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1. INTRODUCTION 

The tourism industry has seen continuous growth over the past three decades, with worldwide tourism 

arrivals growing from 439 million tourists in 1990 (UNWTO, 2006) to 1.5 billion during 2019 

(UNWTO, 2020a), representing an average annual growth rate of 4.3% per year. The growth has not 

always been smooth and events such as the financial crisis and subsequent recession have seen a 

decline in international tourism for the year 2009 in all regions (except Africa, UNWTO, 2010). 

Health pandemics, such as the 2003 outbreak of SARS, the 2009 bird flu, the 2012 MERS-CoV and 

the 2013-14 Ebola (Gössling, Scott & Hall, 2020) also had an influence on international tourism, 

although their influence remained regional and not widespread. 

The novel coronavirus (COVID-19) is the first health pandemic in the modern era of travel that had a 

widespread impact on international travel. The highly contagious coronavirus, which was first 

identified in China’s Wuhan region, rapidly spread to all except 12 countries in the world by August 

2020 (McCarthy, 2020). This pandemic has had a strong domino effect since all nations imposed 

travel restrictions to contain the spread of the virus, and by May 2020, 72% of all destinations locked 

their borders completely (UNWTO, 2020b). This has been followed by the adjournment or 

cancellation of major events, such as the Tokyo 2020 Olympic Games. As virus numbers started to 

decline, countries reopened their borders to international tourists, and by September 2020, 53% of 

destinations relaxed restrictions on international tourism (UNWTO, 2020c). However, several 

countries have also seen an explosion of new coronavirus cases in the second part of 2020, with more 

COVID-19 patients hospitalised than before their governments imposed the initial lockdown. 

This rapid closure of borders and the subsequent standstill in international tourism present tourism 

forecasters with a challenging conundrum, which is exacerbated by the inability of scientists to 

forecast the spread and duration of the pandemic (Ioannidis, Cripps & Tanner, 2020). The main 

reasons why forecasts during this pandemic are inaccurate are the lack of historical data, which is a 

requirement in forecasting models, and a lack of understanding of the uncertainties involved during 

such pandemics (Pinson & Makridakis, 2020). 

There is a rich literature available on forecasting tourism demand, with the first review of empirical 

research (Witt & Witt, 1995) identifying both time series and econometric models as popular 

methods, with less emphasis on qualitative methods. A subsequent review by Song and Li (2008) 

showed that artificial intelligence models became more common after the turn of the millennium, 

while Wu, Song and Shen (2017) identified combining forecasts and judgementally adjusting 

forecasts as some of the more recent trends in this field. However, most tourism forecasts assess time 

periods where there were no adverse events. 

There are some exceptions; for example, Choe, Wang and Song (2020) used time series and 

econometric methods to forecast the loss in tourism to South Korea during the MERS outbreak, 

showing a quick recovery to model forecasts after the pandemic. During the Avian Flu and SARS 

outbreak, Asia experienced a steep decline in international tourism with the impact modelled ex post 

by Kuo et al. (2008). In addition, Mao, Ding and Lee (2010) assessed the recovery patterns after the 

SARS pandemic and showed that it is location-specific, depending on the ability to restore normality 
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and confidence. These authors all assess the impact of a pandemic after it has dissipated, but their 

research shed light on the difficulties to forecast tourism during a pandemic. 

This competition challenged forecasters to predict international arrivals for 20 destinations (a total of 

120 series to be forecasted as selected by the organisers of the competition) in two phases: (i) Stage 1 

entails identifying the method that delivers the most accurate ex post forecasts of tourist arrivals pre-

COVID; (ii) Stage 2 calls for ex ante forecasts of tourist arrivals since the onset of the pandemic up to 

the fourth quarter of 2021 using a baseline and three scenarios. According to the competition 

guidelines, the baseline assumes no COVID-19 using data up to the end of 2019 and the best 

performing model from the first stage (which we refer to as ‘under normal circumstances’), while the 

three scenarios should reflect mild, medium and severe COVID-19 impacts. 

In stage 1 of this competition, we use an array of methods and combinations of methods, which 

significantly expand the current tourism forecasting literature. The methods range from univariate 

time series models, popular in tourism forecasting, to neural networks and machine learning, and 

expansions of the univariate models into multivariate versions. In this part of the competition, the 

benefits of applying temporal hierarchies in tourism forecasting become apparent. In the second stage, 

we resort to judgemental adjustment of model-based forecasts, given the uniqueness of the current 

pandemic and the uncertainties involved in forecasting during a pandemic. The proposed adjustment 

scheme and implementation are an innovation unique to this paper. 

 

2. MODELLING STRATEGIES 

2.1 Data 

Our objective is to forecast tourist arrivals for 20 destination countries, from five origin countries, and 

at a total level, as selected by the competition organisers. The time series are quarterly and span a 

variable amount of time, ending in 2019Q4 or later. Table 1 provides a list of the destinations and 

origins (the total level is omitted from the table), together with the starting and ending quarter for each 

time series.  

Table 1 

List of destination and origin countries/regions 

Destination Start End Origins 

USA* 1996Q1 2020Q1 Canada, China, Japan, Mexico, UK 

Canada 1995Q1 2020Q1 China, France, Mexico, UK, USA 

Chile 1998Q1 2019Q4 Argentina, Bolivia, Brazil, Peru, USA 

Mexico 2005Q1 2019Q4 Brazil, Canada, Colombia, UK, USA 

Czech Rep. 2010Q1 2020Q1 Germany, Italy, Kingdom, Russia, United 

UK 2000Q1 2020Q1 France, Germany, Ireland, Spain, USA 

Finland 1995Q1 2020Q1 China, Germany, Russia, Sweden, UK 

Sweden 1995Q1 2020Q1 Denmark, Germany, Norway, UK, USA 

Bulgaria 2008Q1 2020Q1 Germany, Greece, Romania, Russian, Turkey 

Japan 1997Q1 2020Q2 China, Hong Kong, Korea, Taiwan, USA 

Korea 1998Q1 2020Q2 China, Hong Kong, Japan, Taiwan, USA 

Thailand 2000Q1 2020Q1 China, India, Korea, Lao, Malaysia 

Singapore 1995Q1 2020Q2 Australia, China, India, Indonesia, Malaysia 

Malaysia 1998Q1 2020Q1 Brunei, China, Indonesia, Singapore, Thailand 

Indonesia 2002Q1 2019Q4 Australia, China, India, Malaysia, Singapore 

Australia 1991Q1 2020Q2 Germany, Indonesia, Malaysia, New Zealand, UK 

New Zealand 2002Q1 2020Q2 Australia, China, Germany, UK, USA 

Tunisia 2000Q1 2020Q1 Algeria, France, Germany, Libya, Russia 
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South Africa 1999Q1 2020Q1 Germany, Lesotho, Mozambique, UK, USA 

Mauritius 2011Q1 2020Q1 France, Germany, Kingdom, Reunion Island, United 

*China starts 2007Q1; UK, Japan, and China end 2020Q2 

 

The time series are non-stationary exhibiting both stochastic trends and seasonality. Figure 1 provides 

examples of total arrivals for selected destination countries. Bulgaria exhibits a strong outlier in 

2018Q1, which was replaced by the expected value of an appropriate ETS model (see section 2.2 for 

model details). 

