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A model is developed to predict physical activity cut-points on accelerometer based on individual characteristics

Post data collection analytical process helps towards a standardised method for characterising physical activity

Multiple features calculated from raw accelerometer data was used to enrich the feature set for training machine learning

Personalisation was achieved by combining raw accelerometer data with person-specific data e.g., blood pressure
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Abstract

Background and Objectives: Body-worn accelerometers are the most popular method for objec-
tively assessing physical activity in older adults. Many studies have developed generic accelerometer
cut-points for defining activity intensity in metabolic equivalents for older adults. However, method-
ological diversity in current studies has led to a great deal of variation in the resulting cut-points, even
when using data from the same accelerometer. In addition, the generic cut-point approach assumes
that ‘one size fits all’ which is rarely the case in real life. This study proposes a machine learning
method for personalising activity intensity cut-points for older adults.

Methods: Firstly, raw accelerometry data was collected from 33 older adults who performed set
activities whilst wearing two accelerometer devices: GENEActive (wrist worn) and ActiGraph (hip
worn). ROC analysis was applied to generate personalised cut-point for each data sample based on
a device. Four cut-points have been considered: Sensitivity optimised Sedentary Behaviour; Speci-
ficity optimised Moderate to Vigorous Physical Activity; Youden optimised Sedentary Behaviour;
and Youden optimised Moderate to Vigorous Physical Activity. Then, an additive regression algo-
rithm trained on biodata features, that concern the individual characteristics of participants, was used
to predict the cut-points. As the model output is a numeric cut-point value (and not discrete), evalu-
ation was based on two error metrics, Mean Absolute Error and Root Mean Square Error. Standard
Error of estimation was also calculated to measure the accuracy of prediction (goodness of fit) and
this was used for performance comparison between our approach and the state-of-the-art. Hold-out
and 10-Fold cross validation methods were used for performance validation and comparison.

Results: The results show that our personalised approach performed consistently better than the
state-of-the-art with 10-Fold cross validation on all four cut-points considered for both devices. For
the ActiGraph device, the Standard Error of estimation from our approach was lower by 0.33 (Youden
optimised Sedentary Behaviour), 9.50 (Sensitivity optimised Sedentary Behaviour), 0.64 (Youden op-
timised Moderate to Vigorous Physical Activity) and 22.11 (Specificity optimised Moderate to Vig-
orous Physical Activity). Likewise, the Standard Error of estimation from our approach was lower
for the GENEActiv device by 2.29 (Youden optimised Sedentary Behaviour), 41.65 (Sensitivity op-
timised Sedentary Behaviour), 4.31 (Youden optimised Moderate to Vigorous Physical Activity) and
347.15 (Specificity optimised Moderate to Vigorous Physical Activity).

Conclusions: personalised cut-point can be predicted without prior knowledge of accelerometry
data. The results are very promising especially when we consider that our method predicts cut-points
without prior knowledge of accelerometry data, unlike the state-of-the-art. More data is required to
expand the scope of the experiments presented in this paper.

*This document is the results of an extended research using data from

Sanders et al.

1. Introduction
Objectively representing daily physical activity (PA) is

**The tools and methods used in this research are adapted from the TY-
PHON Project, funded by the EU Horizon 2020 Programme under grant
No. 780251.
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crucial, particularly in studies that involve older adults,
where increasing PA and/or reducing sedentary behaviour
(SB) is often the intended outcome [5]. Among the nu-
merous devices available for measuring PA, body-worn ac-
celerometers are the least obtrusive, thus are increasingly
utilised for this purpose [40, 62, 64, 45]. However, there are
arguments against the validity of the results in calibration
studies involving older adults. This is in part because the
underlying standards used to determine metabolic costs are
not applicable to older adults [4]. Furthermore, the methods
used to translate accelerometer outputs into activity intensity
thresholds are too diverse [42, 58].
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Generally, PA recommendations for health benefits are
intensity specific; typically categorised into light, moder-
ate and vigorous intensity based on metabolic equivalents
(MET) [27]. One MET equates to the standard resting
metabolic rate (RMR), i.e., the oxygen (O,) consumption
required at rest or sitting quietly, and in healthy adults is as-
sumed to be 3.5 mL x kg~! x min~!. This index is used to
express O, uptake or activity intensity in multiples of the
value of 1 MET and is useful for estimating and prescrib-
ing exercise of different intensities. For example, activi-
ties may range from sleeping (0.9 MET) to running at 10.9
mph (18 METs) [52]; and 3 METSs represent the commonly-
accepted cut-off value between light and moderate inten-
sity PA [1]. Currently, this index is commonly used for
categorising PA intensity in observational studies for older
adults [3, 6, 38, 53]. However, the actual energy cost varies
between individuals due to differences in body mass, age,
health status etc. and it is well established that RMR de-
creases with age [33, 9, 20, 30, 39]. Thus, for individuals of
different size and age, the energy expenditure estimates are
influenced by the consistency of the assumed RMR value of
3.5 mL x kg~! x min~!. In other words, computing MET-
based PA intensity values using the RMR index has implica-
tions for older adults. With under-estimated energy expen-
diture, older adults would be exercising at higher relative
intensities than assumed and their time spent in PA above
activity intensity thresholds would be under-estimated [21].
Therefore, it is not surprising that a growing number of re-
search studies have found this index to be inaccurate across
individuals with heterogeneous physical, demographic and
health status characteristics [9, 60].

Another growing concern is that there is no standard-
ised method to translate accelerometer output into an esti-
mate of physical activity for older adults [41]. This is in
part due to methodological diversity in the energy expendi-
ture equations used in existing calibration studies to trans-
late accelerometer output into measures of MET expendi-
ture that reflect thresholds for specified levels of PA [58, 42].
The methodological diversity of these studies has produced
a wide variety of predictive equations and cut-points for PA,
even when assessing the same accelerometer. This diver-
sity reduces the ability to interpret results obtained from
same accelerometers, among different research studies or
even among different accelerometer types. Consequently,
research in the area is moving towards post-data collection
analytical methods, such as supervised/unsupervised ma-
chine learning for for free living PA, rather than lab cal-
iberation protocols. Such methods can be replicated eas-
ily, thereby providing greater methodological transparency
and improve comparability between different studies and ac-
celerometer models.

On that note, the research presented in this paper is mo-
tivated by a recent study by Sanders et al. [51] that used a
post-data collection analytical process to estimate generic
cut-points for SB and moderate to vigorous physical activ-
ity (MVPA) in older adults. Specifically, the study used

the accelerometer output from GENEActiv! (GA) and Acti-
Graph” (AG) obtained from a heterogeneous sample of 34
older adults (mean age = 69.6, SD = 8.0) to determine raw
acceleration cut-points for SB and MVPA. GA is worn on
the non dominant wrist while AG is attached to the left hip
area. Two approaches based on receiver operative charac-
teristic (ROC) curve analysis [29] were adopted to achieve
this. The results were promising but the ‘one size fits all’
approach that is known to produce inconsistent result across
individuals of different body mass and age [9, 60] was main-
tained.

In this paper, we go a step further by proposing a model
capable of personalising raw acceleration cut-points for SB
and MVPA for older adults, according to their individual
characteristics. Specifically, we constructed an additive re-
gression model [19] that describes the relationship between
aspects of an individual, i.e., input features such as age, gen-
der, weight etc., and the value of interest, i.e., output features
such as cut-points for SB or MVPA). The model can gener-
ate estimated outputs when given a new set of input features.
All experiments were conducted with the same data used in
Sanders et al. [51], so that the results are fully comparable.

