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Abstract: Smart meters are used to measure the energy consumption of households. Specifically,
within the energy consumption task, a smart meter must be used for load forecasting, the reduction in
consumer bills as well as the reduction in grid distortions. Smart meters can be used to disaggregate
the energy consumption at the device level. In this paper, we investigated the potential of identifying
the multimedia content played by a TV or monitor device using the central house’s smart meter
measuring the aggregated energy consumption from all working appliances of the household.
The proposed architecture was based on the elastic matching of aggregated energy signal frames
with 20 reference TV channel signals. Different elastic matching algorithms, which use symmetric
distance measures, were used with the best achieved video content identification accuracy of 93.6%
using the MVM algorithm.

Keywords: video content identification; smart meters; load disaggregation

1. Introduction

In recent decades, there has been an extensive use of smart meters in residential
buildings, with 60% of the houses in the USA [1] and 50% of the houses in Europe [2] having
smart meters installed. Smart meters provide residents/consumers with information about
their daily energy consumption, and based on this information, residents can manage
or reschedule the usage of their devices to reduce electricity bills, e.g., by using some
appliances like washing machines at night time, during which electricity costs are usually
lower [3].

Apart from measuring a household’s energy consumption, smart meters can also
be used to provide more detailed information, as in the case of energy disaggregation
where from one smart meter installed at the main inlet of the household, the usage and
energy consumption at the device level is extracted using non-intrusive load monitoring
(NILM) methods [4]. In NILM, the aggregated signal is split into device signals using
source separation methods [5–7] or is processed by machine learning-based models to
detect the existence of devices within time sliding frames [8–13]. Specifically, variants of
HMMs [14], CNNs [11] and LSTM [15] architectures, have been utilized in order to achieve
accurate disaggregation. Furthermore, elastic matching algorithms have also been proven
to work successfully [16,17]. By breaking down the energy consumption information at
the device level, consumers can be informed about the distribution of energy consumption
across home appliances and manage them, or rearrange the schedule of their operation in
a more efficient way [18,19].

Furthermore, smart meters have been utilized for other energy-related tasks, e.g., load
forecasting, for the reduction in consumer bills [20] or the reduction in grid distortions [21].
Moreover, additional information, e.g., the weather condition [22] or socio–economic
information [23,24], has been used and combined with the measurements of the smart
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meters. Based on NILM algorithms, smart meters can be used as non-intrusive sensors,
unlike cameras and microphones, that in addition to energy consumption can also monitor
consumers’ behaviour, device usage preferences and daily routine habits [25]. Therefore,
in more ‘exotic’ scenarios, smart meters can be used to detect or even to predict the
abnormal behaviour of residents, especially in the case of elders or mental disorders [26].

However, the usage of smart meters for various tasks in consumers’ households
raises the question of home data security and privacy [27,28]. Specifically, smart meters
providing high frequency energy consumption data have raised security issues even before
their major implementation in consumer households [29,30]. Studies have shown that
even non-intrusive smart-meters enable the accurate tracking of a person’s location within
the house, e.g., by detecting changes in lighting or other frequently used devices, or
enable the estimation of working routines and the number of people living in a household
[31,32]. As these data are very personal and could even be related to security issues, e.g.,
working routines could be observed and used by criminals to plan burglaries, studies on
the encryption of energy data have been presented in [33–35].

Multimedia content identification from energy consumption has been presented in [36]
where the study was limited to measurements of correlations of energy predictors in
isolated monitors (intrusive load monitoring) on specific video chunks. The application of
NILM techniques, for identifying the use of appliances during a time sliding frame in a
household, has been reported in the literature utilizing high- [37,38] and low-frequency
features [39,40]. However, to the best of the authors’ knowledge, the application of NILM
in recognizing which TV channel is being viewed, by just observing the aggregated energy
consumption signal, has not been investigated. In this paper, we investigated the potential
of using smart meter’s measurement data to identify the video content. Specifically, given
that the smart meter is measuring the aggregated energy consumption from all operating
appliances of a household, we investigated the possibility of identifying the TV channel a
resident is watching from the aggregated energy consumption signal.