Furthermore, we make use of potential predictive variables. These are collected at an annual 

frequency from the International Monetary Fund’s World Economic Outlook (IMF, 2020), including 

forecasts up to 2021. These series are transformed to quarterly series by replicating annual values four 

times as suggested by Nikolopoulos, Syntetos, Boylan, Petropoulos and Assimakopoulos (2011), who 

recommend the use of equal weights, over various weighting schemes.  

We consider the following variables: (i) gross domestic product growth; (ii) purchasing power parity 

(PPP); and (iii) the implied PPP conversion rate. We use these variables from the origin, but also as a 

ratio between origin and destination, to show the relative purchasing power of tourists in each pair of 

countries/regions. For the resulting six variables, we consider up to three annual lags, to capture any 

dynamics in the perception of tourists (Athanasopoulos, Hyndman, Song & Wu, 2011; Song & Witt, 

2000). Given the limited sample size, we use the Akaike information criterion to allow the models to 

eliminate lags. If this is done, the sample is expanded accordingly to improve parameter estimation 

(see modelling details in section 2.2).  

The forecasting task is organised into two phases. The first focuses on the pre-Covid-19 period, 

exploring the business as usual scenario, and the second focuses on forecasting to end 2021, where 

model forecasts are enriched with judgemental information to account for the never observed before 

effects of the pandemic.  
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Fig. 1. Examples of total arrivals to nine destination countries; * signifies that there is data for 2020 

Q1; ** signifies that 2020 Q2 data is available. 

 

2.2 Phase 1 

We implement a series of forecasting methods to produce forecasts. These can be grouped into two 

overall categories, i.e. univariate and multivariate. The former uses only past arrivals to predict the 

future, while the latter makes use of additional macro-economic indicators to model the pairwise 

variance of arrivals between countries.  

Random walk and seasonal random walk 

Given historical observations, 𝑦𝑡, 𝑡 = 1, . . . , 𝑛, and 𝑛 being the sample size of the time series at hand, 

we construct forecasts as: 

𝑦̂𝑡+ℎ = 𝑦𝑡 

𝑦̂𝑡+ℎ = {
𝑦𝑡−𝑠+ℎ,   ℎ ≤ 𝑠
𝑦̂𝑡−𝑠+ℎ,   ℎ > 𝑠

 

respectively for the naïve and the seasonal random walk (SNaïve), where 𝑠 is the seasonal period. As 

neither of the forecasts requires any estimation or modelling choices from the analyst, we consider 

these as benchmark forecasts. More complex forecasts are considered valuable only if they can 

predictively outperform these benchmarks.  

Exponential smoothing 
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Exponential smoothing (ETS) models the time series as a collection of local level, slope, and 

seasonality components. Together with the error term, these components may interact additively or 

multiplicatively. Hyndman, Koehler, Snyder and Grose (2002) embedded exponential smoothing in 

the state-space modelling framework, providing the statistical rationale for optimising model 

parameters and choosing between the 30 common variants of the model. We follow the same 

restrictions used by Kourentzes and Athanasopoulos (2019) to simplify the model form selection.  

The exponential smoothing family of models is used widely in both academia and practice, due to its 

relatively good performance and transparency (Gardner, 2006; Ord et al., 2017), and has also been 

shown to perform well in forecasting tourism arrivals (Athanasopoulos et al., 2011; Kourentzes & 

Athanasopoulos, 2019). We implement ETS using the forecast package (Hyndman et al., 2020) for R 

(R Core Team, 2020) that optimises model parameters and initial values by maximum likelihood 

estimation and chooses between the different model by minimising the Akaike information criterion 

(AIC) (Burnham & Anderson, 2004).  

The state-space formulation of ETS can be extended to include explanatory variables (ETSx) in the 

observation equation (Hyndman, Koehler, Ord & Snyder, 2008). Variable selection becomes 

important, and we minimise the AIC to identify the best predictors.  

Theta method 

The theta method, proposed by Assimakopoulos and Nikolopoulos (2000), models the time series as a 

combination of a long-term slope and local variations after the data has been treated for any 

seasonality. The method has been shown to perform very well (Makridakis & Hibon, 2000). Fiorucci, 

Pellegrini, Louzada, Petropoulos and Koehler (2016) showed that the method can be generalised to 

state-space model, which again was shown to perform very competitively. 

We rely on the implementation in the tsutils package (Kourentzes, 2020) for R that automatically tests 

for trend and the need to de-seasonalise the time series. Seasonality is modelled as a stochastic 

process, in contrast to the original implementation (Assimakopoulos & Nikolopoulos, 2000) that used 

classical time series decomposition to extract seasonal indices.  

Autoregressive integrated moving average 

The autoregressive integrated moving average (ARIMA) family of models forecasts time series by 

modelling lags of the time series observations and errors to capture its various patterns. These may be 

seasonal, giving rise to seasonal ARIMA models. Furthermore, the identification of the order of the 

autoregressive and moving average processes requires the time series to be stationary (see Ord, Fildes 

& Kourentzes, 2017). To identify the appropriate ARIMA form, we follow the methodology by 

Hyndman and Khandakar (2007) available in the forecast package (Hyndman et al., 2020) for R.  

Moreover, we implement ARIMA with explanatory variables in the format of a RegARIMA model, 

using a regression formulation for the explanatory variables with ARIMA errors. The identification of 

the model remains challenging and there is no widely established approach on how to resolve this. We 

follow a heuristic approach, where we first identify a well-performing univariate ARIMA as above. 