The model predicts values within a range rather than dis-
crete class labels, e.g., ‘MVPA’ or ‘not MVPA’. Thus, the ac-
curacy of such model is typically evaluated via the error in
the predicted values [61]. We used the mean absolute error
(MAE) and the root mean squared error (RMSE) as metrics.
Standard Error of estimation was also calculated to measure
the accuracy of prediction i.e., ‘goodness of fit” of the regres-
sion models and this was used for performance comparison
between our approach and the state-of-the-art which we used
as the Baseline. As an evaluation Baseline, we used the re-
sults published in Sanders et al. [51], which is the only study
that uses a post data-collection process to determine raw ac-
celeration cut-points for older adults. The results suggest
that generic cut-points are unreliable. The proposed person-
alised approach is a superior alternative to the state-of-the-
art as proven by the results which shows higher performance
consistently across the cut-points considered in this study.
There is also room for improvement especially given a larger
training data.

This study makes the following contributions:

i Post data collection analysis using machine learning to
predict personalised PA acceleration cut-points for older
adults:

To the best of our knowledge, this is the first study to
personalise activity classification thresholds among this
age group using a standardised approach.

=%

ii A priori rather than a posteriori PA acceleration cut-
point determination:

We predict cut-points for SB and MVPA based on the
general characteristics of a person such as age, gender,

weight etc. This contradicts the state-of-the-art, where

1
2

www.activinsights.com
www.actigraphcorp.com
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accelerometry data is known and used to calibrate cut-
points.

iii personalised PA acceleration cut-points is feasible and
superior:
The results presented in this paper indicates that person-
alised PA acceleration cut-points is a feasible and supe-
rior alternative to generic ones. The personalisation ap-
proach presented in this paper prove absolute superiority
over the state-of-the-art. We believe that a larger train-
ing data would lead to further improvement and thus, a
result that can be generalised.

The remainder of this paper is organised as follows: A
concise overview of related work is provided in Section 2,
followed by a detailed explanation of the experimental data
in Section 3.1. In Section 3.2, we discuss our approach. This
is followed by the experimental setup in Section 3.3, and ex-
perimental results in Section 4. We put the results into con-
text in Section 5 before Section 6, where we present a sum-
mary of conclusions drawn from the entire experiments as
well as recommendations based on the findings.

2. State-of-the-art

The number of older adults continues to grow at an un-
precedented rate globally, with individuals who are 60 years
or older accounting for 8.5% (617 million) of the populace in
2016; and projected to rise to 17% (1.6 billion) by 2050 [22].
Such increase in ageing population presents several pub-
lic health challenges, thus positive lifestyle is often encour-
aged among older adults to maintain good health, function-
ality and independent living. Body-worn accelerometers of-
fer an objective means to assess free-living physical activity
by measuring movement. They are capable of sensing and
recording unfiltered movement activity, which can then be
used to determine time spent in SB and/or MVPA. The most
common means of doing so is to translate accelerometer out-
put into measures of MET expenditure that map to thresh-
olds for specified levels of physical activity [58]. Although
numerous studies have attempted to calibrate and validate
accelerometers, there is no standardised method to translate
accelerometer output into an estimate of physical activity for
older people [41]. The majority of calibration studies for
adults have typically developed prediction equations that use
oxygen expenditure as a criterion measure to translate activ-
ity counts into measured activity intensity levels [42]. How-
ever, the wide range of methods used in these studies has
lead to great variation in the developed energy expenditure
equations and the resultant activity intensity thresholds or
cut-points calculated from them, even when using the same
monitor [58].

Several studies [7, 18, 36, 8, 42, 56, 63, 24] have been
conducted to examine the validity of ActiGraph, a uniax-
ial accelerometer popularly used in PA research, for mea-
suring PA [55, 48, 47, 26, 13]. We summarised their re-
sults in Table | to show the various sample size; age and

gender composition of the study population; the energy ex-
penditure function used in each study; and the resultant PA
acceleration cut-points deduced for defining moderate and
vigorous activity. We observe that all the studies arrived at
a radically different cut-points for moderate intensity activ-
ity (range:191-2743) and vigorous intensity activity (range:
4945-7526); even though they all used the same Actigraph
accelerometer data.

A common theme among the studies in Table 1 is that
gross energy expenditure predictive equations were used to
translate accelerometer output into measures of MET ex-
penditure so that cut-points can be determined. However,
recent accelerometer-based PA research has moved toward
post-data collection analytical methods involving raw accel-
eration rather than counts [51]. Since accelerometers are
capable of recording raw unfiltered movement activity, re-
searchers [59, 51, 50] believe that the data lends itself to
further development of innovative metrics. On that note,
Fairclough et al. [17] argued that accelerometer output can
be post-processed by reducing the data to dimensionless ac-
tivity “counts” per user-specified period of time or epoch.
Then, the data can be processed with standardised methods,
e.g., machine learning, to generate activity intensity thresh-
old values. Hildebrand et al. [26] added that post-data col-
lection analysis with standardised methods is likely to pro-
vide greater methodological transparency and improve com-
parability of results.

To the best of our knowledge, Sanders et al. [51] is the
only study to use a standardised method to process raw accel-
eration, with a view to generate distinguishing cut-points for
PA intensity in older adults. Specifically, the authors used re-
ceiver operative characteristic (ROC) curve analysis [29] to
determine cut-points for SB and MVPA. The study was con-
ducted with raw acceleration data from GA and AG devices
obtained from a heterogeneous sample of 34 older adults
(59 - 86 years old, 44 - 115kg, 10 male and 24 female);
who engaged in a 2-visit laboratory PA protocol, that in-
volved a mixture of ambulatory and lifestyle activities. Fol-
lowing recent studies that analysed body-worn accelerom-
eter data [49, 43, 26, 17], Sanders et al. [51] used the Eu-
clidean Norm Minus One (ENMO) [23] to quantify acceler-
ation values from the devices, i.e., GA and AG, in relation
to gravity (1 mg = 0.00981 ms~2). The raw data was fur-
ther reduced by averaging the ENMO values over 1-second
epochs. Thus, the resulting ENMO values are expressed in
milli (1073) gravity-based acceleration units (mg), where 1
g =9.81 m/s%.

The experiments took a calibration vs. validation ap-
proach in which a randomly counter-balanced sample of 17
participants (12 female, five male) from visit 1, and 17 par-
ticipants (12 female, five male) from visit 2 was used for cal-
ibration and the rest for validation. Basically, ENMO values
from both devices, i.e., GA and AG, were first labelled as
either SB or MVPA. The activPAL? accelerometer worn by
participants on the left anterior thigh was used to categorise
ENMO values into SB or not SB. Likewise, 3 MET VO, val-

3http://www.palt.com/
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Table 1

Summary of experimental studies conducted for Actigraph 7164. Age distribution is a
range or a mean and standard deviation. M and F stand for male and female, respectively.

