companies under evaluation, in an effort to be

true to the systems under examination. Where no information could be found with

regards to specific criteria or particular aspects of the systems under examination,

this is clearly stated by the authors.

Table 1 shows a summary of the materials used as source for this research, classified

by type. Six academic papers were found describing the systems used by the three

companies under study. Additionally, twelve technical blog articles, four presenta-

tions, and the source code or documentation of four systems were used as source

for this study. Twitter had the strongest academic presence at the time of writing,

with two papers available through the ACM Digital Library [4] and [5], and one

paper available through the IEEE Xplore Digital Library [6]. Two relevant aca-

demic papers were found for Facebook, one available through the ACM Digital Li-

brary [7], and one available through the IEEE Xplore Digital Library [8]. Finally,

only one academic paper was found at the time of writing describing the big data

systems at Netflix: [9], available through the ACM Digital Library.

Scope •Which
sources?

Selection
Criteria

•Which
companies?

Comparison
Criteria

•Which non-
functional
requirements?

Evaluation
•Which

implementation
approaches?

4

Table 1: Classification and summary of source materials.
C

o
m

p
a
n

y

A
c
a
d

e
m

ic
 P

a
p

e
r

T
e
c
h

n
ic

a
l

B
lo

g

P
re

se
n

ta
ti

o
n

C
o

d
e
/D

o
c
u

m
e
n

ta
ti

o
n

Facebook 2 2 1 1

Twitter 3 2 1 3

Netflix 1 8 2 0

Although Netflix was underrepresented in terms of academic sources when com-

pared to the other two companies evaluated, it had the highest number of relevant

non-academic sources: eight technical blog articles, and two presentations. Both

Facebook and Twitter, in comparison, had two technical blog articles and one

presentation relevant to this research. Finally, in terms of source-code and docu-

mentation available for public peruse, Twitter had three entries, corresponding to

the source-code for Scalding [10], Heron [11], and Storm [12]. The code for Face-

book’s Scribe [13] was available as open-source through the company’s archive

repository. At the time of writing, none of the Netflix systems assessed by this study

were open-source.

This section presented the scope of the evaluation conducted in this research, which

was limited to academic papers, technical blog articles, presentations and source

code/documentation published by Facebook, Netflix and Twitter. The next section

explains the selection criteria used to select the three target companies.

2.2 Selection Criteria

This section explains how the three companies: Facebook, Twitter and Netflix were

selected as target of this study. An initial survey of big data architectures was con-

ducted, limited to peer-reviewed academic papers. Three search engines were pri-

marily used to perform the searches: Google Scholar, IEEE Xplore Digital Library

and ACM Digital Library. The initial survey searched for terms such as “big data”,

“big data processing”, “big data software” and “big data architecture”. In the interest

of thoroughness, synonyms were used to replace key terms where appropriate, e.g.

“system” for “software”.

5

The first classification which became apparent was in terms of who developed the

solutions presented. The results found comprised technologies developed

1) by academia,

2) by real-world big data companies,

3) by industry experts as open-source projects, or

4) by a combination of the above.

This research focuses on category number 2.

A further classification can be drawn from the academic papers reviewed, this time

in terms of how the contributions presented were evaluated. Three cases were en-

countered:

A) cases where there is no empirical evaluation of the proposed solution,

B) cases where the empirical evaluation of the proposed solution is purely ex-

perimental, and

C) cases where peer-reviewed published material was found describing the

results of implementing the proposed solution in large-scale commercial

big data settings.

In order to select suitable companies to include in this study, the focus of this re-

search was limited to category C.

Three companies were selected within the criteria characterised above: Facebook,

Twitter and Netflix. These were selected from a wider pool of qualifying companies

which included Microsoft [14], [15], Google [16], [17], and Santander [18]. The

rationale for choosing the three aforementioned companies is based on the quantity,

quality and clarity of the information encountered, as well as availability of tech-

nical material online such as project documentation and architectural diagrams.

2.3 Definitions

This section explains how the ten non-functional requirements: batch data, stream

data, late and out-of-order data, processing guarantees, integration and extensibility,

distribution and scalability, cloud support and elasticity, fault-tolerance, flow con-

trol, and flexibility and technology agnosticism were identified as non-functional

requirements for this study. It then provides definitions for each requirement.

The ten non-functional requirements selected for this study were based on the initial

literature survey of official academic publications explained in Section 2.2. As with

the previous selection, focus was given to solutions developed by real-world big

6

data companies. However, it is worth noting that these requirements are widely ad-

dressed in open-source, as well as purely academic solutions [19], [20], [21], [19],

[22]. Likewise, they are highlighted in non-academic sources such as commercial

solutions and cloud-based services [23], [24], [25].

2.3.1 Batch Data

This requirement refers to the processing of data which is finite and usually large in

volume, e.g. data archived in distributed file systems or databases. An important

requirement for real-world big data systems is that they must be capable of pro-

cessing large amounts of finite, usually historical data. Figure 2 illustrates a typical

case for batch data processing.

Fig. 2: Batch Data Processing.

As we can see in Figure 2, large amounts of data is first collected in static storage

spaces such as, for example, distributed databases, file systems, logs or data ware-

houses. It is then processed in finite batches by powerful, usually distributed tech-

nology. The name batch processing comes from this approach to data processing

whereby the data is collected into finite batches before it is processed.

This section described the non-functional requirement for a large-scale big data sys-

tem to be capable of processing batch data, defined as data which is finite, usually

historical, and large in volume. The next section describes the non-functional re-

quirement for a large-scale big data system to be capable of processing stream data.

Batch Data Processing

Distributed
Databases

Distributed
File Systems

Data
Warehouses

Distributed
Logs

Output

7

2.3.2 Stream Data

This requirement refers to the processing of data which is potentially infinite and

usually flowing at high velocity. For example, real-world big data systems are gen-

erally required to capture and process user activity or monitoring data in real-time,

or close to real-time. Figure 3 illustrates a typical case for stream data processing.

Fig. 3: Stream Data Processing.

In Figure 3, we can see that data is collected from a variety of sources such as, for

example, smart homes, application logs, or the Internet of Things (IOT). It is then

processed in real-time, or as close to real-time as the technology allows. This ap-

proach is called stream processing because the incoming data is very large, poten-

tially infinite, so processing cannot wait until all the data is available before it starts.

Instead, processing is ongoing. It takes place at defined intervals, and emits results

at defined intervals. Differently from batch processing, completion is not a concept

that is used in the context of stream processing, since the data source is potentially

infinite. This, however, does not mean that accuracy is compromised, as it remains

not only possible, but indeed a desirable quality of mature streaming systems, as

demonstrated by [17].

The capacity to process stream data was identified as a non-functional requirement

not only within the architectures of the three companies evaluated, as discussed in

detail in Section 4.2, but also of other large-scale big data companies such as Mi-

crosoft’s library for large-scale stream analytics, Trill, used in Azure Stream Ana-

lytics and ads reporting for the Bing search engine [26], Google’s Dataflow, used

for statistics calculations for abuse detection, billing, anomaly detection, and others

[17], and Linkedin’s Samza, currently used in production and deployed to more than

10,000 containers for anomaly detection, performance monitoring, notifications,

Stream Data Processing

Smart Phones IOT Smart HomesApplication
Logs

Output

8

real-time analysis, and others [27]. The literature review conducted as part of this

research therefore concluded that the capacity to process stream data is a fundamen-

tal requirement of large-scale big data architectures, and, as stream technology de-

velops, it becomes capable of catering for a larger number of use-cases previously

consigned to batch processing, as discussed comprehensively in [28].

This section described the non-functional requirement for large-scale big data sys-

tems to be capable of processing stream data, defined as data which is potentially

infinite in size and usually arriving at high velocity. The next section describes the

non-functional requirement for a large-scale stream big data system to be capable

of processing late and out of order data.

2.3.3 Late and Out-of-Order Data

This requirement relates to stream processing and refers to the processing of data

which arrives late or in a different order from that in which it was emitted. Stream-

ing data from mobile users, for example, could be delayed if the user loses reception

for a moment. In order to handle late and out of order data, a system must have been

designed with this requirement in mind. Figure 4 illustrates late and out-of-order

data. The records emitted at 10:01:55 and 10:03:22 are significantly delayed. The

record emitted at 10:02:38 actually arrives before the one emitted at 10:01:55. Sim-

ilarly, the record emitted at 10:04:05 arrives before the record emitted at 10:03:22.