From this, we calculate the residuals, with which we build a stepwise regression with the explanatory 

variables, and eliminating superfluous terms by minimising the AIC. Once the best set of explanatory 

variables has been identified, we jointly estimate the complete regARIMA model, allowing the 

ARIMA orders to be re-specified. For the estimation of the regARIMA, we use the forecast package 

for R.  

Neural networks and extreme learning machines 

Two key advantages of neural networks are that they can flexibly model both linear and nonlinear 

interactions in time series, and that the exact functional form is captured by the network in a data-

driven fashion (Ord et al., 2017). However, the training of the networks is demanding. This has led to 

their successful use in data-rich conditions, but less so when the data is sparse. Crone and Kourentzes 

(2010) showed that pre-filtering inputs to the network using a stepwise approach can benefit their 
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performance for low-frequency data. To mitigate training issues and potential overfitting, it is 

recommended to train networks multiple times with random initialisations and subsequently construct 

an ensemble (Kourentzes, Barrow & Crone, 2014). Given the low frequency that tourism arrivals are 

recorded in our dataset we opt to use multilayer perceptions (MLP), instead of deep-learning 

alternative, as implemented in the nnfor package (Kourentzes, 2020) for R.  

Extreme learning machines (ELMs) try to mitigate the complex optimisation that neural networks 

face. Instead of attempting to tune all weights in a network, they are left to their random initial values, 

except for weights in the output layer. This single layer can be easily optimised via ordinary least 

squares or equivalent approaches. ELMs have shown to be very efficient in training, particularly when 

data is limited (Huang, Zhu & Siew, 2006). Here, we specify the inputs of the ELM as for MLP, and 

train the last layer using lasso regression (Tibshirani, 1996) to limit the potential for overfitting. We 

rely on the implementation in the nnfor package for R.  

For both MLP and ELM we consider lags {1, 2, 3, 4, 8, 12, 16} allowing to capture both local and 

seasonal dynamics, and any modelling is done after the time series are made stationary. In addition, 

the networks are provided with 3 binary dummy variables that allow for the deterministic encoding of 

seasonality. We use 20 ensemble members that are combined using the median operator. Although 

both MLP and ELM can use explanatory variables, due to the relatively poor performance of their 

univariate counterparts, we omit these extensions.  

Random forests 

Random forest (RF) is a generalisation of decision trees. The principal idea is that instead of using a 

single decision tree to model the desired interaction, we use multiple small trees that work well when 

combined (Breiman, 2001). Crucially, each tree uses only a small number of potential inputs (usually 

one or two) chosen randomly. Therefore, these shallow trees are trivial to build, and there is a limited 

need for variable selection (Hastie, Tibshirani & Friedman, 2009).  

For the generation of the RF, we rely on the implementation in the random forest package (Liaw & 

Wiener, 2002) for R. To use it, first, all the time series are made stationary and we input: (i) all lags 

from 1 to 8 periods; (ii) any of the seasonal lags 12 or 16 that are identified as useful using a stepwise 

selection, and (iii) seasonal dummy variables, which again are subject to a stepwise selection. These 

settings were identified after trials on a validation set. Finally, we use ensembles of 500 individual 

trees. The univariate RF is strongly outperformed by the ETS and ARIMA; we therefore do not 

consider extending them with explanatory variables.  

Hierarchical forecasting 

Tourism arrivals exhibit a hierarchical structure, where different categories of tourists, destination 

attributes, product types, or geographical divisions may add up to more aggregate scales. Therefore, a 

collection of time series that follows such an aggregation structure is referred to as a “hierarchical 

time series”. For example, arrivals in various cities, the wider region, or the country can be arranged 

in a hierarchy (Athanasopoulos, Ahmed & Hyndman, 2009), as in Figure 2. Nodes at a more 

disaggregate level sum up to observations at more aggregate nodes. In the example, 𝑇𝑜𝑡𝑎𝑙 =  𝑋 +
 𝑌, 𝑋 =  𝑋𝑋 +  𝑋𝑌, and 𝑌 =  𝑌𝑋 +  𝑌𝑌 +  𝑌𝑍.  

 
Fig. 2. An example hierarchy of time series 
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When these equality constraints are observed, the forecasts are coherent. However, typically, when 

forecasts are generated, they are incoherent. Therefore, the sum of the forecasted values from the 

disaggregate levels will not match up to forecasts at aggregate levels. This incoherency has both 

organisational and forecast accuracy implications. From a forecast accuracy perspective, if the 

forecasts were perfectly matching reality, then they would be coherent by definition. Any incoherency 

implies forecast errors and suggests that the forecasts can be improved further. We can reconcile the 

incoherent forecasts by adjusting them so that their aggregation constraints are not violated. This is 

the task of hierarchical forecasting (Athanasopoulos et al., 2009).  

One of the most prominent approaches for forecast reconciliation is the MinT method 

(Wickramasuriya, Athanasopoulos & Hyndman 2019), which achieves this by constructing a 

weighted linear combination of the base forecasts at each node. This is done by 

𝒚̃𝑡 = 𝑺𝑮𝒚̂𝒕 

where 𝒚̂𝒕 is a column vector containing all the base forecasts, 𝒚̃𝑡 is the equivalent for the reconciled 

coherent forecasts, 𝑺 is the so-called ‘summing’ matrix that maps the hierarchy, and 𝑮 contains the 

reconciliation weights that map the incoherent forecasts into coherent bottom-level forecasts. To 

obtain 𝑮, we use the in-sample forecast residuals and calculate their covariance using a shrinkage 

estimator, proposed by Schäfer and Strimmer (2005). Where the shrinkage estimator is insufficient, 

we use the overly simplified structural scaling (Athanasopoulos, Hyndman, Kourentzes & 

Petropoulos, 2017). The advantage of the structural scaling is that it requires no estimation, and 

therefore it is reliable, irrespective of the sample size or the dimensionality of the hierarchy. 

Hierarchical forecasting is independent of the forecasting methods used, which can differ freely 

among the various nodes of the hierarchy.  

Temporal hierarchies 

Athanasopoulos et al. (2017) proposed a temporal version of hierarchical forecasting, where the 

demarcations occur across time. For example, for quarterly time series, as is the case with our data, 

four quarters can be aggregated in a year. In this case, the hierarchical forecasts belong to different 

periods of the same time series.  

The advantage of temporal hierarchies stems from the use of disaggregate and aggregate data to 

produce the final forecasts. As a time series is aggregated, high-frequency components, such as 

seasonality and shocks, are filtered, strengthening long-term components. This permits identifying 

appropriate models for a given time series multiple times, once at each temporal aggregation level. 