Number of Characteristics Energy Expenditure Function PA cut-point
Study Participants  Sex Age [counts/min] moderate  vigorous
Brage et al. [7] 12 M [23,30] 2.886+7.429 x 10~* x counts/min — 0.02 x VO, 1810 5850
Freedson et al. [18] 50 M/F 24 +4 1439008 +7.95x 10~* X counts/min 1316 5354
Leenders et al. [36] 28 M/F  24+4  2240+6x 107 x counts/min 1952 5725
Brooks et al. [8] 72 M/F  [35, 45]  2.240 + 6 x 10~* x counts/min 1267 6252
Heil et al. [24] 58 M/F  28+6  1.551+6.19x 10~*x counts/min 2341 7187
Yngve et al. [63] 28 M/F  23+3  1.136+8.249 x 10* x counts/min 2260 5896
Yngve et al. [63] 28 M/F  23+3  0.751 +8.198 x 10 x counts/min 2743 6403
Hendelman et al. [25] 25 M/F  [30,50]  2.922 +4.09 x 10~* x counts/min 191 7526
Swartz et al. [55] 70 M/F  [19, 74]  2.608 + 6.863 x 107* X counts/min 574 4945
Troiano et al. [56] 4867 M/F  [6, 704] Weighted average of cut-points in [7, 18, 63] 2020 5999
ues were used as the criterion reference standard for MVPA. Table 2
SB and MVPA were each coded as either O (behaviour ocC- Calibrated cut_points for GA and AG expressed in mg
curring) or 1 (behaviour not occurring). It is important to -
note that the observed mean RMR of the study participants Device SByouden MVPAvouden SBs. MVPAs»
was 2.89 mL X kg_l x min~! and this was used to define 1 GA <20 > 32 < 57 > 104
MET. AG <6 >19 <15 > 69

Calibration was based on ROC curve analysis [29] to de-
termine SB and MVPA cut-points for each device. Specif-
ically, two different pairs of cut-points were generated by
analysing combinations of sensitivity (Se) and specificity
(Sp) on the ROC curves. Firstly, ENMO values that indi-
cates a compromise between Se and Sp (Youden index) [46]
is calculated for both SB and MVPA values and used as one
set of cut-point (SByqygen and MVPAy 4..). Youden is a
suitable metric used in cases where Se and Sp are equally
important and is given by eq 1.

Youden = Max, (Sec + Spc) €Y)

where c is the optimal compromise point.

Secondly, a set of cut-points were determined (i) by em-
phasising Se over Sp for SB (SBg,) to minimise the likeli-
hood of classifying SB as PA, and (ii) by emphasising Sp
over Se for MVPA (MVPASP), to reduce the likelihood of
misclassifying light PA as MVPA. Consequently, a total of
4 cut-points were computed for each device, i.e., SBygugen»
MVPAy,ugens SBse and MVPA,,.

Using the established cut-points, a validation analysis
was performed with data from the 17 participants (12 fe-
male, five male) whose visit 1 data was not used for calibra-
tion analysis, and the 17 participants (12 female, five male)
whose visit 2 data was not used for calibration (N = 34).
Specifically, the ENMO values were categorised into SB/not
SB and MVPA/not MVPA. Then, two-by-two (2 X 2) con-
tingency tables were used to compare them with the cali-
brated cut-points. The calibrated cut-points for both devices
are shown in Table 2.

The results are promising but still maintain a ‘one size
fits all’ approach, which has been shown to produce incon-
sistent result across individuals of different body mass and
age [9, 60]. Consequently, the aim of our study is to per-
sonalise the raw acceleration cut-points for SB and MVPA
based on the individual characteristics of each participant.

3. Method and Materials

This section presents the experimental method we used
to achieve the research aims. This includes the experimental
setup implemented as well as a detailed description of the
experimental data and its characteristics.

3.1. Data

We obtained the exact data used in Sanders et al. [51]
to determine cut-points for SB and MVPA in older adults.
The dataset contains measurements collected from 34 older
adults, who took part in a laboratory-based protocol con-
sisting of 16 activities (see Table 1 in [51]). The authors
used GA and AG activity monitors worn on the non domi-
nant wrist and left hip respectively, to measure raw triaxial
accelerations at 60 Hz during the protocol.

1 > 59 years of age

ii physically cleared for exercise using the modified Phys-
ical Activity Readiness Questionnaire [10, 11]

iii have the ability to walk briskly on a treadmill without
assistance

iv not taking any medications that would influence energy
expenditure or ability to perform ambulatory activity

We experimented with 33 out of the 34 samples, due to large
amount of missing values in the sample of a female partic-
ipant. A total of 21 features were adopted for each sample,
and the data characteristics are shown in Table 3.

Some features correspond to quantities that were mea-
sured directly during the study, whereas others were calcu-
lated later from the directly measurable ones. For example,
the top part of Table 3 includes simple biodata associated to

N Nnamoko et al.: Preprint submitted to Elsevier
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Table 3

Experimental data features and characteristics (N=33)
Variable Min Max Mean + SD
Gender 0.00 1.00 0.70 + 0.47
Age (years) 59.00 86.00 69.27 + 7.93
Weight (kg) 4400 115.00 71.27 + 17.62
Height (m) 145 1.82 1.64 + 0.10
BMI (kg/m?) 2050 41.00  26.10 + 4.66
Systolic BP (mm/Hg) 109.00 195.00 145.72 + 21.49
Diastolic BP (mm/Hg) 62.00 109.00 85.15 + 11.19
6MWT (km/h) 1.70  6.80 4.37 + 1.39
Walk at 65% speed (km/h) 1.10 4.40 2.84 + 0.89
Walk at 75% speed (km/h) 130 5.10 3.28 £ 1.04
Walk at 85% speed (km/h) 1.40 5.80 3.72+1.18
RMR (mL - kg™ - min™") 269 659  4.09 + 0.79
Min. VO, (L/min) 0.05 023  0.14 +0.05
Max. VO, (L/min) 086 214 1.47 + 0.32
Avg. VO, (L/min) 039 078 0.55 + 0.10
Min. EE (mL-kg™' -min™")  0.62  3.47 1.94 + 0.65
Max. EE (mL-kg™" -min™") 13.49 32,63 21.21 +4.11
Avg. EE (mL-kg™' -min™') 557 10.46  7.86 + 1.13
Min. METs 0.21 1.20 0.67 + 0.22
Max. METs 465 11.25 7.31 +1.42
Avg. METs 1.92 3.61 2.71 + 0.39

the study participants, e.g., weight, height, body mass index
(BMI), systolic and diastolic blood pressure (BP). The mid-
dle part of Table 3 includes a 6 minute walk test (6MWT) [2]
on a threadmill to measure maximum walk speed; as well
as walking on a threadmill at 3 maximal percentage speeds
(65, 75 and 85) individually calibrated from the 6 MWT. The
top and middle part of the table was directly adopted from
Sanders et al. [51]. The bottom part of Table 3 refers to
data derived from oxygen consumption (VO,) during the
laboratory-based PA protocol. VO, was directly measured
breath-by-breath in 1 second intervals and its value was used
to calculate energy expenditure (EE), which was then used to
classify activity intensity in METs. We enriched the data by
performing further calculations to determine the minimum,
maximum and average values per participant.

3.2. Experimental Method

Sanders et al. [51] calculated generic ROC-induced cut-
points through group calibration involving data from half of
the study sample. The target was to determine cut-points
SBy oudens MVPAy ;40ns SBs., MVPA, for each device,
that generalise across all study participants and indeed older
adults (> 60) in general, regardless of their individual char-
acteristics such as age, weight and height. In our approach,
we started by performing a preliminary experiment using
ROC analysis to generate SBy ,4,,,, MVPAy .., SB g, and
MVPA, cut-points per individual based on ENMO values
from each device.

To estimate personalised cut-points for classifying PA
as SB or MVPA, we developed an additive regression
model [19] that learns the relationship between the input

YN

e
L regression

data subset model

Figure 1: High level diagram of the experimental method

features in Table 3 and the output features, i.e., SBy ;g0
MVPAy ,u4ens SBs. and MVPAg,. The term ‘additive’
means the construction of a regression model in the form of
an ensemble of underlying machine learners. This is done
by sequentially fitting the underlying learner to the residuals
left from the previous iteration. Specifically, at each iteration
a subset of the training data is drawn at random (without re-
placement). The underlying learner is then trained on this
randomly selected data and updates the prediction model for
the current iteration. The final predicted values are com-
puted by adding the predictions at each iteration. Figure 1
shows a high level diagram of the method.