The remainder of this paper is organized as follows: In Section 2 the proposed archi-
tecture for the detection of TV channel watching from the central household’s smart meter
is presented. In Sections 3 and 4, the experimental setup and the evaluation results are
presented, respectively. Finally, the paper is concluded in Section 5.

2. TV Channel Watching Identification from Smart Meter Data Architecture

The presented architecture aims to investigate the potential of identifying the TV
channel watching preferences of residents based on the aggregated energy consumption
signal measured by a smart meter at the main inlet of the household. The conceptual
diagram of the architecture for the identification of watched TV channels using smart
meter’s energy data is explicitly illustrated in Figure 1.

Specifically, the architecture in Figure 1 underlies the following five assumptions:

1. The number of TV channels is of medium size (∼20 different channels);
2. The noise of the ‘other devices’ is generated through multiple different scenarios,

each with different noise levels. In detail, to assure realistic noise levels, noise data
were generated using the UK-DALE dataset, which consists of real households energy
measurements with a high number of appliances working in parallel;

3. There is no time-lag between the recordings in the household and the server base station;
4. In the considered household, a maximum of one TV device is turned on at the same time;
5. The TV operates in real-time watching mode not in video on demand mode.

As can be seen in Figure 1, a smart meter measures the aggregated energy consump-
tion, Pagg(t), of a household. The aggregated signal is the sum of the energy consumption
of all the devices of the house and in the present setup we consider the TV device (or a
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monitor) as the target device with energy consumption p(t) and all other home appliances
having energy consumption N(t), meaning:

Pagg(t) = p(t) + N(t) = p(t) +
N−1

∑
i=1

ni(t) (1)

where N is the number of all appliances of the household, including the TV device, fridge
and washing machine, operating in the considered household.

Pagg(t) elastic
matching+

other
devices

p(t)

N(t)

DC offset
removal

...

detected TV 
channel

reference TV channel 1

reference TV channel 2

reference TV channel M

...

framing
Pwres(t)

r1(t)

r2(t)

rM(t)

server base station

framing
...

smart 
meter

Pwagg(t)

rw1(t) rwM(t)

smart 
meter

smart 
meter

smart 
meter

Figure 1. Block diagram of the architecture for identifying the TV channel being watched using smart meter data.

Subsequently, the aggregated signal, Pagg(t), is frame blocked in frames of constant
length equal to W samples and from every energy frame, Pw

agg(t) ∈ Rw : Pagg(t−W : t), the
DC offset is removed, resulting in Pw

res. The DC offset is removed due to the fact that most
common home appliances like fridges, refrigerators, boilers, electric heating bodies, electric
ovens etc., have energy consumption values within a range of 200–2000 Watts while the aver-
age energy consumption of a TV device or monitor is in the order of 25–250 Watts. Therefore,
the DC part of the energy signal within each frame is attributed to devices with high energy
consumption and after removing the remaining residual signal, Pw

res(t) ∈ RW , the contour
shape characteristics of the energy signal of devices with lower energy consumption like the
TV device will be shown more clearly.

Apart from the household aggregated energy consumption measurements, we consid-
ered a server base station where the broadband signals from M TV channels are received,
assuming that M are all available TV channels. Each of the received signals is played
by M reference TV devices of the same brand and model and the corresponding energy
consumption signals, rm(t), with 1 ≤ m ≤ M, are measured by smart meters. It is worth
mentioning that the TV devices used at the server base station are not the same with the
TV device of the household. Then, each of the M reference signals, rm(t), is frame blocked
in frames of constant length equal to W samples, i.e., rw

m(t) ∈ RW .
Assuming there is no significant time-lag for the reception of the TV broadband

signal between the house and the server base station, template matching (elastic matching)
is performed between the unknown residual signal, Pw

res(t), and each of the M reference
signals, rm(t), the reference TV channel energy consumption signal with the lowest distance
from the residual household’s signal, is considered as the detected TV channel Ch(t)
watched at time frame t, meaning:

Ch(t) = arg min
1≤m≤M

{ f (Pw
res(t), rm(t))} (2)

where f (·) is a template (elastic) matching algorithm and Ch(t) ∈ [1, ..., M] is the detected
TV channel watched at time frame t.
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In order to provide more distinctive information, the above described architecture can
be expanded with the elastic matching algorithm f (·) not only considering the aggregated
active power samples, but a set of F features Xw

res(t) ∈ RFxW and r
′
m(t) ∈ RFxW . The

F features are computed from the raw current and voltage samples, iagg(t) and vagg(t),
providing a set of the most common electrical features, e.g., reactive power or harmonics,
and include the active power samples. Therefore, Equation (3) can be rewritten as

Ch(t) = arg min
1≤m≤M

{ f (Xw
res(t), r

′
m(t))} (3)

In the presented architecture, the case of not watching TV can be considered either by
applying threshold values to the elastic matching algorithms of the detected TV channels or
by considering not watching TV as an additional class, i.e., the (M + 1)th one. In addition,
the architecture can be expanded to the case of more than two TV devices to play different
channels simultaneously by considering one of them as belonging to the ‘other devices’ or
by selecting all elastic matching scores below a threshold as detected devices. Furthermore,
switching TV channels would not require a different architecture as the proposed method-
ology is performing TV channel identification at the frame level, thus only the frames
capturing the switch time event would contain samples from two different TV channels,
which will practically not affect the detected time period per channel by more than 1 frame
(20 milliseconds), given that a user will watch a TV channel for at least few seconds before
switching to another one.

3. Experimental Setup

The video classification architecture presented in Section 2 was evaluated using the
dataset, energy features, classification models and experimental protocols presented below.

3.1. Evaluation Data

As there is no benchmark dataset with energy consumption measurements from the
TV or monitoring devices, we recorded a dataset for video classification using the publicly
available video footage from the THUMOS challenge 2014 [41]. In detail, we selected the
first 26 videos from the background data, excluding videos 11, 14, 20, 23, 24 and 25, as their
duration was less than 1 min, resulting in a set of 20 videos. Energy consumption data
measurements were taken from two different monitors, namely an Acer P235H which was
used as the test screen at the house as shown in Figure 1 and an Iiyama Prolite B2483HS
which was used as a reference pattern at the servers station. The technical characteristics of
the two monitors are tabulated in Table 1.

Table 1. Technical characteristics of the monitors used.

Acer P235H Iiyama B2483HS

Technology LCD LED
Screen size (inch) 23 24

Brightness (cd/m2) 300 250
Resolution (pixels) 1920 × 1080 1920 × 1080

Power (Watts) 31.7 24.9

For measuring the electrical energy consumption of the monitors, a hardware proto-
type smart meter developed by MEAZON (https://meazon.com/, accessed on 20 April
2021) was used for the first 1 min of each video. The smart meter is a energy circuit-level
meter, measuring current, voltage, line frequency, active and reactive power and energy as
well as harmonics and crest factor. It was designed for monitoring loads in an electrical
board in commercial or industrial buildings or homes with an internal control capability
up to 16 Amperes that can be extended further by driving an external relay. The USB port
and the ARM Cortex M3 CPU run at 32 MHz Clock Speed with 512 Kbyte of In-System
Programmable Flash and 32 Kbytes of Memory. All the above parameters, e.g., the active

https://meazon.com/
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power or reactive power, were outputted once per electrical cycle by the smart meter, thus
at a rate of 50 times per second. Specifically, the internal sampling rate for calculating
each feature was 8000 Hz, thus for each output sample, 160 samples were used for the
calculation. The prototype of the used smart meter is shown in Figure 2.
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Figure 2. Cerberus smart meter from MEAZON: (a) CAD drawing including PCB and casing (b) the smart meter device.

As regards the UK-DALE database [42], it was used to generate the energy consump-
tion signal of N-1 ‘other devices’ from a real house. In particular, UK-DALE was chosen
among other online available databases, e.g., REDD [43], ECO [44] or AMPds [45], since
it provides high frequency measurements (16 kHz) of households combined with a large
number of appliances operating in parallel. Specifically, we used one hour of the first
house of UK-DALE (maximum of 52 appliances) from the 2 December 2014 between 4 p.m.
and 5 p.m. due to the presence of between 1 and 26 electrical appliances within this time
window, with none of them being a TV device. The aggregated current iagg(t) and the
aggregated voltage vagg(t) were used to calculate the 19 features described in Section 3.2,
e.g., pagg = 1

Ts

∫ Ts
0 vagg(t) · iagg(t)dt in case of the active power. The calculated features

were then utilized to generate the noise vector N(t) as described in Section 2. In order to
have the same sampling rate as measured by the smart meter, the data were down-sampled
to 50 Hz.