Their combination borrows strength from all specifications (Kourentzes, Petropoulos, & Trapero, 

2014). Kourentzes and Athanasopoulos (2019) showed that temporal hierarchies applied to tourism 

arrivals can offer substantial benefits in accuracy, more so than their cross-sectional counterpart 

discussed above.  

Implementation considerations  

For each set of base forecasts, generated by the different forecasting approaches, we can generate 

cross-sectional hierarchical forecasts for each destination country. The hierarchy is formed by the 

lowest level containing the five origin countries, and the aggregate level containing the total arrivals 

to the destination country. These two levels will not be coherent, as the top level of the hierarchy 

includes arrivals from countries that are not included in the bottom level of the hierarchy. We 

overcome this limitation by constructing an artificial series that corresponds to arrivals from the rest 

of the world. Therefore, using the available historical observations, this time series is constructed as: 

Rest = Total – Σ(Origin countries in the dataset). This artificial time series is forecasted as well, and 

its predictions contribute to the hierarchical reconciliation.  

Similarly, we can construct temporal hierarchy forecasts for each time series. We denote these by 

using the prefix ‘THieF-‘. For the univariate forecasts, we consider THieF forecasts of the better 

performing models, giving us THieF-ETS, THieF-Theta, and THieF-ARIMA. For the models that 

make use of the explanatory variables, we construct two pairs of forecasts for ETSx and RegARIMA. 
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Each pair considers two options to model the annual arrivals. In the first option, we use annual 

versions of the explanatory time series (THieF-ETSx and THieF-RegARIMA). In the second option, 

we use univariate forecasts (THieF-ETSxu and THieF-RegARIMAu). Although intuitively the first 

option is more appealing, we opt to include the second as well, since the time series at the annual 

temporal aggregation level become much shorter, making the identification and estimation of 

connections between variables much harder. THieF forecasts make use of the thief package 

(Hyndman & Kourentzes, 2018) for R.  

As hierarchical forecasting adjusts forecasts to produce coherent ones, it is possible to end up with 

negative forecasts. Although this probability is typically minimal, it becomes significant after the 

onset of Covid-19 restrictions, when arrivals may be zero or close to zero. In that case, adjustment 

forecasts can become negative. To overcome this, we rely on the heuristic proposed by Kourentzes 

and Athanasopoulos (2021) that iteratively adjusts the reconciled forecasts until all predictions are 

non-negative.  

2.3 Phase 2 

A significant challenge in producing predictions for phase 2, which focuses on the years 2020-2021, is 

that we are facing an unprecedented disruption due to the Covid-19 pandemic. The challenge is two-

fold. There is a lack of data on the effects of the pandemic on tourist arrivals. Furthermore, travel 

restrictions are primarily legislatively driven, and may not necessarily correlate with the diffusion of 

the pandemic in populations, as legislators consider multiple dimensions in their decision-making.  

To overcome this, we propose a method of judgementally adjusting model-based forecasts from phase 

1. Our dataset contains 48 countries/regions. The process started with a scrutiny of both the 

country/region-specific as well as global outlook. The country/region outlooks focused on Covid-19 

evolution, type/level of government restrictions and actions, and foreign affairs approaches and 

type/level of international border limitations to arrivals. Information from the World Health 

Organization (WHO, 2020) was used to identify the countries’ first COVID case, its peak day in 

terms of diagnosed cases, the cumulative cases, deaths, and the number of cases. Additionally, 

governments’ responses were noted and visualised with the aid of the Coronavirus source data 

(Ritchie, 2020) as depicted for a sample of countries in Figure 3. At the global level, besides the 

macroeconomic data for model-building explained in section 2.1, evidence about the development of 

a vaccine and the timeline of its introduction to the market (large scale) was collected, and seasonal 

differences between Northern Hemisphere and Southern Hemisphere were considered before 

embarking on judgemental predictions. 
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Fig. 3. Visualisation of COVD-19 progression and travel restrictions imposed for selected countries 

(Source of Data: Ritchie, 2020) 

Although in principle one can ask analysts to provide individual judgemental predictions for each pair 

of countries and each quarter in 2021, which would amount to a daunting number of 9 024 [(482 – 

48)x4] individual predictions from each analyst. This would impose a substantial mental load, 

degrading the quality of the forecasts (Miller, Hofstetter, Krohmer & Zhang, 2011). Instead, we 

simplify the task by grouping countries in wider regions. We construct such groups by taking into 

consideration geographical and climate proximity, which implicitly also assumes cultural and risk 

perception similarities. We rely on coarse groupings to keep the mental load manageable. We 

concluded with eight regional groups, broadly matching continental demarcations (see Table 2). Each 

analyst was asked to submit their expectation of either 0 or 1 for travel between each pair of groups 

for five periods (2020Q4-2021Q4), matching the simplified states of unrestricted travelling (0) 

compared to restrictions to travel (1). An example of the task that the analysts were asked to complete 

is provided in Table 2.  

Moreover, recognising that a 0-1 binary classification may not accurately represent the expectations 

of experts for what ‘unrestricted traveling’ means, we asked participants to provide us with a 

percentage estimate of unrestricted travelling (0) compared to the baseline (model) scenario. 

Similarly, for the opposite case (where the analyst gives a value of 1), we do not expect this to be 

equal to zero arrivals. Instead, we can use observational data to obtain an estimate.  

From Table 1, we observe that we have five countries with data in the period 2020Q2. Considering 

the five corresponding origin countries for each destination, the total aggregate arrivals, and the 

implied series with the rest of arrivals from the hierarchical structure, we can obtain 35 measurements 

of how arrivals were reduced over the baseline scenario, which are the forecasts generated from the 

forecasting approach selected above. For ‘restricted travel’, the calculation becomes 𝑦2020𝑄2/𝑦̂2020𝑄2. 

Since we are averaging ratios, we use the geometric mean, which gives residual tourism traffic of just 

0.24% of the baseline scenario.  