We used Decision Stump [28] as the underlying machine
learner for the additive regression model presented in this
paper and we adopted ten (10) as the number of iterations.
A Decision Stump is a one-level Decision Tree that makes
prediction based on the value of a single input variable.

Unlike classification tasks that predict discrete classes,
e.g., ‘yes’ or ‘no’, the output of the additive regression model
is a measurable quantity, i.e., a numeric cut-point value. The
performance of such a model is typically evaluated via the er-
ror in the predicted values [61]. Thus, we experimented with
the mean absolute error (MAE) and the root mean squared
error (RMSE) as metrics. These are well known error met-
rics commonly used to compare the performance of com-
peting models. Since the model produces a numeric output
given a set of input variables, MAE and RMSE allows to
check the estimated output against the actual value that we
tried to predict.

The MAE computes the average absolute difference be-
tween each actual output value, y;, and the corresponding
predicted value, j?j:

MAE:%i’yj—?j| @)
=1

where n is the total number of data points. To obtain the
RMSE, we first calculated the mean square error (MSE)
which measures the average squared difference between each
actual output value, y;, and the corresponding predicted
value, y;:

n

MSE (model) = % > (-9 3)
=1
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where 7 is the total number of data points. The RMSE is the
square root of MSE.

~\2
Z?=1 (yj - yj)
n

For every data point, MAE and RMSE condense the dif-
ferences between each actual and predicted value into a sin-
gle value, and represent the predictive ability of the model.
Each predicted value is expected to be off from the actual
value by no more than the MAE or RMSE, whichever is used
for evaluation. For example, if y; is a MVPA actual output
value, the predicted value )A/j is considered correct if y; value

is greater or equal to y,—MAE or RMSE*. For SB prediction
however, the predicted value )A/j is considered correct if the
actual value y; is less or equal to y;+MAE or RMSE’.

In general, low values of MAE or RMSE indicate a good
model. However, there is no absolute criterion for a good
value of MAE or RMSE as it depends on the units in which
the variable is measured and on the degree of predictive ac-
curacy, as measured in those units, which is desirable in a
particular application [12]. Depending on the unit of mea-
surement, the MAE or RMSE of the best model could be
measured in hundreds, thousands or even millions. Thus, it
does not makes sense to say ‘the model is good or bad’ be-
cause the MAE or RMSE is ‘less or greater than a particular
value’, unless you are referring to a specific degree of accu-
racy that is relevant to a particular prediction application.

The recommended way to ascertain the ‘goodness of fit’
for such non-linear regression model is to measure the stan-
dard error of the estimate, .S. This metric provides the abso-
lute measure of the typical distance that the predicted data
points fall from the regression line drawn with the true val-
ues. In other words, S is the measure of an observation made
around the computed regression line. Thus, it provides an in-
dication of the likely accuracy of predictions made with the
regression line of the actual values. .S is computed as:

RMSE = 4

2 2 —y)?
n—2

S = 5

where y represents the predicted values, y is the actual values
and n is the total number of samples examined. The smaller
the value of .S, the less the spread and the more likely it is
that any sample mean is close to the population mean. This
allows for comparison between our approach and Sanders et
al.’s [51]. For example, a smaller value of .S for our model
indicates that it is better than the Baseline and vice versa.
R-squared (R?) is another ‘goodness of fit' metric com-
monly used in regression tasks. It explains to what extent the
variance of an output variable explains the variance of the in-
put variable(s). However, R? has been empirically proven to
be inadequate for measuring non-linear models [54, 44, 32].

4A MVPA prediction must be greater or equal to a specified cut-point
to be considered correct

A SB prediction must be less or equal to a specified cut-point to be
considered correct

Table 4
Personalised cut-points for the sample population

Validation Min (mg) Max (mg) Mean + SD (mg)
SBvouden 3.14 53.91 20.87 + 12.00
a MVPAy den 1.47 76.53 36.81 + 19.82
O SB., 20.76 248.19 118.71 + 57.80
MVPAg 202.17 976.07  454.70 + 176.70
SByouden 0.08 18.73 5.89 + 4.60
o MVPAy .. 0.64 37.74 17.40 + 8.60
< SBs, 0.08 179.87 16.87 + 30.85
MVPAg, 16.04 179.87 87.82 + 49.94

Thus, only S values were used in this paper to compare per-
formance between the Baseline and our approach.

3.3. Experimental Setup

We experiment with the method introduced in Sec-
tion 3.2, which takes as input a set of independent charac-
teristics about an individual, i.e., the features in Table 3, and
uses them to generate personalised cut-points for SB and
MVPA.

At first, we used ROC analysis to determine four cut-
points, i.e., SBygugens MVPAyqdens SBse and MVPAg,, for
each of the devices, GA and AG. Instead of the collective
approach by Sanders et al. [51], where a randomly counter-
balanced sample of 34 individuals was used collectively to
determine generic cut-points, we computed cut-points per
individual. These personalised cut-points are shown in Ta-
ble 4.

Using as output features the four individual cut-points,
i.e., SBygudens MVPAyq dens SBse and MVPAg,, we con-
ducted eight separate regression experiments with the
method described in Section 3.2, i.e., four experiments for
each device, GA or AG. Two variations of the data described
in Table 3 were used as input features to the experiments.
Firstly, the Basic dataset involving only the top 7 features in
Table 3; and secondly the Enriched dataset involving all fea-
tures. The aim is to compare their performance with a view
to determine the best of the two alternatives for recommend-
ing classification cut-points for SB and MVPA in practice.
For example, a model trained with the Basic dataset allows
the user, e.g., a clinician, to use easily accessible patient data
such as age, gender etc., to make inference about the appro-
priate cut-points for SB and MVPA specific to that patient.
The performance of such model is particularly interesting to
compare with Sanders et al.’s [51] generic approach because
technically, the regression model predicts cut-points without
knowledge of a persons PA ability. In the presence of PA
data however, a model trained with the Enriched dataset can
be used to determine cut-points (if they lead to better perfor-
mance in our experiment).

Two independent validation methods, i.e., hold-out and
k-fold cross validation (CV), were used. Hold-out means
splitting the dataset into a ‘train’ and ‘test’ set. We used a
50% split, stratified so that the gender distribution in the data
is taken into consideration. In particular, of the 33 avail-
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able data samples (male = 10, female = 23), we allocated 17
(male = 5, female = 12) for training and 16 (male = 5, fe-
male = 11) for testing. On the other hand, k-fold CV means
splitting the training data into k equal size subsets, such that
one of the k subsets is retained as test data, and the remain-
ing k-1 subsets are used as training data and repeating until
all k subsets have been used exactly once for testing. The k
results from the folds are then combined to produce a single
result. For our experiments, k = 10, with each fold stratified
according to the gender distribution in the data.

Our intuition is that 10-Fold CV may be more suitable
due to the modest data size (n = 33) available for this re-
search. For example, the 50:50 hold-out sets used for train-
ing and testing may not be representative of the entire data
characteristics, which would limit knowledge gain for the
base classifier used. In such cases, 10-Fold CV is a good
alternative method because it has the benefit of allowing all
data instances to be used as test instances at least once. The
results of all repetitions are then averaged to produce a com-
bined final result. For completeness and to provide a trans-
parent view of the findings in this experiment, the results
obtained from both validation methods are reported.

As noted in Section 3.2, performance evaluation is based
on both MAE and RMSE calculated as in equations 2 and 4,
respectively. We also calculated S values for each model
using equation 5. This allows for comparison between our
approach and Sanders et al. [51].

To validate the proposed method and compare with the
state-of-the-art, we investigate the research questions:

RQ1: How accurate are the generic cut-points of Sanders et
al. [51] when evaluated per individual participant?

RQ2: Does the proposed approach outperform the state-of-
the-art? If yes, to what extent?