Late and out-of-order records such as the ones depicted are common with real-time

user data which is subject to network delays.

Fig. 4: Late and Out of Order Data.

09:59:02

09:59:46

10:00:29

10:01:12

10:01:55

10:02:38

10:03:22

10:04:05

10:04:48

10:05:31

10:06:14

09:59:46 10:00:29 10:01:12 10:01:55 10:02:38 10:03:22 10:04:05 10:04:48

R
ec

o
rd

 A
rr

iv
al

 T
im

e

Event TimeRecord Emission Time

9

Figure 5 shows a summary of strategies for dealing with late and out of order data.

The windowing strategy defines how the data is grouped into windows of time to

enable the processing of otherwise infinite data. At a minimum, the period (how

frequently each window starts) and duration (how long each window lasts for) must

be defined. Thus, a scenario where the period is longer than the duration character-

izes sampling, whereas one where the duration is longer than the period character-

izes tumbling or sliding windows. Where the period and duration are the same

length, the window is considered a fixed window. The triggering strategy defines

how often results are emitted, e.g. at the end of every window, at the end of every

windows plus a defined tolerance, at fixed intervals, etc. The state strategy defines

what data is persisted during stream data processing and how long for. It is useful

for computing aggregates, and can be defined at key, window or application level.

Finally, the watermark strategy defines how late the data is expected to be, and usu-

ally signals the application to start processing at a time all data is believed to have

been received. These four strategies combined define how late and out of order data

is handled by a stream application.

Fig. 5: Strategies for Dealing with Late and Out of Order Data.

As an example, a system may be configured to process a simple count of distinct

words entered into a search engine. The windowing strategy is defined to use sliding

windows of 10 seconds, starting every 5 seconds. The triggering strategy is config-

ured to emit (partial) results every 5 seconds, and to accumulate more data as it

arrives to emit in the next 5 seconds. The state strategy is configured to use per-

window state. Finally, the watermark strategy is configured to expect all data to

have arrived within 5 minutes of emission. Figure 6 summarises this sample con-

figuration.

Windowing
Strategy

Results
Triggering
Strategy

State
Strategy

Watermark
Strategy

10

Fig. 6: Sample Configuration for Dealing with Late and Out of Order Data.

Any data that is less than 5 minutes late is incorporated into the calculations. Partial

results for a window of 10 seconds are emitted after 5 seconds, with subsequent

emissions (adjustments) occurring every 10 seconds, until the watermark is

achieved. Any data arriving later than the watermark is discarded.

This section described the non-functional requirement for streaming systems being

capable of processing data which arrives late and out of order. The next section

describes the non-functional requirement of ensuring that a distributed system hon-

ours one of three processing guarantees.

2.3.4 Processing Guarantees

This requirement refers to the processing guarantees that a distributed stream sys-

tem offers, i.e. exactly once, at least once and at most once. It determines whether

processing tasks assigned to workers are replayed in case of system failure [29].

While exactly once processing is ideal, it comes at a cost which could translate into

increased latency. This requirement is used to evaluate how different systems and

different use-cases warranted different compromises in terms of latency and pro-

cessing guarantees. Figure 7 illustrates the three types of processing guarantees.

Windowing Strategy

•sliding windows

•duration: 10s

•starting every 5s

Results Triggering
Strategy

•emit results every
5 seconds

•accumulate as new
data is received
and emit in the
next 5 seconds

•discard late data

State Strategy

•per-window state

Watermark Strategy

•all data expected
to arrive within 5
minutes of
emission

11

Fig. 7: Processing Guarantees

The first type of processing guarantee illustrated in Figure 7, at most once, focuses

on avoiding re-processing of data, to the detriment of duplication. In the event of

worker failure, the data processing task assigned to that worker will not be restarted,

resulting in data loss, as illustrated in Figure 7. The second type of processing guar-

antee, at least once, focuses on avoiding data loss, even if it means that processing

task (and results) are duplicated. Finally, the third type of processing guarantee,

exactly once, is a combination of the former two: it ensures that there is no data loss,

and it also ensures that there is no duplication. Although the exactly once processing

guarantee is the most accurate, it is not always the most desirable, as it is more

costly resource-wise to achieve when compared to the other two. In order to ensure

that data is processed exactly once, an external checkpointing system is usually em-

ployed to ensure that each task can be re-played from where it left off (or as close

as possible to that) in the event of node failure. These checkpoints can be expensive

and involve additional disk and networking resources which may not be desirable

in every particular use-case. The less processing duplication desired, i.e. the stricter

the exactly once guarantee required, the higher the checkpointing frequency needed,

since each worker must output the state of the processing task several times through-

out its execution.

This section described the non-functional requirement for processing guarantees,

defined as assurances provided by a distributed parallel system with regards to how

many times incoming data will be processed regardless of possible node or trans-

mission failures. The next section describes the non-functional requirement for in-

tegration and extensibility.

2.3.5 Integration and Extensibility

This requirement refers to how well the systems presented integrate with existing

services and components. It also refers to provisions made to facilitate the extension

A B C

Output

A B A

A B C

Output

A B C

A B C

Output

A C C

At Most Once At Least Once Exactly Once

12

of the existing architecture to incorporate different components in the future. For

illustration, Figure 8 is a simplified diagram representing Heron’s architecture.

Heron was designed by Twitter to be fully compatible with Storm, their previous

big data framework for stream processing. As Figure 8 shows, the Heron API ac-

cepts both Heron and Storm topologies, thus facilitating the integration of the new

system with legacy processing code defined as topologies.

Fig. 8: Twitter Heron Simplified Architecture

This section described the non-functional requirement for integration and extensi-

bility, defined as the capacity of a system to integrate with existing services and

components, as well as the provisions made to facilitate the extension of the existing

architecture to incorporate different components in the future. The next section de-

fines the non-functional requirement of distribution and scalability.

2.3.6 Distribution and Scalability

This requirement refers to how easily the data processing can be distributed amongst

different machines, located in different data centres, in a multi-clustered architec-

ture. Dynamic scaling, which addresses the possibility of adding or removing nodes

to a running system without downtime, is also part of this requirement. Figure 9

illustrates the processing of stream big data by a container-based architecture using

a pipe analogy: the length of the pipe represents the time each container takes to

process data, and the diameter of the pipe represents the number of containers pro-

cessing the data.

Scheduler Containers

Submit Storm
Topology

Heron API

Submit Heron
Topology

13

Fig. 9: Pipe Analogy for Container-Based Stream Big Data Processing Pipeline

The wider the diameter of the pipe, the more containers there are processing the

data, so the pipe is shorter and the queue is reduced, since data is processed faster.

An example of horizontal scaling would be to launch more data processing contain-

ers running on the same physical infrastructure (same number of nodes, of same

capacity). This is illustrated in Figure 10.

Fig. 10: Horizontal Scaling

At some point, however, horizontal scaling fails to translate into faster processing,

and it is necessary to commission more nodes to provide more processing capacity

at infrastructure level. This is known as vertical scaling and, using the previous

analogy, it is the equivalent of adding more pipes. As consequence, the data flows

faster through the pipes and the queue is reduced, as illustrated in Figure 11.

 Pipe Analogy for
Big Data Processing Pipeline

data data datadata

data

data

data

Queue

time each container takes to process data n
u

m
b

e
r o

f co
n

ta
in

e
rs p

ro
ce

ssin
g d

ata

datadatadata

data

Pipe Analogy for Container-Based Stream
Big Data Processing Pipeline

data data data

Horizontal Scaling: Increasing the number of containers is the
equivalent of increasing the diameter of the pipe.

data datadata

datadata
data

data

Queue

nu
m

ber o
f con

tain
ers p

ro
cessing d

ata

time each container takes to process data

data

data

Horizontal Scaling: increasing the number of containers is
the equivalent of increasing the diameter of the pipe.

14

Fig. 11: Vertical Scaling

This section described the non-functional requirement of distribution and scalabil-

ity, defined as how easily the data processing can be distributed amongst different

machines, located in different data centres, in a multi-clustered architecture. The

next section describes the non-functional requirement of cloud support and elastic-

ity.

2.3.7 Cloud Support and Elasticity

This requirement refers to the ease with which the architecture (or part of it) can be

moved into the cloud to take advantage of the many benefits associated with its

economies of scale. Elasticity in particular is a cloud property which allows a sys-

tem to scale up and down according to demand. Since the user only pays for re-

sources actually used, there is less wastage and it is theoretically cheaper than run-

ning the entire infrastructure locally with enough idle capacity to cover for eventual

spikes.