 

 

Table 2 

Example of the expectations that were collected from the analysts 
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Year/Quarter 

To 

Africa 

North 

Africa 

South 

America 

North 

America 

South 

Asia 

East 

Asia 

West 
Europe Oceania 

F
ro

m
 

Africa North 
0 0 1 1 0 0 1 1 

Africa South 
0 0 1 1 0 0 1 1 

America North 
1 0 0 0 1 0 1 1 

America South 
1 0 0 0 1 0 1 1 

Asia East 
0 0 1 0 0 0 1 0 

Asia West 
1 0 1 0 0 0 1 0 

Europe 
1 1 1 1 1 1 0 1 

Oceania 
1 0 1 1 0 0 1 0 

 

Judgemental forecasts are well known to suffer from biases, such as anchoring, recency, and reliance 

on readily available information (Gigerenzer & Todd, 1999; Kahneman, 2011). Naturally, as this 

research is conducted during the Covid-19 pandemic, such biases can become more acute. To mitigate 

this, we sourced sets of forecasts from different analysts, which we then combined (Surowiecki, 2005; 

Petropoulos et al., 2018). The combination mechanism is not critical, although removing human 

judgement from the combination is beneficial (Ferrell, 1985; Harvey & Harries, 2004). To this end, 

we use simple averaging, which further avoids the need to estimate combination weights, thereby 

reducing any variance in these and the method’s complexity (Kourentzes, Barrow & Petropoulos, 

2019). The resulting forecasts can take any value from 0 to 1, with in-between values capturing the 

lack of consensus and its strength. The resulting combined forecasts, as well as the adjustment of the 

lower bound to reflect the average judgement of the analysts on the discrepancy between arrivals in 

2021Q4 compared to that of 2019Q4, are illustrated in Figure 4.1  

To populate the values for 2020Q1 to 2020Q3, we followed a set of simple rules. For 2020Q1, all 

values were set to 1/3, reflecting the global onset of the pandemic in March 2020. This is mirrored in 

the travel restrictions imposed by different countries, which were mostly introduced in March 

(Ritchie, 2020). The second quarter of 2020 was set to 1 for all cases, reflecting observations at the 

time of writing. For 2020Q3, if a destination was in the northern hemisphere, we used the judgemental 

estimates for 2020Q4, and otherwise we set all values to 1. The last rule was introduced to reflect the 

summer period in the northern hemisphere, where we expect 2020Q3 to be no worse than 2020Q4, in 

this case opting to potentially err towards pessimism to reflect inertia of perceptions from 2020Q2.  

 
1 Our scenarios were further enriched by comments from regional and industry experts, including Prof Natalia Porto 

(Universidad Nacional de La Plata), Mr Chris Roberts (Tourism Industry Aotearoa), and Mr Ronald King (PSG Wealth). 
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Fig. 4. Combined analyst forecasts for return to normal, per region 

To adjust the forecasts, given a model forecast 𝑦̂𝑖𝑗𝑡 between countries 𝑖 and 𝑗 at period 𝑡, and a 

combined judgment of potential travel disruptions 𝑑̂𝑖𝑗𝑡 (the combined judgemental expectations, with 

the adjusted min-max bounds, see Fig. 4), we construct the final forecast as: 

𝑦̃𝑖𝑗𝑡 = 𝑦̂𝑖𝑗𝑡𝑤𝑖𝑗𝑡 
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𝑤𝑖𝑗𝑡 = {

𝛼(1−𝑑̂𝑖𝑗𝑡) − 1 

𝛼 − 1
,   𝛼 ≠ 1

1 − 𝑑̂𝑖𝑗𝑡 ,   𝛼 = 1

 

where 𝛼 is a scalar ( 0 < 𝛼) and the resulting 0 ≤ 𝑤𝑖𝑗𝑡 ≤ 1, acting as a proportional reduction of the 

forecast between 0 and  𝑦̂𝑖𝑗𝑡 depending on the value of 𝑑̂𝑖𝑗𝑡. The value of 𝛼 allows to set the steepness 

of adjustment, as illustrated in Figure 5. We consider three scenarios, medium, severe, and mild, with 

the respective values of 𝛼 being 1, 10, and 0.1. The severe scenario introduces a slower recovery as 

𝑑̂𝑖𝑗𝑡 → 0, while the mild assumes the opposite. The values of 0.1 and 10 ensure that the two scenarios 

are symmetric. This decision was based on an additional pair of negative and positive integers that the 

analysts were asked to provide denoting their pessimistic (severe) and optimistic (mild) projections 

for the speed of recovery, from which we elucidated their symmetric perception of risk for the two 

scenarios.  

 

Fig. 5. The resulting weights for the three different scenarios considered 

All adjustments are done considering pairs of countries. However, we are also generating forecasts for 

the total arrivals of a destination country. For these, we infer the weights as follows. From the 

UNWTO database (UNWTO, 2020d), we obtain historical annual arrivals for each destination 

country from all the available origins for years 2015 to 2018 where data was available at the time of 

collection. These were averaged and summed into the same eight groups for which we collected 

judgemental estimates and were subsequently forecasted for the years 2020 and 2021, using either 

single exponential smoothing or linear trend exponential smoothing. The model choice was done 

using AIC, corrected for sample size.  

The resulting octuplet of weights is used to linearly combine the octuplet of judgemental expectations 

for a given target region for a specific quarter, providing a single weight to adjust the model forecasts. 

Repeating the process across all the quarters of interest, and selecting the weights for 2020 or 2021 

accordingly, provide the appropriate vector for the total arrivals. Our approach has the advantage that 

we do not need to ask the experts to consider yet another series of expectations, especially when 

judgemental predictions of totals are known to suffer from subadditivity (Sprenger, Dougherty, 

Atkins, Franco-Watkins, Thomas, Lange & Abbs, 2011). When we use cross-sectional hierarchical 

forecasts, we use the same weights 𝑤𝑖𝑡 to also adjust the artificially introduced series ‘Rest’. 

2.4 Performance metric 

To identify the best alternative forecasting approach for phases 1 and 2, we rely on selecting the best 

performing forecast on a validation set, for horizons of one to four quarters ahead. For phase 1, where 

the target is to predict the year 2019, we use the six preceding quarters as a validation set. For phase 2, 

we expand the validation set to include the year 2019. For the evaluation, we rely on a rolling origin 

scheme (Fildes & Petropoulos, 2015; Ord et al., 2017). At the first forecast origin, we specify and 

optimise the various forecasts and predict the next four quarters, recording their performance. 
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Subsequently, we increase the in-sample by one quarter and re-specify and re-optimise the forecasts. 

We repeat the process until the validation set is exhausted. 