RQ3: How does the data feature(s) contribute to the perfor-
mance of our method?

The first research question (RQ1) examines the performance
of the generic cut-points when evaluated against cut-points
calculated for each study participant, rather than the general
approach reported by Sanders et al. [51]. We compared the
generic cut-points to the actual per individual to see if the
results are the same as in Sanders et al. [51].

The second research question (RQ2) investigates the per-
formance improvement of the proposed approach against the
state-of-the-art. We chose Sanders et al. [51] for the follow-
ing reasons. First, the experimental data was made available
which allows to compare results. Second, to the best of our
knowledge, this is the only state-of-the-art approach to have
used standardised method post-data collection to determine
raw acceleration PA cut-points specifically for older adults.

The third research question (RQ3) investigates the ef-
fects of data features on the performance of our approach.
The goal is to determine how the features contribute to in-
formation gain for the base classifier, in this case additive
regression algorithm; and also to investigate whether we can

Table 5
Cut-points for GA and AG with associated agreement calcu-
lated according to the generic and the personalised approach

Validation Cut-pt Acce Accp, Accp,
SByeuden <20 731 75.0 54.5

<  MVPA, . >32 762 56.3 60.6
o SBs. <57 67.2 12,5 15.2
MVPAg > 104 68.9 100.0 100.0
SByouden <6 83.3 62.5 60.6

©  MVPAy >19 873 50.0 36.4
< SBs. <15 73.2 68.8 75.8
MVPAg, > 69 80.4 68.8 66.7

Cut-pt: generic cut-points

Accg: Accuracy of the group validation reported in [51];
Accp,: Accuracy of personalised hold-out validation
Accp,: Accuracy of personalised 10-fold Cross Validation

use fewer features to improve results. Recommendations
would be guided by the results obtained from this question.

4. Results

This section presents the results of comparison between
the Baseline and the additive regression method proposed in
Section 3.2. For clarity, we dissect the research questions
RQ1, RQ2 and RQ3 in separate sub-sections.

4.1. RQ1: Examination of the accuracy of the
evaluation approach in Sanders et al. [51]

Table 5 shows the Baseline result obtained by check-
ing for agreement between the generic calibration cut-points
from Sanders et al. [51] and the actual cut-points calibrated
per participant. For completeness, we represent the generic
cut-points from Sanders et al. [51] in the Cut-pt column. The
Accg column represents the reported validation accuracy in
Sanders et al. [51]. It is important to recall that Sanders
et al.[51] obtained the Accg values by checking for agree-
ment between the generic calibration cut-points, and a col-
lection of samples that were not used for calibration. In other
words, the ENMO values from GA and AG were aggregated
for those samples not used for calibration, and then checked
against the generic calibrated cut-points for agreement. Un-
fortunately, such collective validation approach is impracti-
cal in real life scenarios where samples would most likely be
validated individually. Thus, we recalculated the validation
results by checking for agreement between the generic cali-
bration cut-points, and the actual cut-points per participant.
The results are presented in the Accp; column for the hold-
out validation setting and the Accp, column for the 10-fold
CV setting.

The results obtained with the personalised approach are
generally worse than those reported in Sanders et al. [51],
except on two instances highlighted in bold, i.e., MVPAg,
for the GA device and SBg, for the AG device. The AG
SBg, cut-point (< 15) seems reasonable for the study pop-
ulation. This is because the mean SBg, is 16.87 mg and
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Table 6

MAE, RMSE and S values used to compare the regression and generic [51] models in

predictiong GA related cut-points

Evaluation/Cut-pt Baseline Basic Enriched

MAE RMSE S MAE RMSE S MAE RMSE S
2 SByouden 2.22 10.87 10.78 10.76 14.99 14.93 13.41 15.36 15.29
Q SBg, 62.16 85.90 85.89 46.76 59.23 59.21x 57.09 68.34 68.33%
2 MVPAy,uden 839 2475 2471 | 1635 1950  19.45% | 1839 2283  22.78x
T MVPAg, 392.80 436.16 436.16 | 207.79 270.63 270.63x | 185.35 246.01 246.00%
5 SBvouden 0.87 11.85 16.96 12.13 14.74 14.67% 12.91 15.60 15.53«
- SBs. 61.71 83.96 120.56 61.82 78.36 78.35% 66.21 82.53 82.52%
u_? MVPAy,  den 4.81 20.10 28.83 20.24 24.57 24.52% 19.05 24.76 24.72%
2‘ MVPAg, 350.70 391.49 562.24 | 174.16 215.09 215.09x | 174.81 246.67 246.67x

* Regression model better than baseline in terms of .S value

standard deviation is 30.85 mg as shown in Table 4. There-
fore, one could argue that the generic cut-point did perform
well in this case, particularly with 10-fold CV with accu-
racy of 75.8%. However, the same does not hold for the GA
MVPAg, cut-point (> 104). Although it produced 100% ac-
curacy with both the hold-out and the 10-fold CV, the actual
MVPAg,, calculated for each individual participant suggests
that the cut-point is extremely low. For example, the generic
cut-point is 98.17 mg lower than the minimum actual value
per individual (n = 202.17 mg) and the mean MVPAg, for
the study population is 454.70 mg. This is a clear indication
that the generic cut-point is seriously under-estimated.

Apart from MVPAg, for the GA device and SBg, for the
AG device, all other results obtained through the person-
alised validation approach produced lower accuracy values
than those reported in Sanders et al. [51]. In other words, the
‘one size fits all” assumption in Sanders et al. [51] is clearly
impractical in real world scenario as indicated by the results
in Table 5.

4.2. RQ2: Our approach vs. the state-of-the-art

Here, we compare the performance of the generic ap-
proach [51] with the personalised one proposed in this pa-
per. For simplicity, the results are presented separately in
Sections 4.2.1 for the GA device and 4.2.2 for the AG de-
vice.

4.2.1. Results for the GA Device (worn on non
dominant wrist)

This section presents the comparison of results between
the Baseline and additive regression models trained with
data from the GA device. As noted in Section 3.3, the per-
formance of the models was evaluated as an error of the pre-
dicted value using MAE and RMSE. These errors along with
S values used for comparison are shown in Table 6. The re-
sults for each cut-point, i.e., SByguqens MVPAvoudens SBse
and MVPAg,, is presented separately with respect to the val-
idation approach used, i.e., hold-out and 10-fold CV. Where
applicable, we use ‘%’ to indicate cases where the regression
model is better than the Baseline result. This is determined
by the S values, i.e., lower S value indicates superiority.

Hold-out analysis: The results obtained with hold-out
validation is presented at the top part of Table 6. Using .S as
criterion measure, the regression models mostly performed
better than the Baseline model. Both the Basic and En-
riched regression models performed better than the Baseline
in three out of the four cut-points when validated with the
hold-out method. For example, the lower .S value of 59.21
and 68.33 produced by the Basic and Enriched, respectively,
mean that both models are better than the Baseline in pre-
dicting SBg,. In other words, the distance of the predicted
SBg, values from the actual cut-point is shortest with the
Basic model, followed by the Enriched model and farthest
with the Baseline model. The variation between the .S’ value
of the Baseline and the Basic model is 26.68, while that of
the Enriched model is 17.56. This is expected because the
generic cut-point from Sanders et al. [51] did not perform
particularly well in predicting SBg,, in the adjusted accu-
racy results for GA device (i.e., Accp;) observed in Table 5.
Specifically, the generic cut-point only predicted 12.5% of
SBg, correctly, when validated with personalised cut-points
using hold-out validation. Therefore, the wide variation ob-
served in the .S values between the Baseline and regression
models is not surprising.