Since being unable to easily switch between cloud providers represents a risk to

cloud consumers [30], support for a multi-cloud architecture which mitigates the

risk of vendor lock-in and allows cloud consumers to transfer resources across pro-

viders is addressed as part of this requirement. Figure 12 shows MC-BDP’s multi-

tenant multi-cloud infrastructure enabled through the use of container technology.

nu
m

ber o
f con

tain
ers

p
ro

cessin
g d

ata (x3
)

Vertical Scaling: Adding more VMs is
the equivalent of adding more pipes.

data

datadata

datadata

time it takes each container to process data

Queue

data

data

data

data

data data

data data
data

datadata

Vertical Scaling: adding more nodes is
the equivalent of adding more pipes.

15

Fig. 12: Multi-Tenant Multi-Cloud Infrastructure Enabled by Container Technology

This section described the non-functional requirement of cloud support and elastic-

ity, defined as the ease with which the architecture (or part of it) can be moved into

the cloud to take advantage of the many benefits associated with its economies of

scale, in particular with respect to elasticity, defined as the capacity of a cloud sys-

tem to scale up and down according to demand. The next section describes the non-

functional requirement of fault tolerance.

2.3.8 Fault Tolerance

This requirement refers to provisions made at design time so the system can con-

tinue to operate should one or more nodes fail. Ideally, production systems should

recover gracefully, with minimal effect (if at all) on the user experience. Fault tol-

erance can be observed at different levels, as illustrated in Figure 13. Using MC-

BDP’s container-based architecture as an example, a container could become unre-

sponsive, as shown in A, and the container orchestrator would be expected to pro-

vide fault tolerance (i.e. re-launch the task in another container). Similarly, a node

where several containers are running could become unresponsive, as in B, requiring

fault tolerance at both container and node levels (i.e. launch an equivalent node and

re-launch the containers that were running on the lost node). A more serious sce-

nario is depicted in C, where a cloud provider’s entire region fails. This requires a

number of nodes and other resources to be re-created, and all the containers running

in those nodes to be re-launched. Finally D illustrates a multi-region failure for a

single provider where all resources previously running on that cloud need to be re-

launched. Although uncommon, multiple availability zone failures do sometimes

occur [31], as do multiple region outages, as exemplified by a DNS disruption that

affected Azure customers in all regions in 2016 [32].

 Framework

 Framework

 Framework
 Framework

Image
(Worker)

Image
(Manager)

 Machine

 Machine

 Machine

 Machine

Container
Container

Container
Container

 Machine

 Machine
 Machine

 Machine

Container
Container

Container
Container

 Machine

 Machine
 Machine

 Machine

Container
Container

Container
Container

 Machine

 Machine
 Machine

 Machine

Container
Container

Container
Container

16

Fig. 13: Fault Tolerance at Different Levels

2.3.9 Flow Control

This requirement refers to scenarios where the data source emits records faster than

the system can consume. Strategies for dealing with backpressure, e.g. dropping

records, sampling, combining, applying source backpressure, etc. are generally re-

quired from real-world big data systems. Figure 14 illustrates flow control defined

by an abstract function 𝑓(𝑥), which results in fewer records flowing down the

stream.

Fig. 14: Flow Control

2.3.10 Flexibility and Technology Agnosticism

This requirement refers to the extent to which the architecture provides the imple-

menter with the option to use different technology in place of existing components.

A modular architecture, for example, allows separate components to be replaced or

 Framework

 Framework

 Framework
 Framework

Image
(Worker)

Image
(Manager)

 Machine

 Machine

 Machine

 Machine

Container
Container

Container
Container

 Machine

 Machine
 Machine

 Machine

Container
Container

Container
Container

 Machine

 Machine
 Machine

 Machine

Container
Container

Container
Container

 Machine

 Machine
 Machine

 Machine

Container
Container

Container
Container

 Machine

 Machine
 Machine

 Machine

Container
Container

Container
Container

A

B

C

D

data datadata

data

data

data

Queue

datadata

data

data

data

data

data

data

f(x)

17

upgraded with no detrimental effect to the functioning of the system as a whole.

Figure 15 shows the MC-BDP reference architecture developed by the authors, to-

gether with a sample prototype implementation. MC-BDP is an example of a highly

flexible reference architecture designed with technology agnosticism in mind. Each

module depicted in the concrete prototype implementation can be replaced with a

technologically equivalent component.

Fig. 15: MC-BDP Reference Architecture and Prototype Implementation

This section presented the methodology used in this research, and included a sub-

section where the ten non-functional requirements referred to throughout this chap-

ter were defined. The next section discusses related work, and is followed by Sec-

tion 4, which looks at how the three target companies, Facebook, Twitter and

Netflix, addressed the aforementioned requirements.

3. Related Work

This section is divided in three parts: Section 3.1 discusses academic developments

in the area of requirements engineering for large-scale big data systems, Section 3.2

examines the literature around big data architectures, and finally Section 3.3 reviews

the gap in the literature which the current research endeavours to bridge.

3.1. Requirements Engineering for Big Data

Although requirements engineering is an established area of academic research, re-

quirements engineering for big data is an incipient field and has tended to concen-

trate on infrastructure requirements, to the detriment of other aspects [33]. This sec-

tion discusses work which attempted to bring such aspects to the forefront of

requirements engineering research. Section 3.1.1. addresses work which attempted

Service
s

distribution processing analytics

Persistence

Nodes

Containers

Orchestration

NetworkingSe
cu

ri
ty

Services

M
es

sa
gi

ng
Kafka

Flink Task
Manager

Flink Job
Manager

Energy
Efficiency
Calculator

AzureML

AnalyticsMonitoring

Docker
Swarm

Weave
Net

Weave
Cloud

Docker

M
on

it
o

ri
ng

Azure/Google/OSDC
VMs

Azure
DB

Sw
ar

m
 T

LS
 (

A
ut

he
n

ti
ca

ti
on

/
A

ut
ho

ri
sa

ti
o

n
/E

nc
ry

p
ti

o
n

)

MC-BDP Reference Architecture MC-BDP Prototype Implementation

18

to incorporate the 3 Vs of big data (volume, velocity and variety) into traditional

requirements engineering. Section 3.1.2. looks at proposals to devise a requirements

engineering context model for the domain of big data.

3.1.1. Incorporating the 3 Vs of Big Data into Requirements Engineering

This section addresses related work which integrates key aspects of big data into

the field of requirements engineering. Big data is traditionally defined as displaying

the three characteristics of volume, velocity and variety. Being able to integrate

these characteristics into a systematic process for the specification of requirements

has been highlighted as one of the research challenges in the field [34]. Moreover,

these characteristics must be represented in requirements notation in order to ensure

they are adequately captured [33]. Noorwali et al. [35] proposed an approach to

integrate big data characteristics into quality requirements. However, at the time of

writing, their approach has not yet been evaluated empirically. The current research

uses known large-scale industry implementations to identify ten non-functional re-

quirements for the specific domain of big-data processing.

3.2.2. Devising a Context Model for Big Data Requirements Engineering

This section discusses related work which propose a new context model for big data

in the field of requirements engineering. Eridaputra et al. used the goal-oriented

requirements engineering (GORE) method to model requirements and propose a

new requirement model based on the characteristics of big data and its challenges.

Their research was empirically evaluated through a case study set at a government

agency where 26 functional and 10 nonfunctional requirements were obtained from

the model, and further validated by stakeholders as accurate [36]. Al-Najran & Da-

hanayake developed a new requirements specification framework for the domain of

data collection which incorporates requirements engineering for big data [37]. This

framework was empirically evaluated through quantitative experiments to measure

the relevance of Twitter feeds [38].

Madhavji et al. introduced a new context model of big data software engineering

where not only computer science and software engineering research were taken into

account, but also big data software engineering practice, corporate decision making,

and business and client scenarios [33]. Arruda and Madhavji subsequently identi-

fied a lack of known artefact models to support requirements engineering process

design and project understanding, and proposed the creation of a requirements en-

gineering artefact model for big data end-user applications (BD-REAM) [39].

Based on this initial study, Arruda later developed a context model for big data

software engineering and introduced a requirements engineering artefact model

containing artefacts such as development practice, corporate decision-making, and

research, as well as the relationships and cardinalities between them. At the time of

19

writing, this research was still in early stages of development, and had not been

empirically evaluated [34].