We measure the performance using a seasonal variant of the mean absolute scaled error (MASE), 

where for each forecast we calculate the mean absolute error (MAE), and divide that by the in-sample 

MAE of the seasonal random to make it scale-independent, as in Athanasopoulos et al. (2011). Given 

a forecast 𝑦̂𝑡+ℎ|𝑡, for forecast horizon h, from origin t, and corresponding actuals 𝑦𝑡+ℎ, the error is 

calculated as 

𝑀𝐴𝑆𝐸ℎ =
1

𝑣
∑

|𝑦𝑡+ℎ − 𝑦̂𝑡+ℎ|𝑡|

(𝑛 − 4)−1 ∑ |𝑦𝑖 − 𝑦𝑖−4|𝑛
𝑖=5

𝑛+𝑣

𝑡=𝑛

 

where 𝑛 is the sample size used to construct the forecast and 𝑣 is the size of the validation set for each 

respective horizon. For instance, for ℎ = 1 for phase one 𝑣 = 6, while for ℎ = 4 then 𝑣 = 3. The 

number 4 in the above formula corresponds to the seasonal periodicity for quarterly data.  

As MASE is difficult to interpret, we present relative MASE, where we divide the value of MASE for 

a given forecast and horizons with the MASE of the seasonal naïve for the same horizon. Any relative 

MASE below 1 indicates an improvement over the benchmark by (1-error)%, and vice versa if the 

result is above 1. We summarise the results across time series using the geometric mean, in line with 

the recommendations by Davydenko and Fildes (2013).  

 

3. RESULTS AND DISCUSSION 

3.1 Forecast selection results 

Our findings for phases 1 and 2 are similar, and therefore for brevity, we only present the summarised 

relative MASE results for the phase 2 forecast selection [see the online resources for the relative 

MASE for phase 1]. Table 3 provides the relative MASE across all time-series, for the four forecast 

horizons of interest, for the base and the hierarchical forecasts. The best overall forecast for each 

horizon is highlighted in boldface. The results correspond to the validation set for this phase (2017Q3 

to 2019Q4) that helps us identify the best method to use for generating the forecasts up until 2021Q4. 

The selection is done on the overall performance. These forecasts are then adjusted judgementally to 

produce the final predictions.  

We can observe some clear patterns in the performance of the forecasting approaches. Standard 

univariate statistical approaches (ETS, Theta, ARIMA) perform well. Machine learning approaches, 

although they outperform the benchmark SNaïve, do not outperform the statistical forecasts. This can 

be partially explained by the quarterly sampling frequency of the time series, which limits both the 

sample size, disadvantaging machine learning approaches, and exhibiting relatively simple dynamics 

due to their quarterly nature, to the benefit of statistical forecasts. Comparing the univariate forecasts 

against predictions that make use of explanatory variables, we observe that the latter do not 

consistently add value, but are competitive to their univariate counterparts. We note that there are two 

limiting factors. The models are trained in periods of relative stability; therefore, univariate 

extrapolation can be very effective. Secondly, the explanatory variables are only updated at an annual 

level, which suggests that intra-annual variability is captured only univariately.  
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Table 3 

Average relative MASE for phase 2 forecast selection in the validation sample (2017Q3 to 2019Q4) 

across all countries 

Forecast 
Base forecasts   Hierarchical forecasts 

t+1 t+2 t+3 t+4 Overall   t+1 t+2 t+3 t+4 Overall 

Univariate 

Naïve 2.345 2.730 2.696 1.000 2.193  2.360 2.744 2.711 1.000 2.204 

SNaive 1.000 1.000 1.000 1.000 1.000   1.000 1.000 1.000 1.000 1.000 

ETS 0.812 0.908 0.978 1.024 0.931   0.809 0.915 0.980 1.016 0.930 

Theta 0.790 0.897 0.983 1.095 0.941  0.789 0.898 0.983 1.093 0.941 

ARIMA 0.783 0.908 1.022 1.089 0.951   0.779 0.910 1.022 1.097 0.952 

MLP 0.909 1.133 1.281 1.424 1.187  0.934 1.147 1.295 1.439 1.204 

ELM 0.854 1.042 1.134 1.233 1.066  0.849 1.038 1.125 1.220 1.058 

RF 0.841 1.048 1.171 1.276 1.084   0.842 1.053 1.174 1.284 1.088 

THieF-ETS 0.791 0.887 0.939 1.026 0.911  0.782 0.891 0.940 1.014 0.907 

THieF-Theta 0.802 0.916 1.005 1.108 0.958  0.798 0.917 1.004 1.108 0.957 

THieF-ARIMA 0.782 0.895 0.998 1.073 0.937  0.776 0.894 0.990 1.078 0.935 

Multivariate 

ETSx 0.816 0.941 1.017 1.079 0.963  0.817 0.943 1.023 1.069 0.963 

regARIMA 0.866 1.021 1.176 1.216 1.070   0.859 1.023 1.177 1.212 1.068 

THieF-ETSx 0.846 0.938 1.023 1.113 0.980  0.840 0.936 1.026 1.118 0.980 

THieF-ETSxu 0.822 0.909 0.985 1.069 0.946  0.811 0.908 0.985 1.070 0.944 

THieF-regARIMA 1.193 1.253 1.314 1.416 1.294  1.181 1.235 1.267 1.339 1.256 

THieF-regARIMAu 0.868 1.002 1.125 1.169 1.041   0.864 1.000 1.122 1.169 1.039 

 

Using temporal aggregation (THieF- results) improves the performance of the univariate forecasts 

further, but seems to introduce issues when explanatory variables are used. We attribute this to 

challenges in the identification of the annual models with explanatory variables, which is further 

evidenced by the superior performance of the THieF-ETSxu and THieF-regARIMAu that uses 

univariate forecasts at the annual level, over their conventional counterparts (THieF-ETSx and THieF-

regARIMA). Cross-sectional hierarchies provide marginal improvements in almost all cases and are 

deemed beneficial. 

Our evaluation for both phases suggests that the best performing forecast is generated by the 

hierarchical THieF-ETS, which we use hereafter to construct the judgementally adjusted forecasts up 

until 2021Q4. This finding is in agreement with Kourentzes and Athanasopoulos (2019), who found 

that both temporal and cross-sectional hierarchies provide benefits to tourism forecasting.  

 

3.2 Patterns of recovery based on the scenarios  

The expected recovery differs between the scenarios produced. Under the severe scenario, on average, 

the country will recover only 34% of their total arrivals in 2021Q4 compared to 2019Q4; and under a 

mild scenario, the destinations will have recovered on average 80% of arrivals compared to 2019Q4. 