The regression models were also better than the Baseline
in predicting MVPAy, 4o and MVPAg,. For MVPAy, gen
cut-point prediction, the .S values for Baseline is 24.71 while
Basic and Enriched models produced 19.45 and 22.78, re-
spectively. The Baseline S value is 5.27 smaller than that
of Basic and 1.93 for Enriched. These values are relatively
smaller than the observed differences in predicting SBg,.
However, this is not surprising, considering that the Baseline
predicted 56.3% of MVPAy,qen cOrrectly, when we com-
pared the generic cut-point from Sanders et al. [51] with
personalised ones using hold-out validation for GA device
in Table 5. Technically, higher MAE, RMSE or .S indicates
relative inferiority. This is the case for the Baseline model,
which produced higher values across the three metrics than
both regression models in predicting MVPAy qen-

Much larger improvement in terms of .S value was ob-
served in MVPAg, prediction, where the regression mod-
els also outperformed the Baseline. Interestingly, the
generic cut-point from Sanders et al. [51] predicted 100% of
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MVPAg;,, correctly when compared to personalised ones for
GA device as shown in Table 5. As explained in section 4.1,
there is evidence that the generic cut-point for MVPAg, was
set too low. As such, it is likely that the Baseline model is not
as good as it seems, in spite of achieving perfect prediction
results. Indeed, this is confirmed by the lower S values pro-
duced by the regression models, showing that the predicted
values have closer and better fit to the regression line than
the Baseline model.

It is important to note that the Baseline model was bet-
ter in predicting SBy,,den» @s indicated by the higher S val-
ues produced by the regression models in Table 6. This
corroborates with the results shown in Table 5, where the
generic cut-point predicted 75.0% of the personalised cut-
points correctly, when using hold-out validation for AG de-
vice i.e., Accp;. In fact, the Baseline model produced lower
values across the three metrics (i.e., MAE, RMSE and .5)
than both regression models in predicting SBy,4., Which
corroborates with the level of accuracy observed in Table 5.

10-Fold CV analysis: The results for 10-fold CV are
shown in the bottom half of Table 6. Using S as criterion,
the regression models performed better than the Baseline
in all the four cut-points when validated with 10-fold CV
method. The superiority of the regression models is partic-
ularly sizeable in SBg. and MVPAg, results. In predicting
SBg, the lower S values of 78.35 and 82.52 produced by
the Basic and Enriched respectively, means that both models
performed better than the Baseline which yielded an .S value
of 120.56. In other words, the distance of the predicted SBg,
values from the actual cut-point is shortest with the Basic
model, followed by the Enriched model and farthest with the
Baseline model. It is noteworthy that the generic cut-point
from Sanders et al. [51] did not perform particularly well in
predicting SBg., when compared to personalised ones for
GA device with 10-fold cross validation. This can be seen
in the Accp, column of Table 5 for GA device, where the
generic cut-point only predicted 15.2% of the personalised
SBg, correctly. Therefore, the lower .S values produced by
the regression models is not surprising.

The regression models were also better than the Base-
line in predicting MVPAg,,. Here, the .S values for Basic and
Enriched models are 215.09 and 246.67 respectively. These
are clearly lower than the 562.24 recorded for the Baseline
model. It is important to note that the generic cut-point
from Sanders et al. [51] predicted 100% of MVPASp cor-
rectly when compared to personalised ones for GA device
as shown in Table 5. However, we know from the analysis
in section 4.1, that the generic cut-point for MVPAg, was
set too low, hence the perfect accuracy result. Indeed, this
is confirmed by the higher .S values produced by the Base-
line model, showing that its predicted data points are far-
ther away from the actual personalised data points on the re-
gression line than those predicted by the Basic and Enriched
models.

As noted earlier, the superiority of the regression mod-
els over the Baseline was evident in all four cut-points in-

cluding SBvy,uden and MVPAv, 1 4en- In predicting SByudens
the Baseline model produced an S value of 16.96 which
is higher than 14.67 and 15.53 produced by the Basic and
Enriched regression models. Similar results were observed
for MVPAy, gen Prediction, where the .S value produced
by the Baseline model (28.83) is higher than that of the
Basic (24.52) and Enriched (24.72) models by 4.31 and
4.11 respectively. Again,considering that the generic cut-
point from Sanders et al. [51] for predicting SBy,,gen and
MVPAy, 4en Performed reasonably well in predicting the
personalised cut-points as shown in the Accp, column of Ta-
ble 5; the sizeable variation between S values produced by
the regression and Baseline models indicate good improve-
ment for our approach in the right direction.

4.2.2. Results for the AG Device (worn on left hip)

This section presents the results comparison between the
Baseline and additive regression models trained with data
from the AG device. The MAE, RMSE and S results are
shown in Table 7. For clarity, the results for each cut-point,
i.e., SBygudens MVPAy ygens SBs. and MVPAg is presented
separately with respect to the validation approach used, i.e.,
hold-out and 10-fold CV. Where applicable, we use ‘*x’ to
indicate cases where the regression model is better than the
Baseline. This is determined by the .S values i.e., lower .S
values indicates superiority.

Hold-out analysis: The results obtained with hold-out
validation are presented at the top part of Table 7. Using
S as criterion, the Baseline models in most cases performed
better than the regression model. For example, in predicting
SByouden» the lower S value of 3.69 produced by the Baseline
mean that it performed better than both regression models
models which yielded 4.46 for Basic and 3.89 for Enriched.
In other words, the distance of the predicted SBg, values
from the actual cut-point is shortest with the Baseline model,
followed by the Enriched model and farthest with the Basic
model. However, the variation between the .S value of the
Baseline and the regression models are minimal, particularly
the Enriched model where the difference is only 0.2. It is
important to note that the generic cut-point from Sanders et
al. [51] predicted SBy,gen With 62.5% accuracy, in the hold-
out validation result for AG device (i.e., Accp;) observed in
Table 5. This indicates that the regression models are likely
to produce accuracy values within the same region of 62.5%
due to the narrow difference between their .S value and that
of the Baseline model.

Similar result was observed with MVPAg, prediction
where the Baseline model also performed better than both
regression models in terms of .S value. This time, the S
value for the Baseline model is smaller than that of Basic
and Enriched models by 11.58 and 3.59 respectively. How-
ever, the the generic cut-point from Sanders et al. [51] pre-
dicted MVPAg, with higher accuracy of 68.8%, in the hold-
out validation result for AG device (i.e., Accp;) observed in
Table 5.

Mixed results were observed in predicting the other two
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Table 7

MAE, RMSE and S values used to evaluate the regression and generic [51] models in

predictiong AG related cut-points

Evaluation/Cut-pt Baseline Basic Enriched

MAE RMSE S | MAE RMSE S | MAE RMSE S
i SBvouden 0.19 3.95 3.69 3.50 4.68 4.46 3.51 4.14 3.89
? SBg, 8.50 4243 4241 | 17.48 41.73 41.71% | 18.16 43.23 43.21
% MVPAy, . den 0.59 9.51 9.40 4.43 10.40 10.30 6.81 9.35 9.24%
T MVPAg, 19.87 56.32 56.30 | 48.35 67.89 67.88 | 43.35 59.90 59.89
S SByouden 011 435 635| 487 619 6.02% | 472 554 536
- SBg, 1.87 30.44 43.69 | 14.10 3422 34.19% | 21.91 44.66 44 .64
2 MVPAy,.den 1.60 8.62 12.29 9.88 11.74 11.65% 9.99 12.69 12.62
‘_.DI MVF’ASP 18.82 52.66 75.61 | 44.12 53.52 53.50x | 46.09 58.16 59.14%

* Regression model better than baseline in terms of S value

cut-points i.e., SBg, and MVPAy 4., For SBg., the Ba-
sic model produced the lowest S value (41.71), followed by
42,41 for the Basic model and then 43.21 for the Enriched
model. The difference between them is marginal, so both
regression models are likely to predict SBg, at an accuracy
level similar to the observed with the generic cut-point from
Sanders et al. [51] (68.8%), for the AG device when vali-
dated with hold-out method as shown in Accp; column in
Table 5.