This research is similar to Madhavji et al.’s, in that it looks beyond theoretical con-

tributions in the computer science and software engineering fields in an effort to

incorporate recent developments from the industry into its review of non-functional

requirements for the domain of large-scale big data applications. Since big data is a

very active area of development not only in academia, but also (and perhaps even

more) commercially, a thorough specification of requirements for big data ought to

include both spheres. Furthermore, the current study looks at real-world implemen-

tations of non-functional requirements by some of the largest big data corporations,

and discusses the particular use-cases that led to some of their key design decisions.

This section discussed related work in the area of requirements engineering for big

data and briefly presented a number of functional services proposed by this research

for big data requirements engineering in a multi-cloud environment. The next sec-

tion addresses the literature related to big data architectures.

3.2. Big Data Architectures

The literature addressing the challenges presented by big data is vast, and the ma-

jority of new solutions, architectures and frameworks proposed acknowledge and

aim to fulfil one or more of the non-functional requirements identified in Section 2.

This section therefore discusses related work by introducing a classification based

on the type of contribution proposed:

3.2.1. Evaluation or unique application of widely adopted existing technologies

for big data processing.

This class consists of research which leveraged existing, widely adopted technolo-

gies for big data processing, and either applied it to a original case or evaluated it in

a unique way.

Examples of papers which present an evaluation of existing technology are Spark’s

evaluation by Shoro and Soomro using a Twitter-based case study [40] and Kiran

et al.’s implementation of the Lambda Architecture using Amazon cloud resources

[41].

Examples of unique applications of widely adopted existing technology for big data

processing are Sun et al.’s use of Hadoop, Spark and MySQL to process big data

related to spacecraft testing [42] and Naik’s use of Docker Swarm to create a dis-

tributed containerised architecture for data processing using Hadoop and Pachy-

derm [41].

20

3.2.2. New technologies for the processing of big data.

This class consists of research which proposed entirely new technologies for the

processing of big data.

Examples of contributions within this category are Borealis, a distributed stream

processing engine developed by a consortium involving Brandeis University,

Brown University, and the MIT [19], Millwheel, Google’s distributed stream pro-

cessing system based on the concept of Low Watermarks which was later open-

sourced as Apache Beam [16], and Storm, one of the most popular open-source

stream processing frameworks, originally developed by Twitter [4].

3.2.3 Original architectural proposals where existing technologies are used or

recommended.

This class consists of research which proposed an entirely new architecture based

on existing technologies.

AllJoynLambda is an example of an architecture which makes use of MongoDB

and Storm as part of an architecture for smart environments in IoT [44]. Basanta-

Val et al. propose a new time-critical architecture which utilises Spark and Storm

for data processing [45]. An ETL-based approach to big data processing is proposed

by Guerreiro et al. This proposal utilises Spark, SparkSQL and MongoDB technol-

ogies [46]. Finally, an example of a proposed architecture where the choice of big

data technology is left open to the implementer is [47].

This section discussed related work by introducing a classification for research on

big data architectures. The next section identifies the gap in the literature addressed

by this research.

3.3. Gap in the Literature

Significant advances have been made in the fields of big data recently, and it con-

tinues to develop further as devices and applications produce more and more data.

However, although new frameworks and technologies are developed and launched

into the market at a very fast pace, matching them with systems requirements con-

tinues to present a challenge [34]. Arruda highlights the need for addressing big

data-specific characteristics in the definition, analysis and specification of both

functional and non-functional requirements [34]. This research aims to bridge this

gap by abstracting from functional and concentrating on non-functional require-

ments for the domain of big data which are common to well-known large-scale big

data implementations.

21

Eridaputra et al. call for new methods to model requirements for big data applica-

tions [36], and Madhavji et al. identify the need to develop new techniques to assess

the impact of architectural design decisions on functional and non-functional re-

quirements [33]. This research is a step in the recommended direction, as it looks at

implementations of non-functional requirements for big data by real-world compa-

nies and discusses the design decisions that resulted in specific implementations.

Madhavji et al. also drew attention to the lack of academic work on reference archi-

tectures and patterns for big data applications, and how these reference architectures

can be translated into existing technologies, frameworks, and tools to yield concrete

deployments [33]. The current research bridges this gap by proposing a new refer-

ence architecture for the domain of stream data processing, and by providing a pro-

totype implementation based on open-source technology.

This section discussed the gap in the literature which motivated the authors to un-

dertake the current research. The next section examines the literature published by

the three companies under study to understand how the non-functional requirements

defined in Section 2 are addressed in their real-world implementations.

4. Requirements Engineering for Big Data

Systematic approaches to identifying functional services and non-functional re-

quirements are necessary to design and build big data systems. The traditional re-

quirements engineering approaches are unsatisfactory when it comes to identifying

requirements for service-oriented systems [48], [35], [49], [34]. This research

bridges this gap by identifying five functional services for big data requirements

engineering in Section 4.1, and by providing a comparison of three large companies’

approaches to implementing non-functional requirements for big data in Section

4.2.

4.1 Identification of Functional Services for Big Data

The non-functional requirements identified in this study, together with a gap analy-

sis exercise based on the literature survey, were used to identify a number of func-

tional services for big data requirements engineering in a multi-cloud environment.

These functional services are illustrated in Figure 16.

22

Fig. 16: Identified Functional Services for Big Data Requirements Engineering in a Multi-

Cloud Environment

A monitoring service provides performance metrics (CPU, memory, and network

usage), as well as data processing metrics (number of records ingested, number of

records processed, percentage of data loss). It also provides cost expended in terms

of resources utilized from each provider, and cost estimations based on past usage.

A multi-cloud provisioning service compares offerings from different providers in

terms of cost and other preconfigured SLAs. A horizontal scaling service provides

optimisations for the number of container instances running in the cluster, as well

as container co-location analysis and recommendations. A vertical scaling service

provides optimisations for the number of nodes in the cluster and offers provider

comparison and recommendations based on weighted desired qualities. Finally, the

cloud resource estimation service adjusts the initial estimations entered by designers

of stream processing systems before a given configuration is run, based on the win-

dowing function selected. It also communicates with the monitoring service to ad-

just estimations for running systems. Figure 17 summarises the resource estimation

process provided by MC-Compose, a cloud resource estimation service developed

as part of this research.

Monitoring

•Performance
Metrics

•Data Processing
Metrics

•Cost Metrics

Multi-Cloud
Provisioning

•Cost Comparison

•SLA Analysis

Horizontal
Scaling

•Container Instances
Optimisation

•Container Co-
Location Analysis

Vertical
Scaling

•Number of Nodes
Optimisation

•Provider
Recommendation

Cloud
Resource

Estimation

•Windowing
Function Analysis

•Monitoring
Feedback

23

Fig. 17: MC-Compose Resource Estimation Process Summary

The resource estimation process summarised in Figure 17 starts with a resource es-

timate for CPU, memory and network consumption submitted by a user. This is

based on the assumption that the system is unknown, or has not yet been deployed

to production. The windowing function, used to render the potentially infinite

stream of data finite for processing, is then selected. It consists of a period, which

represents how frequently a processing window starts, and a duration, which repre-

sents the duration of each processing window. Strategies such as sampling can be

implemented by selecting a period higher than the duration, whereas sliding win-

dows can be implemented by selecting a higher duration than period. MC-Compose

takes into account the windowing function selected, and adjusts the resource esti-

mation entered by the user, who is prompted to accept the adjusted requirements, or

manually override them. Once the system is deployed, the monitoring service de-

picted in Figure 16 sends metrics to MC-Compose, which are used to further refine

the resource estimation calculations and thus improve the recommendations made

to the user.

This section summarised five functional services for big data in a multi-cloud envi-

ronment, identified as part of this research. The next section discusses the ap-

proaches of the three companies selected by this study to implementing the ten non-

functional requirements identified in Section 2.3.

Get Monitoring

Metrics

Adjust Resource

Estimation

Accept and

Deploy

Configuration

Select

Windowing

Function

Submit Resource

Estimation

24

4.2 Non-Functional Requirements

This section presents ten non-functional requirements discussed in the literature

published by the three companies selected in Section 2.2. It then examines how they

implemented these requirements and compares the different solutions.