3.2. Feature Extraction and Feature Ranking

The raw samples of the aggregated current and voltage, iagg and vagg, was frame-
blocked in frames of 160 samples. For every frame, a feature vector was calculated con-
sisting of four statistical features (peak voltage (V̂), rms current/voltage (iFRMS, vFRMS),
crest factor of current (cF)) and 15 electrical features (current (I), voltage (V), active power
(P), frequency (f), reactive power (Q), apparent power (S), load angle (ϕ), total harmonic dis-
tortion current/voltage (iTHD, vTHD), 3rd/5th/7th harmonic current/voltage (iHD3/5/7,
vHD3/5/7) resulting in the feature vectors of dimensionality equal to F = 19. In order
to calculate the statistical importance of the 19 features, the ReliefF feature ranking algo-
rithm [46] was used by averaging the ranking scores across the 20 measured video signals.
The results are illustrated in Figure 3.
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Figure 3. Feature ranking for the set of 4 statistical (red) and 15 electrical features (blue).

As can be seen in Figure 3, in general, most of the electrical features outperform the
statistical features with the most dominant features being the frequency, apparent power,
raw current as well as of the set current and voltage harmonics. This is in line with previous
publications reporting the high importance of electrical features [47,48]. Regarding the
current and voltage harmonics, they carry a significant amount of the video playing energy
signal’s information, e.g., both iHD5 and iHD7 have high feature ranking scores. Active
power P, reactive power Q and apparent power S carry similar information as they can be
computed by the relation S =

√
P2 + Q2, thus Q has a relatively low feature ranking score

as it can be computed by S and P. Especially, the results in Figure 3 illustrate that several
different features contribute to an accurate description of the TV channels and thus using a
single feature, e.g., current or voltage, might not be sufficient for identifying TV channels.
Since it is not clear how discriminative electric measurements of monitors are when being
used for TV channel classification, e.g., electrical measurements might be filtered through a
large capacitor at the monitor input, and the time domain signals of eight different features
are illustrated for two different video sequences in Figure 4.

As illustrated in Figure 4 all eight features show different shapes for the two different
video signals, respectively. Specifically, the following four instances marked with bounding
boxes (i)–(iv) were analysed. The first case, denoted as ‘(i)’, illustrates the voltage envelop
over time for both videos showing a significantly stronger decrease in the red curve
compared to the blue curve. The second case, denoted as ‘(ii)’, illustrates the difference
between the two signals for the active power consumption. In detail, the time envelop of
the signals was inversed, showing a decrease in the blue signal and an increase in the red
signal. The third case, denoted as ‘(iii)’, illustrates the envelop of the THD of the voltage
showing a significant peak for the blue signal while the red signal is relatively constant.
The last case ‘(iv)’ shows the time envelop of the 7th voltage harmonic, with the red signal
being relatively constant while the blue signal has a significant drought. To summarize,
Figure 4 illustrates that especially features with high feature ranking show significantly
different patterns in the time domain for two different videos.
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Figure 4. Illustration of eight different features for two different video sequences on the same monitor (blue: video #1,
red: video #2). Specifically, the following four instances marked with bounding boxes (i)–(iv) show significant differences
between the two video signals.

Further to feature ranking measurements, examples of the monitor’s energy consump-
tion information carried by the active power, raw current and the 7th current harmonic are
illustrated in Figures 5–7, respectively, including the aggregated signals before and after
the frame’s DC offset removal.
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Figure 5. Illustration of the active power of (a) the TV/monitor only; (b) other appliances; (c) the
aggregated signal; and (d) the aggregated signal after DC offset removal.
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(c) the aggregated signal; and (d) the aggregated signal after DC offset removal.