Table 4 summarises these results for the total arrivals series in all countries in the sample. 
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Table 4 

Predicted 2021 recovery rates of total tourist arrivals in 20 selected destinations 
Destination Scenario 1 - 

Mild 

Scenario 2 - 

Medium 

Scenario 3 - 

Severe 

USA 36% 58% 78% 

Canada 41% 65% 83% 

Chile 19% 39% 61% 

Mexico 41% 65% 85% 

Czech Republic 38% 63% 87% 

UK 37% 63% 85% 

Finland 36% 61% 83% 

Sweden 35% 60% 83% 

Bulgaria 37% 60% 80% 

Japan 45% 72% 92% 

Korea 38% 63% 85% 

Thailand 35% 61% 84% 

Singapore 36% 60% 82% 

Malaysia 38% 62% 81% 

Indonesia 25% 49% 73% 

Australia 31% 56% 80% 

New Zealand 28% 50% 72% 

Tunisia 28% 53% 77% 

South Africa 31% 57% 80% 

Mauritius 20% 42% 67% 

However, within the group of 20 destinations, Chile and Mauritius will take longer to recover with 

only 19% and 20% recovery rates under the severe scenario and 61% and 67%, respectively, under 

the mild scenario. The slower rate for Chile may be accounted for in the fact that the country is one of 

the worst affected by the pandemic. Furthermore, countries such as Argentina, Bolivia and Brazil, 

which are also suffering heavy tolls from the pandemic, are key sources of arrivals for Chile, which 

will slow down recovery.   

On the other hand, Mauritius has been labelled as a low-risk country by the centre for disease control 

regarding the pandemic. The country was very effective in controlling the spread of the disease 

locally, which was achieved by closing the borders to international travel for seven months starting 

March. However, on 25 July, an oil spill in the vicinity of the island attracted a considerable amount 

of negative publicity from the international media. Furthermore, the island is heavily reliant on long-

haul markets and is known for its upmarket product, which is more likely to suffer in times of global 

economic crises. The costs in terms of money and time of the mandatory 14-day strict quarantine at a 

local hotel and PCR tests imposed on all international travel will be heavily detrimental to travel as it 

will substantially increase costs both in terms of money and time and can have a longer-term impact 

on demand and dampen recovery.  
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Fig. 6. Scenario forecasts for Mauritius [graphs of countries not shown in the text can be found in the 

online resources] 

Our forecasts suggest that intraregional travel will recover before interregional travel. It is mostly seen 

in the European and North American destinations. For example, at the start of the recovery, which is 

2021Q1, for a destination like Mexico, it means that by this time, under the normal scenario, arrivals 

from Canada and the USA will be 69% and 67% of what is expected without the demand shock 

caused by the pandemic. However, this falls to 29% and 27% with respect to arrivals from the UK and 

Brazil respectively and to 17% from Columbia. The same trend is observed in Europe. For example, 

Sweden will have recovered at least 70% of expected arrivals from Germany, the UK, Norway and 

Denmark, but only 48% from the USA. Similarly, there is some evidence that this will also be the 

trends in Asian destinations, although the pattern is not as clear.  

 



17 

 

 

Fig. 7. Scenario forecasts for the UK 

Compared to other countries in the sample, the graphs for the arrivals to the UK from its main source 

markets do not display a flat bottom, but for the USA. This implies that recovery for travel from the 

European sources considered, has been almost immediate. Short haul travel to the UK is expected to 

start recovering from as early as 2020Q4. Arrivals from France, which is an important source, rise to 

72% of expected arrivals for this period, followed by Ireland (70%), Germany (65%) and Spain 

(60%). Longer-haul travel will slowly start to recover from 2021Q1 reaching approximately 40% of 

what will normally be expected from the USA for that period. On 3 July, the government announced a 

travel corridor, which exempted British citizens, residents and tourists from certain countries from the 

14 days of quarantine imposed. It may explain why arrivals from Spain and the USA, which are not 

included in the exemption, are expected to take longer to recover. 

Singapore was relatively less affected by the pandemic and the recovery depends to some extent on 

bilateral agreements with and measures taken by the home country. From 23 March 2020, Singapore 

closed its borders to all short-term tourists to date, but special arrangements have been implemented 

that allow short-term arrivals from Australia, China and Malaysia. 
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Fig. 8. Scenario forecasts for Singapore 

At the beginning of 2021Q2, arrivals to Singapore from China, Indonesia, and Malaysia will be at 

51%, 40% and 42%, respectively, while on the other hand, arrivals from India and Australia will be at 

only 8% and 15%, respectively. Flights to and from Australia are severely restricted and other strong 

measures on outbound travel have been imposed by the government of Australia. This situation in 

Australia is not expected to change in the near future and this affects the recovery process 

significantly, hence the lower number for Australia in 2021Q2. By 2021Q4, however, Singapore will 

be receiving 73% of expected arrivals from Australia, but only 61% of arrivals from India due to the 

strict measures imposed by the government of Singapore on arrivals from India where cases of 

infections with Covid-19 continue to rise.  

In the sample of countries under study, the bottom time for the majority of countries is 2020Q2, 

except for New Zealand, Australia, Chile, South Africa and Mauritius, where this happens one quarter 

later. In the case of South Africa, the Minster for Tourism announced that the decision to open borders 

depends not only on the situation locally, but on the source markets as well, and that borders are 

expected to reopen in 2020Q4. 
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Fig. 9. Scenario forecasts for South Africa 

The recovery pattern predicted is in many ways as discussed above. Short-haul travel from 

neighbouring countries such as Lesotho and Mozambique is predicted to reach 58% and 60% by 

2021Q2 and 71% and 72% by 2021Q4. On the other hand, the longer-distance travel from Germany, 

the UK and the USA will be 45%, 46% and 47% of predicted travel, respectively, by 2021Q2 and 

these figures rise to 60% by 2021Q4. The country is expected to have recovered up to 80% of total 

international arrivals under the mild scenario.  

Similar trends are observed in New Zealand. The three scenarios predict a significant drop in total 

tourist arrivals in New Zealand over the period 2020Q4-2021Q4 compared to the number of 

international tourists over the period 2019Q1-2019Q4. Specifically, the gaps between the expected 

trends of tourist arrivals under the three scenarios are predicted to be the highest during the 2020Q4 

period, ranging from a 76.6% drop in international tourist arrivals compared to 2019Q4 under the 

mild scenario to a 94.6% decrease under the severe one. Contrary to most countries that are currently 

trying to manage COVID-19 by allowing it to be in their communities after the initial containment 

measures, the New Zealand government has no intention to allow COVID-19 to be in the community. 