Fig. 18: Non-Functional Requirements for Large-Scale Big Data Systems

Figure 18 shows a summarised view of the ten non-functional requirements dis-

cussed in this section, organized hierarchically. At the top level, there are three main

requirements: the capacity to process batch data, the capacity to process stream data,

the capacity to distribute processing tasks across several machines and to scale up

that number, and the capacity to seamlessly integrate with existing and future tech-

nology. Three other requirements are related to stream processing: the capacity to

handle late and out of order data, the capacity to offer one of three processing guar-

antees, and the capacity to offer strategies for flow control. Two requirements are

related to distribution and scalability: the capacity to offer cloud support and elas-

ticity, so distribution can expand to encompass the ream of the cloud, and the ca-

pacity to offer fault tolerance, usually by taking snapshots of the state of data pro-

cessing and re-launching the failed task on a healthy node. Finally, the capacity of

a system to have its components substituted for equivalent technology is related to

the requirement for integration and extensibility.

The remainder of this section explores how the three companies selected for this

study implemented these ten requirements and compares their different solutions.

4.1 Batch Data

NFR for BD

Batch
Processing

Stream
Processing

Late and Out
of Order Data

Processing
Guarantees

Flow Control

Distribution
and

Scalability

Cloud
Support and

Elasticity

Fault
Tolerance

Integration
and

Extensibility

Flexibility and
Technology
Agnosticism

25

This requirement refers to the capability to process data which is finite and usually

large in volume.

In terms of size, both Facebook and Twitter estimate that the finite data they hold

on disk reaches hundreds of petabytes, with a daily processing volume of tens of

petabytes [50]. Netflix’s big data is one order of magnitude smaller, with tens of

petabytes in store and daily reads of approximately 3 petabytes [51].

With regards to how this requirement is addressed, Facebook uses a combination of

three independent, but communicating systems to manage its stored data: an Oper-

ational Data Store (ODS), Scuba, Hive and Laser [7].

Twitter’s batch data is stored in Hadoop clusters and traditional databases, and is

processed using Scalding and Presto [50]. Scalding is a Scala library developed in-

house to facilitate the specification of map-reduce jobs [10]. Presto, on the other

hand, was originally developed by Facebook. It was open-sourced in 2013 [52], and

has since been adopted not only by Twitter, but also by Netflix [53].

Differently from the previous two companies, Netflix’s Hadoop installation is

cloud-based, and it uses an in-house developed system called Genie to manage

query jobs submitted via Hadoop, Hive or Pig. Data is also persisted in Amazon S3

databases [54].

4.2 Stream Data

This requirement refers to the capability to process data which is potentially infinite

and usually flowing at high velocity.

Stream processing at Facebook is done by a suite of in-house developed applica-

tions: Puma, Swift and Stylus. Puma is a stream processing application with a SQL-

like query language optimised for compiled queries. Swift is a much simpler appli-

cation, used for checkpointing. Finally, Stylus is a stream processing framework

which combines stateful or stateless units of processing into more complex DAGs

[7].

Storm, one of the most popular stream processing frameworks in use today, was

developed by Twitter [4]. Less than five years after the initial release of Storm,

however, Twitter announced that it had replaced it with a better performing system,

Heron, and that Storm had been officially decommissioned [6]. Heron uses Mesos,

an open-source cluster management tool designed for large clusters. It also uses

Aurora, a Mesos framework developed by Twitter to schedule jobs on a distributed

cluster.

26

Netflix also uses Mesos to manage its large cluster of cloud resources. Scheduling

is done by a custom library called Fenzo, whereas stream processing is done by

Mantis, which is also custom-developed.

4.3 Late and Out of Order Data

This requirement relates to stream processing and refers to the capability to process

data which arrives late or in a different order from that in which it was emitted. All

three streaming architectures utilise the concept of windows of data to transform

infinite streaming data into finite windows that can be processed individually [5],

[7], [55].

For handling late and out of order data, Facebook’s Stylus utilises low watermarks.

No mention was found in Twitter Heron’s academic paper of whether it provides a

mechanism for dealing with late or out of order data. However, looking at the source

code for the Heron API, the BaseWindowedBolt class, merged into the master pro-

ject in 2017, has a method called withLag(), which allows the developer to specify

the maximum amount of time by which a record can be out of order [56].

No mention was found in documentation published by Netflix of Mantis’s strategy

for dealing with late and out of order data. Because the source code for Mantis is

proprietary, further investigation was limited.

4.4 Processing Guarantees

This requirement refers to a stream system’s capability to offer processing guaran-

tees, i.e. exactly once, at least once and at most once. Exactly once semantics in-

volves some level of checkpointing to persist state. There is therefore an inherent

latency cost associated with it, which is why not all use-cases are implemented this

way.

An example of a use-case where exactly once semantics is not a requirement is Fa-

cebook’s Scuba system. Since the data is intended to be sampled, completeness of

the data is not a requirement. Duplication, however, is not acceptable. In this case,

at most once is a more fitting processing guarantee than exactly once [7], since it is

in line with sampling and does not allow duplicate records to occur. Facebook also

has use cases where exactly once processing guarantees are required. These are ca-

tered for by Stylus, a real-time system designed with optimisations to provide at

least once processing semantics through the use of checkpointing. [7].

At Twitter, both Storm and its successor, Heron, offered at least once and at most

once guarantees. Identified as a shortcoming by Kulkarni et al. [5], the lack of ex-

27

actly once semantics in Heron was subsequently addressed and implemented as “ef-

fectively once semantics”. Effectively once semantics means that data may be pro-

cessed more than once (the processing would undergo a rewind in case of failure),

but it is only delivered once [57].

Netflix uses Kafka as its stream platform and messaging system [58], which means

it provides inherent support for exactly once processing through idempotency and

atomic transactions [59]. Additionally, at least once and at most once processing

guarantees are also supported by Kafka [60].

4.5 Integration and Extensibility

This requirement refers to the capability to integrate with existing services and com-

ponents. It also refers to provisions made to facilitate the extension of the existing

architecture to incorporate different components in the future.

Although Facebook’s real-time architecture is composed of many systems, they are

integrated thanks to Scribe. Scribe works as a messaging system: all of Facebook’s

streaming systems write to Scribe, and they also read from Scribe. This allows for

the creation of complex pipelines to cater for a multitude of use-cases [7]. In terms

of extensibility, any service developed to use Scribe as data source and data output

could integrate seamlessly with Facebook’s architecture.

As part of a process to make Heron open-source, Twitter introduced a number of

improvements to make it more flexible and adaptable to different infrastructures

and use-cases. By adopting a general-purpose modular architecture, Heron achieved

significant decoupling between its internal components, and increased its potential

for adoption and extension by other companies [6].

Netflix’s high level architecture is somewhat rigid in that there is no alternative to

using Mesos as an orchestration and cluster management tool, or AWS as a cloud

provider [61]. Additionally, Titus must run as a single framework on top of Mesos.

This limitation however was introduced by design. With Titus running as a single

framework on Mesos, it can allocate tasks more efficiently, and has full visibility of

resources across the entire cluster [9]. Because Titus is a proprietary system de-

signed by Netflix and optimised to fulfill its own use cases, it was initially tightly

coupled to Netflix’s infrastructure. It has however evolved into a more generic prod-

uct since being open-sourced in April 2018 [62].

4.6 Distribution and Scalability

This requirement refers to the capability to distribute data processing amongst dif-

ferent machines, located in different data centres, in a multi-clustered architecture.

28

Dynamic scaling, which addresses the possibility of adding or removing nodes to a

running system without any downtime, is also addressed as part of this requirement.

Scalability was one of the driving factors behind the development of Scribe as a

messaging system at Facebook. Similarly to Kafka, Scribe can be scaled up by in-

creasing the number of buckets (brokers) running, thus increasing the level of par-

allelism [7]. There is no mechanism in place for dynamic scaling of Puma and Sty-

lus systems [7].

At Twitter, Heron was developed as a more efficient and scalable alternative to

Storm. Heron, uses an in-house developed proprietary framework called Dhalion to

help determine whether the cluster needs to be scaled up or down [63].

As Netflix’s architecture is cloud-based, it is inherently elastic and scalable. Fenzo

is responsible for dynamically scaling resources by adding or removing EC2 nodes

to the Mesos infrastructure as needed [55].

4.7 Cloud Support and Elasticity

This requirement refers to the capability to move the architecture (or part of it) into

the cloud to take advantage of the many benefits associated with its economies of

scale.