3.3. Elastic Matching Algorithms

For the classification, four different well known and widely used elastic matching
algorithms were employed, namely the dynamic time warping (DTW), soft dynamic
time warping (sDTW), minimum variance matching (MVM), and global alignment ker-
nel (GAK) [49–51]. Each of these algorithms can be used to compare one- and multi-
dimensional time series’ of possible unequal length and thus found application in several
areas of signal processing, e.g., speech processing [52,53], image processing [54,55] or
energy disaggregation [16,56]. Each of these algorithms has advantages and disadvantages
which make them appropriate or not for application in different problems. In detail, DTW
is the oldest elastic matching algorithm and many modifications of it have been proposed
for feature concatenation, e.g., parallel, serial and decoupled concatenation as described
in [57], or restrictions on the warping path [58,59], improving the performance or the com-
putational effort. However, DTW has the disadvantage of not having additional degrees of
freedom in the warping path as offered by sDTW, GAK or MVM. Specifically, the sDTW
and GAK allow a smoothing of the warping path and thus consider a richer presentation
of the similarities of the two signals. This property was especially utilized for multi-step
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ahead prediction of time series’ [49,60], where the uncertainty between the elastic match-
ing dataset and the example signatures increased with an increasing number of ahead
predictions. Moreover, MVM gives an additional degree of freedom, namely allowing
to skip outliers and matching sub-sequences without necessarily matching the first and
last samples of the two sequences, conversely to DTW alignment where the first and last
sample always have to be aligned. This property has been reported to be advantageous
in several applications, i.e., in energy disaggregation scenarios with high noise levels or a
small amount of training data [16]. The mathematical descriptions of these four template
matching algorithms are presented below.

Let us consider the aggregated power consumption signal Pagg(t)∀t : t ∈ {1, · · · , T}
as measured by a smart meter. For simplicity, let the wth frame of Pw

res be denoted by
Pa, where Pa = [p(i), p(i + 1), · · · , p(i + K)] be a sequence of length K where p(i) is
the ith sample of Pagg. Furthermore, let Pb = [p(j), p(j + 1), · · · , p(j + L)] be a second
sequence of length L where p(j) is the jth sample of Pagg and K < L. Furthermore, let
∆(Pa, Pb) = [δ(pk

a, pl
b)]i,j ∈ RKxL be an arbitrary cost matrix, where δ(·) is a distance

metric, e.g., Euclidean distance, Manhattan distance or Kullback–Leibler (KL) distance and
〈A, ∆(Pa, Pb)〉 being the inner product of matrix A with the cost matrix ∆(Pa, Pb), where A
is an alignment matrix with Ak,l giving the scores of A. Based on the above, the generalized
minγ operator, with the smoothing parameter γ ≥ 0, can be written as in Equation (4) and
is referred to as soft dynamic time warping dtwγ:

dtwγ := minγ{〈A, ∆(Pa, Pb)〉 A ∈ Ak,l} (4)

minγ{a1, · · · , ak} :=

{
mini≤kai γ = 0
−γlog ∑k

i=1 e−ai/γ γ > 0
(5)

where the original DTW score is recovered by setting γ = 0. Extending the previous
definition of sDTW, the Global Alignment (GA) kernel was defined as the exponentiated
soft-minimum of all alignments distances and can be written as in Equation (6):

kγ
GA := ∑

A∈Ak,l

e−〈A,∆(Pa ,Pb)〉/γ (6)

where γ > 0 is the smoothing parameter of the kernel. Compared to DTW, kγ
GA incorporates

the whole spectrum of costs 〈A, ∆(Pa, Pb)〉 and thus provides a richer representation than
the absolute minimum of set A, as considered by DTW.

In contrast to DTW, sDTW and GAK, MVM tries not to find the optimal alignment
between the two sequences Pa and Pb, but also considers the alignment of sub-sequences.
Therefore, MVM tries to find a subsequence P

′
a of length K such that Pb best matches P

′
a.

To formally describe MVM, the difference matrix r between the two sequences Pa and Pb
and is defined as follows:

r = (rkl) = (pk
a − pl

b) (7)

Furthermore, rkl is treated as a directed graph with the following links [51]:

rkl ↔ rrs with r− k = 1 and l + 1 ≤ l + K− L (8)

Using Equations (7) and (8) the least-value path in terms of the linkcost and pathcost
can be written as described in [51].