Mixed result was also observed in MVPAy,,en Predic-
tion, but this time the Enriched model is the most superior
with .S value of 9.24, followed by 9.40 for the Basic model
and the 10.30 for the Basic model. The difference between
them in terms of .S value is also marginal - 0.90 between
the Baseline and Basic models and 0.16 between the Base-
line and Enriched models. As shown in Table 5,the generic
cut-point from Sanders et al. [51] produced an average per-
formance in predicting MVPAy, 4en, With an accuracy value
of 50.00% for the AG device when validated with hold-out
method. Given the marginal difference in .S values between
all three models, it is likely that they will all produce average
accuracy results.

10-Fold CV analysis: The results for 10-fold CV are
shown in the bottom half of Table 7. Using S as criterion,
the Basic regression model performed better than the Base-
line in all the four cut-points when validated with 10-fold
CV method. The Enriched model also performed better than
the Baseline in predicting two out of the four cut-points i.e.,
SByouden and MVPAg,. Similar to the 10-fold cross valida-
tion result observed for GA device in Table 6, the superi-
ority of the Basic regression models for AG device is also
particularly sizeable in SBg. and MVPAg, results as shown
in Table 7.

In predicting SBg, the lower .S value of 34.19 produced
by the Basic model is considerably better than the Baseline
which yielded an S value of 43.69. In other words, the dis-
tance of the predicted SBg, values from the actual cut-point
is shortest with the Basic model. This is however followed
by the Baseline model and farthest with the Enriched model.
It is noteworthy that the generic cut-point from Sanders et

al. [51] performed particularly well in predicting SBg., when
compared to personalised ones for AG device with 10-fold
cross validation. This can be seen in the Accp, column of Ta-
ble 5 for AG device, where the generic cut-point predicted
75.8% of the personalised SBg, correctly. Therefore, the
lower .S values produced by the Basic regression model is
a very good improvement.

Both regression models were better than the Baseline
in predicting MVPAg,,. Here, the S values for Basic and
Enriched models are 53.50 and 59.14 respectively. These
are clearly lower than the 75.61 recorded for the Baseline
model. Considering that the generic cut-point from Sanders
etal. [51] predicted 66.7% of MVPAg, correctly when com-
pared to the personalised cut-point values as shown in Ta-
ble 5, the sizeable variation between its .S value and that of
the regression models can only be interpreted as a very good
improvement for our approach.

As noted earlier, the superiority of the Basic model
over the Baseline is evident in all four cut-points including
SByouden @1d MVPAy 4en- In fact, both regression models
performed better than the Baseline in predicting SBy,,gen-
As shown in Table 7, the Baseline model produced an .§
value of 6.35, which is higher than 6.02 and 5.36 pro-
duced by the Basic and Enriched regression models, respec-
tively. Considering that the generic cut-point from Sanders
etal. [51] for predicting SBy,,4en Performed reasonably well
(60.6%) in predicting the personalised cut-points, as shown
in the Accp, column of Table 5; the variation between S
values produced by the regression and Baseline models in-
dicates good improvement for our approach in the right di-
rection.

Unfortunately, only the Basic regression model predicted
MVPAy,4en better than the Baseline, where the S value
produced by the Baseline model (12.29) is higher than that of
the Basic model (11.65) by 0.64 but lower than the Enriched
model (12.62) by 0.33. This time, the generic cut-point from
Sanders et al. [51] for predicting MVPAy,,4en did not per-
form particularly well (36.4%) in predicting the personalised
cut-points, as shown in the Accp, column of Table 5. Thus,
it is unlikely that the superiority of the Basic model over the

N Nnamoko et al.: Preprint submitted to Elsevier

Page 10 of 16



Personalised Accelerometer Cut-point Prediction for Older Adults

Baseline model would result in substantial improvement. It
is still an improvement nonetheless.

4.3. RQ3: Contribution(s) of data features to our
method

Based on the result analysis presented in Section 4.2, 10-
Fold CV clearly led to better performance than the hold-out
validation method in our experiments; particularly when ap-
plied to the Basic regression version of our approach. In-
deed, the results validates our intuition that 10-Fold CV
would yield better results than hold-out due to the modest
data available for this study (n = 33). For example, the
hold-out sets used for training and testing may not be rep-
resentative of the entire data characteristics, which would
limit knowledge gain for the base classifier used. By us-
ing 10-Fold CV however, the classifier learns from all the
available data and still remains objective in its prediction. In
Tables 6 and 7, the Basic regression was shown to perform
better than its Enriched counterpart, when 10-Fold CV was
applied. Thus, we conducted further experiments with the
Basic regression models to measure the contribution(s) of
each of the seven data features towards information gain to
the base algorithm, i.e., additive regression. For each of the
cut-points considered in this study, we re-trained the Basic
regression model with 10-Fold CV in seven iterations; re-
moving one of the features in each iteration and calculating
how well the model fits predicted values to the regression
line, i.e., the S value. The goal is to determine if fewer fea-
tures could lead to better prediction.

The results are presented in Table 8. The .S values ob-
tained for the reduced feature subsets are shown in the top
half of the Table. For clarity and to aid comprehension, we
present in the bottom half, S values for the Baseline and Ba-
sic models, when trained with all the features and validated
with 10-Fold CV. These were extracted from Tables 6 and 7.
Cases where the Basic model trained with reduced feature
subset produced better (lower) .S value than with full feature
subset are denoted with bold typeface. We also highlight
(in yellow), cases where the Basic model trained with re-
duced feature subset produced worse (higher) .S value than
the Baseline.

Only one of the reduced feature subset models performed
below the baseline i.e., MVPAy, 4.n prediction for the AG
device without the ‘Systolic BP’ feature. This indicates that
Systolic BP is a vital feature for predicting MVPAy,,4en ON
the AG device, and perhaps MVPASp as well, where the S
value (58.55) also increased above the original Basic result
(53.5). Unfortunately, the same cannot be said about predict-
ing SBy,uden @and SBg, without the ‘Systolic BP’ feature for
AG device because of the improved performance observed.

A good number of the models performed better than the
original Basic trained with full feature set as shown in Ta-
ble 8. In particular, there is almost a perfect performance
improvement across all the cut-points for both GA and AG
device without the ‘sex’ feature. In fact, this is the case with
data from AG device but fell short by one cut-point for the
GA device. That said, a perfect performance improvement

was observed without the ‘age’ feature for the GA.

It is also important to note that a lot of the results be-
came worse than the original Basic model as a result of fea-
ture reduction. The performance is rarely consistent across
both GA and AG devices. For example, the removal of the
‘weight’ feature led to reduced performance in three out of
four cut-points predicted for the GA device. However, the
same setting led to improvement in three out of four cut-
points predicted for the AG device.

Unfortunately, none of the reduced subsets led to a per-
fect reduction in S value across the cut-points on both GA
and AG devices. Thus, we are unable to generalise and rec-
ommend a particular subset for the purpose of improving the
results of the additive regression algorithm when validated
with 10-Fold CV.

5. Discussion

The result analysis presented in Section 4 indicates that
the proposed Basic regression approach consistently per-
forms better than the Baseline models with data from both
GA and AG devices when validated with 10-Fold CV. In
most cases, the proposed Enriched regression approach also
performed better than the Baseline models. The discussion
presented in this section will put the results into context and
draw attention to a number of other factors that were not
(directly) taken into consideration by the evaluation metrics
used (i.e., MAE, RMSE and §) and the corresponding result
analysis in Section 4.