Based on the material examined, Neflix’s architecture is the only which is predom-

inantly cloud-based. Having started with services running on AWS virtual ma-

chines, they are now undergoing a shift towards a container-based approach, with a

few services now running in containers on AWS infrastructure [9]. Twitter has also

undergone a shift towards a containerised architecture, albeit not cloud-based, with

the development and implementation of Heron. As containers become more wide-

spread, the risk of vendor lock-in is lowered, since containers enable the decoupling

of the processing framework from the infrastructure they run in. Future migration

to a safer multi-cloud setup is not only possible, but desirable [64].

4.8 Fault Tolerance

This requirement refers to the capability of a system to continue to operate should

one or more nodes fail. Ideally, the system should recover gracefully, with minimal

repercussions for the user experience.

Fault-tolerance is a requirement of Facebook’s real-time systems, currently imple-

mented through node independence and by using a persistent messaging system for

all inter-system communication. Scribe, Facebook’s messaging system, persists

29

data to disk, and is backed by Swift, a stream platform designed to provide check-

pointing. [7].

 At Twitter, fault tolerance is addressed at different levels. At architectural level, a

modular distributed architecture provides better fault tolerance than a monolithic

design. At container level, resource provisioning and job scheduling are decoupled,

with the scheduler being responsible for monitoring the status of running containers

and for trying to restart any failed ones, along with the processes they were running.

At JVM level, Heron limits task processing to one per JVM. This way, should fail-

ure occur, it is much easier to isolate the failed task and the JVM where it was

running [6]. At topology level, the management of running topologies is decentral-

ised, with one Topology Master per topology, which means failure of one topology

does not affect others [5].

As Netflix’s production systems are cloud-based, fault tolerance is addressed from

the perspective of a cloud consumer. The Active-Active project was launched by

Netflix with the aim of achieving fault tolerance through isolation and redundancy

by deploying services to the US across two AWS regions: US-East-1 and US-West-

2 [65]. This project was later expanded to incorporate the EU-West-1 region, as

European locations were still subjected to single points of failure [66]. With this

latest development, traffic could be routed between any of the three regions across

the globe, increasing the resilience of Netflix’s architecture.

4.9 Flow Control

This requirement refers to the capability to handle scenarios where the data source

emits records faster than the system can consume.

All real-time systems at Facebook read and write to Scribe. As described by Chen

et al., this central use of a persistent messaging system makes Facebook’s real-time

architecture resilient to backpressure. Since nodes are independent, if one node

slows down, the job is simply allocated to a different node, instead of the slowing

down the whole pipeline [7]. The exact strategy used by Scribe to implement flow

control is not made explicit in the paper.

Heron was designed with a flow control mechanism as an improvement over Storm,

where producers dropped data if consumers were too busy to receive it. When Heron

is in backpressure mode, the Stream Manager limits incoming data through the fur-

thest upstream component (the spout) in order to slow down the flow of data

throughout the topology. The data processing speed is thus reduced to the speed of

the slowest component. Once backpressure is relieved and Heron exits backpressure

mode, the spout is set back to emit records at its normal rate [5].

30

At Netflix, Mantis jobs are written using ReactiveX, a collection of powerful open-

source reactive libraries for the JVM [67]. RxJava, one of the libraries in ReactiveX

originally developed by Netflix, offers a variety of strategies for dealing with back-

pressure such as, for example, the concept of a cold observable which only starts

emitting data if it is being observed, at a rate controlled by the observer. For hot

observables which emit data regardless of whether or not they are being observed,

RxJava provides the options to buffer, sample, debounce or window the incoming

data [68].

4.10 Flexibility and Technology Agnosticism

This criterion refers to the capability of an architecture to use interchangeable tech-

nology in place of existing components.

Out of the three architectures investigated, Facebook’s setup is the least flexible and

the least technologically agnostic. With the exception of Hive and its ODS, built on

HBase [69], Facebook’s data systems were developed in-house to cater for very

specific use-cases. This is perhaps the reason why, at the time of writing, only Scribe

has been made open-source [70]. It is worth noting, however, that the Scribe project

was not developed further, and the source-code has been archived [13].

Heron’s modular architecture is flexible by design, and the technologies chosen for

Twitter’s particular implementation, Aurora and Mesos, are not compulsory for

other implementations. Heron’s flexibility is evidenced by its adoption by large-

scale companies such as Microsoft [71], and its technology agnosticism is evi-

denced by its successful implementation on a Kubernetes (instead of Mesos) cluster

[72].

At programming level, Netflix is an active participant of the Reactive Streams ini-

tiative, which aims to standardise reactive libraries with an aim to rendering them

interoperable. Considering that JDK 9, released in September 2017, is also compat-

ible with Reactive Streams, there is potential for Mantis’s jobs to be defined in

standard Java in the future.

At cloud infrastructure level, the use of containers as a deployment abstraction re-

duces the tight coupling between Netflix’s artifacts and specific virtual machine

offerings provided by AWS. This is defined by Leung et al. [9] as a shift to a more

application-centric deployment. It is worth noting, however, that, at the time of writ-

ing, Netflix officially relies on a single cloud provider: AWS, despite there being

indication that they would have started to evaluate Google Cloud in an effort to-

wards achieving a multi-cloud strategy [73].

At architecture level, because Titus was only recently open-sourced, this study did

not evaluate whether essential parts of its architecture such as the Mantis, Fenzo or

31

the Mesos cluster could be replaced with an equivalent. It is expected, however, that

its transition to open-source could attract important contributions from the commu-

nity and enhance its flexibility and technology agnosticism.1

4.11 Summary and Applications

This section provides a summary of the implementation approaches of the ten non-

functional requirements by the three companies selected. Additionally, it introduces

a direct applications of the current study: the design and development of MC-BDP,

a new reference architecture for large-scale stream big data processing.

As continuation of this research, the non-functional requirements discussed in this

study were used to guide the design and implementation of a new reference archi-

tecture for big data processing in the cloud: MC-BDP. MC-BDP is an evolution of

the PaaS-BDP architectural pattern originally proposed by the authors. While PaaS-

BDP introduced a framework-agnostic programming model and enabled different

frameworks to share a pool of location and provider-independent resources [64],

MC-BDP expands this model by explicitly prescribing a multi-tenant environment

where nodes are deployed to multiple clouds. Figure 19 shows a summary of how

Facebook, Twitter and Netflix implemented the ten non-functional requirements

discussed in this research. The last column shows MC-BDP, the proposed reference

architecture.

Fig. 19: Summary of Non-Functional Requirements for Big Data and Implementations

MC-BDP was subsequently evaluated via a simulated energy efficiency case study

where a prototype was developed using open-source technology to calculate the

Power Usage Effectiveness (PUE) of a data centre at Leeds Beckett University. The

components of this prototype implementation were deployed to the OSDC, Azure

and Google clouds. Based on the non-functional requirements discussed in the cur-

rent study, three hypotheses were formulated and verified empirically:

32

H1. MC-BDP is scalable across clouds.

H2. MC-BDP is fault-tolerant across clouds.

H3. MC-BDP’s provision for technology agnosticism does not incur a sig-

nificant increase in processing overhead.

This section examined how the three companies selected for this study: Facebook,

Twitter and Netflix implemented the ten non-functional requirements defined in

Section 2.2. Additionally, it introduced two instances where the present study was

applied to inform the design and development of further contributions: MC-BDP

and MC-Compose. A full presentation and discussion of MC-BDP and MC-

Compose, however, lies outside the scope of this chapter, and will be the subject of

a future publication. The next section presents the conclusion to this work and sug-

gestions for future work.

5. Conclusion and Future Work

This study presented the results of a literature search for non-functional

requirements relevant to real-world big-data implementations. Three companies

were selected for this comparative study: Facebook, Twitter and Netflix. Their

specific implementations of the non-functional requirements selected were

compared and discussed in detail, and are summarised in this section.

Facebook and Twitter process the largest volume of data, with Twitter having the

lowest requirement for latency. Differently from Facebook, these two architectures

were also explicitly designed to handle late and out of order data. In terms of pro-

cessing guarantees, all three architectures support exactly-once semantics.

Although the existing systems at Facebook and Netflix are integrated, they were not

designed as a unified modular framework. Heron, on the other hand, was developed

by Twitter as an improvement over Storm, which suffered from bottlenecks and

single points of failure. Heron’s modular architecture makes it more flexible and

technologically agnostic, as well as a stronger candidate for adoption by other com-

panies when compared to systems developed by the other two companies.