Since the beginning of the COVID-19 pandemic and travel restrictions, only New Zealanders and 

New Zealand permanent residents have been allowed to enter the country. Given the pace at which 

COVID-19 infection rates are currently rising across the globe, it is reasonable to assume that New 

Zealand will continue to have one of the world’s tightest border controls until the virus dies out or a 

vaccine is widely in use.  

Overall, the negative impact of COVID-19 on total tourist arrivals in New Zealand is expected to start 

decelerating from the first trimester of 2021 and within approximately 12 months our model predicts 

that by 2021Q4, these gaps between tourist arrivals in 2019Q4 and the ones under the three scenarios 

will be reduced to 10.6% (mild), 31.6% (medium) and 58.6% (severe). Even when travel restrictions 

are progressively lifted on a case-by-case basis, given the potential for reinfection, international 

tourists will remain less likely to visit long-haul destinations, such as New Zealand, due to fear of 

COVID-19 and because their home countries might be still facing economic recessions due to the 

economic consequences of the ongoing COVID-19 pandemic. 
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Fig. 10. Scenario forecasts for New Zealand 

On this basis, it is realistic to assume that during the period 2021Q1-2021Q3, New Zealand will 

remain virtually out of reach to a large number of international tourists from other regions, with an 

improvement over the last trimester of 2021 when the summer season starts in New Zealand. The 

losses of tourist arrivals from Australia in 2021 are expected to be lower than from other source 

markets such as China, Germany, the UK and USA. These observations are similar to the previous 

destinations discussed above, which show that intraregional travel is most likely to recover faster than 

interregional travel. In the meantime, the tourism industry will focus on domestic tourists, with 

Tourism New Zealand (2020) predicting that there will be an increase in domestic tourism of more 

than 100% during 2021. 

 

4. CONCLUSION 

In the modern era of international tourism, the COVID-19 pandemic is unlike any other crisis 

experienced, affecting all countries worldwide and leading to a widespread closure of borders never 

experienced before. The tourism industry was brought to a standstill and the repercussions of border 

closures, declines in economic growth rates and the subsequent changes in consumer behaviour will 

leave a lasting effect on the industry. 

In this forecasting competition, we found that univariate forecasting techniques, combined with cross-

sectional hierarchical outperform multivariate models under ‘normal’ circumstances. The THieF-ETS 

model was therefore also used to generate baseline forecasts for 2020 and 2021. To produce the 

scenarios and adjust the model forecasts, we resorted to judgemental techniques. Since governments 

imposed restrictions on travel, analysts provided a regional view on the relaxation of restrictions, with 

the arithmetic average feeding into the models. These views were based on country-specific 

regulations, macroeconomic conditions, seasonal factors and vaccine development. 

Our recommended forecasts are generated from a univariate model, which may be contrary to the 

expectation that using macroeconomic indicators or perhaps forecasts of the spread of the pandemic 
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can improve the forecasts. However, in our view, this reflects the uncertainty pertaining to forecasts 

of the economy and the pandemic, which are certainly true at the time of writing. One would expect 

that, in hindsight, once the explanatory variables are observed, they would also carry predictive power 

for the tourist arrivals. 

Our most likely (medium) scenario shows that during 2021, tourism to the 20 destinations may 

recover on average to 58% of 2019 (pre-COVID) levels, over all destinations. Pessimistically, under 

the severe scenario, recovery will only be an average of 34% and optimistically (the mild scenario), 

80% compared to 2019 tourist arrivals. We expect regional travel to lead the recovery and 

destinations that are highly reliant on intercontinental tourism may therefore experience longer 

recovery times. 

This holds important managerial and policy implications, since the speed of recovery is dependent on 

policy actions that should be aimed at restoring confidence and adjusting to the new circumstances. 

The research by Mao, Ding and Lee (2010) on recovery after the SARS outbreak clearly shows that 

not all countries have the same recovery rates, with some countries falling into a hysteresis with 

slower recovery. In the current pandemic, our outlook and results are driven by views on the 

successful development and distribution of a vaccine as the main driver of confidence. During 

previous pandemics, recovery was relatively quick after the threat has been eliminated. Countries with 

a good vaccine policy should therefore benefit from restoring confidence; although this should be 

augmented by programmes and promotions to inform travellers of the precautions taken for their 

safety. Zeng, Carter and de Lacy (2005) also show that countries with good external relations with 

origin countries tend to recover quicker after a pandemic, highlighting the importance of international 

policy and local stability in tourism recovery. Since it is expected that regional travel will recover 

before intercontinental tourism, marketing efforts should firstly aim at attracting local and regional 

travellers, with border policies also reflecting this. 

This paper makes several contributions; firstly, methodologically it shows that exponential smoothing 

techniques still outperform many of the newer data-driven techniques (such as neural networks) in 

tourism demand forecasting under ‘normal circumstances’; secondly, the usefulness of using temporal 

hierarchies in improving forecasting accuracy is also evident from this research; thirdly, we propose a 

unique scheme for judgemental adjustment of model-based forecasts that can be applied in adverse 

circumstances, such as the current pandemic, which addresses the shortcomings of model-based 

forecasts during uncertainty. No other tourism forecasting research study has attempted to forecast 

tourism demand during a pandemic, since the previous pandemics were both regionally concentrated 

and relatively short in duration. Given the immense uncertainty during times of pandemics and the 

failure of model-based forecasts to deliver accurate forecasts in such circumstances, this research 

offers an alternative view on the application of judgemental adjustment to develop scenario forecasts. 

Our research is not without limitations, since this is a very uncertain time and forecasting during a 

pandemic is prone to all the uncertainties that accompany the coronavirus. Given the task of 

forecasting tourist arrivals from five different destinations to 20 countries worldwide, the approach 

taken in this research is understanding the regional context rather than country-specific context. 

Although regional specialists have added value, the origin-destination-specific context could be 

enhanced in future research. Since the research forms part of a forecasting competition, the focus is 

more on exploring various methods and developing tourism forecasting techniques during times of 

pandemics, than an analysis of the pandemic in a specific country. Our approach was further guided 

by the limited research available on the impact of pandemics on tourism demand and is one of the first 

attempts to forecast the possible recovery of tourism before this health pandemic has been resolved. 
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