A bootstrap training subset utilizing 50% of the evaluation data was used in order to
optimize the free parameters of the elastic matching algorithms. The grid search results are
shown in Table 2 and the best elastic matching classification accuracy corresponding to the
optimal values of each elastic matching algorithm are shown in bold.
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Table 2. Classification accuracy (%) for different parameter values of the sDTW, GAK and MVM algo-
rithms. Best performing parameter setups are marked with bold.

sDTW

γ 1 2 5 10 100 500

91.0% 91.1% 91.3% 90.1% 89.8% 89.8%

GAK

γ 1 2 5 10 100 500

52.3% 65.9% 71.8% 71.4% 69.7% 63.2%

MVM

v 5 10 15 20 25 30

95.5% 95.6% 95.5% 95.5% 95.5% 95.5%

As can be seen in Table 2, the optimal parameters of the elastic matching algorithms
used are γ = 5 for sDTW, γ = 5 for GAK and v = 10 for MVM. The best classification
accuracy on the bootstrap training data was achieved by the MVM algorithm and was
equal to 95.6%—outperforming all other evaluated elastic matching algorithms.

3.4. Experimental Protocols

To evaluate the proposed architecture, three different experimental protocols were utilized:
(A) Evaluation under noiseless conditions, i.e., N(t) = 0, was carried out to determine

whether or not different videos can be distinguished from their electrical energy signals
recorded from the same monitors, thus in this protocol it will be P(t) = P

′
(t). No DC

offset removal was applied in this protocol as there were no other devices distorting the
TV signal;

(B): Evaluation with additional ‘other devices’ was carried out, thus N(t) = ∑N−1
i=1 ni(t),

using the aggregated energy signal from the UK-DALE dataset and reference patterns from
the same monitor, i.e., P(t) = P

′
(t);

(C): Evaluation with additional ‘other devices’ was carried out using different moni-
tors, i.e., P(t) 6= P

′
(t), using Acer P235H monitor at the target house and Iiyama B2483HS

monitor at server station.
For the additional ‘other devices’, 59 different sets of recordings were randomly

selected from the 1 h duration measurements of the UK-DALE dataset and added to the
energy measurement of the respective video signal. It must be noted that 59 noise scenarios
were chosen in order to avoid zero padding for the 60th noise scenario, as the 1 h UK-
DALE datafile is slightly shorter than 60 min. Furthermore, it must be pointed out that the
UK-DALE dataset consists of energy data measured from real households, thus providing
a realistic noise scenario for the evaluations.

4. Experimental Results

The architecture presented in Section 2 for the identification of the TV channels
watched using an outdoors smart meter was evaluated according to the experimental setup
described in Section 3. The performance of the three evaluated protocols was estimated in
terms of accuracy (ACC) and in terms of F-score (F1), meaning:

ACC =
TP + TN

TP + TN + FP + FN
(9)

F1 =
2 · TP

2 · TP + FN + FP
(10)

where TP are the true positives, TN are the true negatives, FP are the false positives and
FN are the false negatives, respectively. For each of the three experimental protocols (A,
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B and C) 21 energy signals (from playing 20 videos and one experiment with no video
played) were tested for 60 different noise scenarios and the averaged results are tabulated
in Table 3 in terms of ACC and F1 scores for the noiseless (A), noisy (B) and noisy using
different monitors (C) experimental protocol.

Table 3. Classification results (%) for three experimental protocols (A) noiseless; (B) noisy; and
(C) noisy using different monitors, averaged over 60 different noise scenarios. Best performing setups
are marked with bold.