Differently from Facebook and Twitter, which provide mechanisms for scalability

and fault tolerance in their infrastructures, Netflix approaches this concept from a

cloud consumer’s perspective, since its architecture is cloud-based. Netflix’s de-

ployments are distributed over multiple regions, although support for multi-cloud is

still lacking.

All three architectures provide mechanisms for flow control. Facebook and Twitter

control backpressure from an infrastructure level, whereas Netflix provides methods

and constructs to achieve this programmatically.

33

The authors recognise that more thorough results could have been obtained should

our approach have included direct observation of the systems under evaluation by

way of a set of case studies. However, due to time and resource constraints, the

scope of the present study was limited to published sources.

Future work shall involve a prototype implementation of the MC-BDP reference

architecture and its subsequent evaluation in terms of a minimum of three of the

non-functional requirements for large-scale big data applications identified in this

study. Additionally, this research aims to develop one or more of the functional

services for big data requirements engineering in a multi-cloud environment de-

scribed in the previous section. An example of such service is MC-Compose, a

cloud resource estimation service for stream big data systems which adjusts user-

entered estimations based on the windowing function selected and on monitoring

feedback.

Acknowledgments

This work made use of the Open Science Data Cloud (OSDC) which is an Open

Commons Consortium (OCC)-sponsored project.

Cloud computing resources were provided by Google Cloud and Microsoft Azure

for Research awards.

Container and cloud native technologies were provided by Weaveworks.

6. References

[1] L. Cao, ‘Data science: challenges and directions’, Commun.

ACM, vol. 60, no. 8, pp. 59–68, Jul. 2017.

[2] J. Desjardins, ‘What Happens in an Internet Minute in 2019?’,

Visual Capitalist, 13-Mar-2019. [Online]. Available:

https://www.visualcapitalist.com/what-happens-in-an-internet-

minute-in-2019/. [Accessed: 22-Mar-2019].

[3] L. Chung and J. C. Prado Leite, ‘Conceptual Modeling: Founda-

tions and Applications’, A. T. Borgida, V. K. Chaudhri, P. Gior-

gini, and E. S. Yu, Eds. Berlin, Heidelberg: Springer-Verlag,

2009, pp. 363–379.

[4] A. Toshniwal et al., ‘Storm@Twitter’, in Proceedings of the

2014 ACM SIGMOD International Conference on Management

of Data, New York, NY, USA, 2014, pp. 147–156.

34

[5] S. Kulkarni et al., ‘Twitter Heron: Stream Processing at Scale’,

in Proceedings of the 2015 ACM SIGMOD International Con-

ference on Management of Data, New York, NY, USA, 2015,

pp. 239–250.

[6] M. Fu et al., ‘Twitter Heron: Towards Extensible Streaming En-

gines’, in 2017 IEEE 33rd International Conference on Data

Engineering (ICDE), 2017, pp. 1165–1172.

[7] G. J. Chen et al., ‘Realtime Data Processing at Facebook’, in

Proceedings of the 2016 International Conference on Manage-

ment of Data, New York, NY, USA, 2016, pp. 1087–1098.

[8] N. Bronson, T. Lento, and J. L. Wiener, ‘Open data challenges

at Facebook’, in 2015 IEEE 31st International Conference on

Data Engineering, 2015, pp. 1516–1519.

[9] A. Leung, A. Spyker, and T. Bozarth, ‘Titus: Introducing Con-

tainers to the Netflix Cloud’, Queue, vol. 15, no. 5, pp. 30:53–

30:77, Oct. 2017.

[10] scalding: A Scala API for Cascading. Twitter, Inc., 2018.

[11] ‘Heron Documentation - Heron’s Architecture’, Heron Docu-

mentation, 2019. [Online]. Available:

https://apache.github.io/incubator-heron/docs/concepts/archi-

tecture/. [Accessed: 02-Jun-2019].

[12] P. T. Goetz, J. Lim, K. Patil, and P. Brahmbhatt, Apache Storm.

The Apache Software Foundation, 2019.

[13] Scribe. Facebook Archive, 2014.

[14] S. Eliot, ‘Microsoft Cosmos: Petabytes perfectly processed per-

functorily’, 11-May-2010. [Online]. Available:

https://blogs.msdn.microsoft.com/seliot/2010/11/05/microsoft-

cosmos-petabytes-perfectly-processed-perfunctorily/. [Ac-

cessed: 24-Jan-2018].

[15] P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin, ‘Orle-

ans: Distributed Virtual Actors for Programmability and Scala-

bility’, Mar. 2014.

[16] T. Akidau et al., ‘MillWheel: fault-tolerant stream processing at

internet scale’, Proc. VLDB Endow., vol. 6, no. 11, pp. 1033–

1044, Aug. 2013.

[17] T. Akidau et al., ‘The Dataflow Model: A Practical Approach to

Balancing Correctness, Latency, and Cost in Massive-Scale, Un-

bounded, Out-of-Order Data Processing’, Proc. VLDB Endow.,

vol. 8, pp. 1792–1803, 2015.

35

[18] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs, ‘Build-

ing a Big Data Platform for Smart Cities: Experience and Les-

sons from Santander’, in 2015 IEEE International Congress on

Big Data, 2015, pp. 592–599.

[19] D. J. Abadi et al., ‘The Design of the Borealis Stream Processing

Engine.’, in CIDR, 2005, vol. 5, pp. 277–289.

[20] S. Loesing, M. Hentschel, T. Kraska, and D. Kossmann,

‘Stormy: an elastic and highly available streaming service in the

cloud’, 2012, p. 55.

[21] A. Alexandrov et al., ‘The Stratosphere Platform for Big Data

Analytics’, VLDB J., vol. 23, no. 6, pp. 939–964, Dec. 2014.

[22] J. Y. Zhu, J. Xu, and V. O. K. Li, ‘A Four-Layer Architecture

for Online and Historical Big Data Analytics’, 2016, pp. 634–

639.

[23] ‘Amazon EMR - Amazon Web Services’, Amazon EMR, 2019.

[Online]. Available: https://aws.amazon.com/emr/. [Accessed:

15-Mar-2019].

[24] ‘Azure HDInsight - Hadoop, Spark, & Kafka Service | Microsoft

Azure’, HDInsight, 2019. [Online]. Available: https://azure.mi-

crosoft.com/en-gb/services/hdinsight/. [Accessed: 15-Mar-

2019].

[25] ‘Big Data Analytics Infrastructure Solutions | IBM’, IBM big

data analytics solutions, 2019. [Online]. Available:

https://www.ibm.com/it-infrastructure/solutions/big-data. [Ac-

cessed: 15-Mar-2019].

[26] B. Chandramouli, J. Goldstein, M. Barnett, and J. F. Terwilliger,

‘Trill: Engineering a Library for Diverse Analytics’, IEEE Data

Eng Bull, vol. 38, pp. 51–60, 2015.

[27] S. A. Noghabi et al., ‘Samza: Stateful Scalable Stream Pro-

cessing at LinkedIn’, Proc VLDB Endow, vol. 10, no. 12, pp.

1634–1645, Aug. 2017.

[28] T. Akidau, S. Chernyak, and R. Lax, Streaming Systems: The

What, Where, When, and How of Large-Scale Data Processing,

1 edition. Beijing Boston Farnham Sebastopol Tokyo: O’Reilly

Media, 2018.

[29] S. M. A. Akber, C. Lin, H. Chen, F. Zhang, and H. Jin, ‘Explor-

ing the impact of processing guarantees on performance of

36

stream data processing’, in 2017 IEEE 17th International Con-

ference on Communication Technology (ICCT), 2017, pp. 1286–

1290.

[30] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, and S. Dustdar,

‘Winds of Change: From Vendor Lock-In to the Meta Cloud’,

IEEE Internet Comput., vol. 17, no. 1, pp. 69–73, Jan. 2013.

[31] J. Brodkin, ‘Amazon EC2 outage calls “availability zones” into

question’, Network World, 21-Apr-2011. [Online]. Available:

https://www.networkworld.com/article/2202805/cloud-compu-

ting/amazon-ec2-outage-calls--availability-zones--into-ques-

tion.html. [Accessed: 22-Feb-2019].

[32] A. Dayaratna, ‘Microsoft Azure Recovers From Multi-Region

Azure DNS Service Disruption’, Cloud Computing Today, 15-

Sep-2016. [Online]. Available: https://cloud-computing-to-

day.com/2016/09/15/microsoft-azure-recovers-from-multi-re-

gion-azure-dns-service-disruption/. [Accessed: 22-Feb-2019].

[33] N. H. Madhavji, A. Miranskyy, and K. Kontogiannis, ‘Big Pic-

ture of Big Data Software Engineering: With Example Research

Challenges’, in 2015 IEEE/ACM 1st International Workshop on

Big Data Software Engineering, 2015, pp. 11–14.

[34] D. Arruda, ‘Requirements Engineering in the Context of Big

Data Applications’, ACM SIGSOFT Softw. Eng. Notes, vol. 43,

no. 1, pp. 1–6, Mar. 2018.

[35] I. Noorwali, D. Arruda, and N. H. Madhavji, ‘Understanding

Quality Requirements in the Context of Big Data Systems’, in

2016 IEEE/ACM 2nd International Workshop on Big Data Soft-

ware Engineering (BIGDSE), 2016, pp. 76–79.

[36] H. Eridaputra, B. Hendradjaya, and W. D. Sunindyo, ‘Modeling

the requirements for big data application using goal oriented ap-

proach’, in 2014 International Conference on Data and Software

Engineering (ICODSE), 2014, pp. 1–6.

[37] N. Al-Najran and A. Dahanayake, ‘A Requirements Specifica-

tion Framework for Big Data Collection and Capture’, in New

Trends in Databases and Information Systems, 2015, pp. 12–19.

[38] N. Al-Najran, ‘A Requirements Specification Framework for

Big Data Collection and Capture’, Masters of Science in Soft-

ware Engineering, Prince Sultan University, Riyadh, 2015.

37

[39] D. Arruda and N. H. Madhavji, ‘Towards a requirements engi-

neering artefact model in the context of big data software devel-

opment projects: Research in progress’, in 2017 IEEE Interna-

tional Conference on Big Data (Big Data), 2017, pp. 2314–

2319.

[40] A. G. Shoro and T. R. Soomro, ‘Big Data Analysis: Apache

Spark Perspective’, Glob. J. Comput. Sci. Technol., vol. 15, no.

1, Feb. 2015.

[41] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja,

‘Lambda architecture for cost-effective batch and speed big data

processing’, 2015, pp. 2785–2792.

[42] B. Sun, L. Zhang, and Y. Chen, ‘Design of big data processing

system for spacecraft testing experiment’, in 2017 7th IEEE In-

ternational Symposium on Microwave, Antenna, Propagation,

and EMC Technologies (MAPE), 2017, pp. 164–167.

[43] N. Naik, ‘Docker container-based big data processing system in

multiple clouds for everyone’, in 2017 IEEE International Sys-

tems Engineering Symposium (ISSE), 2017, pp. 1–7.

[44] M. Villari, A. Celesti, M. Fazio, and A. Puliafito, ‘AllJoyn

Lambda: An architecture for the management of smart environ-

ments in IoT’, 2014, pp. 9–14.

[45] P. Basanta-Val, N. C. Audsley, A. Wellings, I. Gray, and N. Fer-

nandez-Garcia, ‘Architecting Time-Critical Big-Data Systems’,

IEEE Trans. Big Data, vol. PP, no. 99, pp. 1–1, 2016.

[46] G. Guerreiro, P. Figueiras, R. Silva, R. Costa, and R. Jardim-

Goncalves, ‘An architecture for big data processing on intelli-

gent transportation systems. An application scenario on highway

traffic flows’, 2016, pp. 65–72.

[47] C. Costa and M. Y. Santos, ‘BASIS: A big data architecture for

smart cities’, 2016, pp. 1247–1256.

[48] M. Ramachandran, ‘Business Requirements Engineering for De-

veloping Cloud Computing Services’, in Software Engineering

Frameworks for the Cloud Computing Paradigm, Z. Mahmood

and S. Saeed, Eds. London: Springer London, 2013, pp. 123–

143.

[49] M. Ramachandran and Z. Mahmood, Eds., Requirements Engi-

neering for Service and Cloud Computing. Springer Interna-

tional Publishing, 2017.

38

[50] S. Krishnan, ‘Discovery and Consumption of Analytics Data at

Twitter’, 29-Jun-2016.

[51] T. Gianos and D. Weeks, ‘Petabytes Scale Analytics Infrastruc-

ture @Netflix’, presented at the QCon, San Francisco, 11-Aug-

2016.

[52] J. Pearce, ‘2013: A Year of Open Source at Facebook’, Face-

book Code, 20-Dec-2013. [Online]. Available: https://code.face-

book.com/posts/604847252884576/2013-a-year-of-open-

source-at-facebook/. [Accessed: 12-Feb-2018].

[53] E. Tse, Z. Luo, and N. Yigitbasi, ‘Using Presto in our Big Data

Platform on AWS’, The Netflix Tech Blog, 10-Jul-2014. .

[54] S. Krishnan and E. Tse, ‘Hadoop Platform as a Service in the

Cloud’, The Netflix Tech Blog, 10-Jan-2013. .

[55] B. Schmaus, C. Carey, N. Joshi, N. Mahilani, and S. Podila,

‘Stream-processing with Mantis’, Netflix TechBlog, 14-Mar-

2016.

[56] B. Peng, [ISSUE-1124] - Windows Bolt support #2241. Twitter,

Inc., 2017.

[57] ‘Heron Documentation - Heron Delivery Semantics’. 2019.

[58] S. Wu et al., ‘The Netflix Tech Blog: Evolution of the Netflix

Data Pipeline’, 15-Feb-2016. [Online]. Available: http://tech-

blog.netflix.com/2016/02/evolution-of-netflix-data-pipe-

line.html. [Accessed: 30-Oct-2016].

[59] A. Woodie, ‘A Peek Inside Kafka’s New “Exactly Once” Fea-

ture’, Datanami, 07-Mar-2017.

[60] P. Dobbelaere and K. S. Esmaili, ‘Kafka Versus RabbitMQ: A

Comparative Study of Two Industry Reference Publish/Sub-

scribe Implementations: Industry Paper’, in Proceedings of the

11th ACM International Conference on Distributed and Event-

based Systems, New York, NY, USA, 2017, pp. 227–238.

[61] ‘Titus’, Titus Documentation, 2018. [Online]. Available:

https://netflix.github.io/titus/. [Accessed: 18-Mar-2019].

[62] A. Joshi et al., ‘Titus, the Netflix container management plat-

form, is now open source’, Medium, 18-Apr-2018.

[63] B. Graham, ‘From Rivulets to Rivers: Elastic Stream Processing

in Heron’, 16-Mar-2017.

[64] T. Vergilio and M. Ramachandran, ‘PaaS-BDP - A Multi-Cloud

Architectural Pattern for Big Data Processing on a Platform-as-

39

a-Service Model’, in Proceedings of the 3nd International Con-

ference on Complexity, Future Information Systems and Risk,

Madeira, 2018.

[65] R. Meshenberg, N. Gopalani, and L. Kosewski, ‘Active-Active

for Multi-Regional Resiliency’, Netflix TechBlog, 02-Dec-2013.

.

[66] P. Stout, ‘Global Cloud — Active-Active and Beyond’, Netflix

TechBlog, 30-Mar-2016.

[67] B. Christiansen and J. Husain, ‘Reactive Programming in the

Netflix API with RxJava’, Netflix TechBlog, 04-Dec-2013. .

[68] D. Gross and D. Karnok, ‘Backpressure’, ReactiveX/RxJava

Wiki, 27-Jun-2016. [Online]. Available: https://github.com/Re-

activeX/RxJava/wiki/Backpressure. [Accessed: 15-Feb-2018].

[69] L. Tang, ‘Facebook’s Large Scale Monitoring System Built on

HBase’, presented at the Strata Conference + Hadoop World,

New York, NY, USA, 24-Oct-2012.

[70] R. Johnson, ‘Facebook’s Scribe technology now open source’,

Facebook Code, 24-Oct-2008.

[71] K. Ramasamy, ‘Open Sourcing Twitter Heron’, Twitter Engi-

neering Blog, 25-May-2016.

[72] C. Kellogg, ‘The Heron Stream Processing Engine on Google

Kubernetes Engine’, Streamlio, 28-Nov-2017.

[73] K. McLaughlin, ‘Netflix, Long an AWS Customer, Tests Waters

on Google Cloud’, The Information, 17-Apr-2018. [Online].

Available: https://www.theinformation.com/articles/netflix-

long-an-aws-customer-tests-waters-on-google-cloud. [Ac-

cessed: 18-Mar-2019].