Classifier
ACC F1

A B C A B C

DTW 100.0 82.6 81.1 100.0 81.6 80.2
sDTW 100.0 89.3 87.1 100.0 88.4 86.0
GAK 100.0 67.2 63.7 100.0 66.4 62.8
MVM 100.0 94.7 93.8 100.0 94.3 93.3

As can be seen in Table 3, all four elastic matching algorithms were able to identify
the played videos with 100% accuracy when intrusive load monitoring was used (protocol
A) in a noiseless scenario. When identification was performed using the aggregated signal
(protocol B) and using the same monitor (Acer P235H), MVM outperformed all other elastic
matching algorithms, achieving an accuracy of 94.7% and an F1 score 94.3%. In protocol C,
elastic matching was performed on the signals from different monitors and MVM again
achieved the highest performance among all evaluated algorithms (accuracy 93.8% and F1
score 93.3%), which is in agreement with our previous study [16], where MVM was also
found to perform well on the NILM task.

In a further step, the results of the best performing architecture (MVM) were evaluated
using confusion matrices for the 21 signals and compared to the baseline system when
utilizing DTW. First, when considering protocol A, there was no difference in terms of
classification between DTW and MVM as all signals were perfectly classified for each of
the 59 noise scenarios (Figure 8a,b). Second, for protocol B, there is a significant drop in
performance for DTW, which is mostly due to the misclassification of TV signals with the
case of not watching TV (Figure 8c,d). In detail, there were 35 misclassifications when
utilizing DTW, while there were only five misclassifications when utilizing MVM. Third,
in protocol C, a similar behaviour was observed as in protocol B with a high number of
misclassifications and thus a relatively large performance decrease for DTW and only a
small performance decrease for MVM (Figure 8e,f). In detail, there were 81 misclassifi-
cations with the scenario of not watching TV when utilizing DTW as elastic matching
algorithm and 20 misclassifications for MVM, respectively. The results of protocols B and
C are in line with the work presented in [61], where significantly better performances
for elastic matching were reported in noisy scenarios when utilizing MVM. Furthermore,
a similar behaviour was reported in our previous study where MVM has also been proven
to enhance accuracy for the energy disaggregation task [16].



Energies 2021, 14, 2485 12 of 16

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

59

59

59

59

59

59

59

59

59

59

59

59

59

59

59

59

59

59

59

59

59

0

10

20

30

40

50

(a) Protocol (A) noiseless (DTW)
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(b) Protocol (A) noiseless (MVM)
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(c) Protocol (B) noisy (DTW)
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(f) Protocol (C) noisy different monitor (MVM)

Figure 8. Confusion matrix for three different experimental protocols using DTW and MVM as elastic matching algo-
rithms (for best visibility, the reader is referred to the electronic version of the document).
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5. Conclusions

Currently, TV audience measurements are made by companies that have installed
monitoring devices in a limited number of households, e.g., BARB in the UK. Identifying
TV channel watching from the household’s smart meter expands the usage of the device
beyond energy monitoring and allows energy supplier companies to also offer other com-
mercial services. On the other hand, the detection of multimedia content from smart meters
raises concerns regarding the privacy of households. In this paper, we investigated the
potential of identifying the watched TV channel or multimedia content using a smart meter
installed outside a house by comparing the household’s aggregated energy consumption
signal with a closed set of reference signals acquired from the energy consumption of other
monitor devices. The experimental results for a set of 20 possible TV channel options
revealed that this is possible and the best identification performance, achieved by the MVM
elastic matching algorithm, was equal to 93.8% in terms of accuracy and 93.3% in terms
of F1 score, followed by sDTW reporting performances of 87.1% in terms of accuracy and
86.0% in terms of F1 score. Conversely, DTW has reported slightly worse results, while
GAK was not able to match the performance of the other algorithms. It was also shown that
all of the investigated elastic matching algorithms were capable of dealing with different
noise levels, as well as with different monitors installed at the server station and the local
TV under investigation, which is crucial for a real world implementation. Moreover, it was
shown that elastic matching algorithms are a suitable choice for identifying TV channels in
real-time as they do not rely on training a classifier and thus can be used directly without
previous training and can operate continuously without need for the re-training of any
models. The proposed proof of concept methodology was evaluated under a number
of assumptions and in a next research direction, will be tested considering a large scale
experimental setup including several houses with different locations and varying time-
lags between the server broadcasting station and the receivers which can be addressed
by expanding the elastic matching search to the previous N-frames as well as different
types of TV devices, including smart TVs. Finally, the effect of multiple TVs operating
simultaneously in a household should be investigated.
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