We observed from Tables 6 and 7 that the Baseline mod-
els perform better than some of the regression models. Inter-
estingly, this happens even with cut-points derived from the
Youden index, which provides a compromise between sen-
sitivity and specificity, i.e., MVPAvy  den @0d SByouden- Ve
suspect this is mainly due to the method in which Sanders
et al [51] generated the generic cut-points; and partially due
to factors, such as the data features, validation method em-
ployed and the device from which the experimental data was
obtained.

First, Sanders et al. [51] took an a posteriori research
approach, in which the cut-points were generated based on
knowledge of the ENMO values taken directly from the
study participants. Basically, ENMO values from a subset
of the experimental data were used to generate cut-points
and the remaining samples were used to evaluate accuracy.
It is expected that these cut-points would perform well given
that the test data belongs to the same group of participants
from which the cut-points were generated. In other words,
the generic cut-points already have direct knowledge of the
output being predicted.

In our approach however, we make predictions without
knowledge of the ENMO values from the study participants.
Specifically, the Basic regression model only uses basic in-
formation about the participants as input, i.e., gender, age,
weight, height, bmi, systolic and diastolic BP. Despite this,
the model consistently outperformed the Baseline models
when validated with 10-Fold CV. This is most notable in its
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Table 8

Training data features and associated contribution to the .S value performance of Basic

regression model

S value for GA S values for AG
Data subset SByouden  SBse  MVPAy 4en  MVPAg, | SByouden SBse  MVPAy 4., MVPAg,
Features - Sex 14.97 77.36 24.27 212.20 5.94 34.11 11.63 53.04
Features - Age 13.59 66.66 23.85 176.13 5.77 34.52 13.17 54.63
Features - Weight 15.23 81.81 22.23 225.60 5.41 33.58 11.41 61.08
Features - Height 14.18 66.41 25.01 233.06 6.18 34.12 11.96 53.41
Features - BMI 15.28 80.23 23.75 261.52 5.52 31.70 11.70 57.45
Features - SysBP 14.41 72.88 22.32 238.80 5.72 33.05 12.77 58.55
Features - DiaBP 14.18 74.52 22.84 245.43 5.68 33.32 9.62 63.40
All Featureg, ;. 1467  78.35 24.52 215.09 6.02 34.19 11.65 53.5
All Featureg, ine | 16.96  120.56 28.83 562.24 6.35  43.69 12.29 75.61

prediction of SBg, for the AG device, where the generic cut-
point from Sanders et al. [51] produced its best result, i.e.,
75% with 10-Fold CV in the modified accuracy represen-
tation shown in Table 5. The Basic regression model pro-
duced S values of 34.19 which is 9.5 lower than the 43.69
produced by the Baseline model. This difference in favour
of the Basic model seems reasonably high for a model that
was trained without knowledge of the ENMO values. On
this note, the good results obtained with our approach show
that there is potential in this line of research and further ex-
ploration which looks at optimising the base algorithm, i.e.,
additive regression, or even testing with a different algorithm
may well improve the results.

We suspect that validation methods may have also con-
tributed to the instances where our approach performed
lower than the Baseline model. In Table 6, where the exper-
imental data was obtained from the GA device, the Baseline
only performed better than the regression models in predict-
ing SBy,,qen- More importantly, this occurred when we val-
idated with the hold-out method. As discussed earlier in this
paper, we had the intuition that 10-Fold CV would provide a
more objective assessment of our approach due to the mod-
est experimental data size (n = 33), because it has the bene-
fit of allowing all data instances to be used as test instances
at least once. This is in contrast to the hold-out method in
which the training or testing set may not be representative
of the entire data characteristics, and thus limit knowledge
gain for the base classifier used. To an extent, our intuition
was confirmed because both regression models performed
consistently better in predicting the four cut-points than the
Baseline model, when 10-Fold CV was applied to experi-
mental data from the GA device.

It is possible that data features may have impacted the
performance of our approach, particularly the Enriched
model which was trained with additional features related to a
person’s PA characteristics. This is obvious in Table7 where
the experimental data was obtained from GA device. Even
when 10-Fold CV was applied, the Enriched model is shown
to perform marginally below the Baseline model on two oc-
casions but the error margin is bigger when compared to the
Basic model. This shows that the additional features had a

negative effect on our approach.

Another important factor to consider is the attachment
site of the devices tested in this experiments. GA is wrist
worn and AG is worn on the hip. The results of our exper-
imentation shows that our approach performed better with
data from the GA device, in comparison to its AG coun-
terpart, which yielded mixed results with a high number
of cases where our approach performed below the Baseline
model - excluding results of 10-Fold CV with the Basic re-
gression model (see Table 7). It is not very clear from the
experiments why this is the case but there is evidence within
the literature that wrist-worn accelerometers capture energy
expenditure more accurately than hip-worn monitors [15].
Recent accelerometer studies have suggested that the wrist
may be a preferable attachment site, as it allows to capture
arm motions during non-ambulatory activity, such as house-
hold chores, more accurately [16, 35]. Moreover, wrist-worn
accelerometers are less influenced by atypical gait patterns
and walking speed variability, which are both commonly ob-
served in older adults [31]. Older people are more likely to
move their wrist than hip, so we suspect that the GA device
(wrist-worn) provided a more accurate and complete set of
raw acceleration signals than the AG (waist-worn). As such,
the data from GA device lead to better information gain to
the input features used for our regression models. This is
particularly important because of the a priori research ap-
proach we took, in comparison to Sanders et al. [51] that
took an a posteriori approach.

There is also evidence in favour of wrist-worn device
over their hip-worn counterparts in terms of compliance and
production of uninterrupted data [14, 34, 57]. This can be
illustrated with the evolving cycles of the National Health
and Nutrition Examination Survey (NHANES) in the United
States of America [57]. Participants of the 2003-2004 and
2005-2006 cycles were asked to wear Actigraph 7164 on
a waist belt during all non-sleeping hours for seven days.
However, only about 25% of the participants provided seven
days of data, and this was mostly attributed to the discomfort
or inconvenience of wearing a device on the hip over time,
and forgetting to put the monitor back on after taking it off at
night. Fast forward to the 2011-2012 and 2013-2014 cycles
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for which a wrist worn Actigraph GT3X+ was used, the lo-
cation change had the desired effect on compliance, as 70%
of the participants provided seven days of continuous triaxial
accelerometer raw-signal data at 80Hz; with the additional
benefit of tracking movement during sleep. Although the
experimental data used in our research was obtained during
non-sleeping hours, we observed a large amount of missing
values in the data from AG device (hip-worn), in comparison
to GA device (wrist-worn) which had no missing value(s).
We removed the rows of data with missing values during ex-
periment and we suspect that it (i.e., data shortage) had an
adverse effect on the classification tasks with data from the
AG device.

Data size is another important factor that may affect the
results reported in this paper. The modest dataset available
for this experiment is particularly less favourable to our ap-
proach, in comparison to Sanders et al’s. This is due to rea-
sons discussed previously, where calibration and test data
used in Sanders et al. [51] belongs to the same group of
participants from which the calibration cut-points were ob-
tained. A good example to illustrate this is in MVPAg, pre-
diction for the GA device, where the generic cut-point cor-
rectly predicted all instances (accuracy = 100%) in the modi-
fied accuracy representation shown in Table 5. The MVPAg,
cut-point maximises specificity over sensitivity on a Re-
ceiver Operating Curve (ROC). This happens at the point on
the ROC that is capable of ruling out participants who are
not engaging in MVPA, without necessarily trying to find
those engaging in MVPA. Given that the test data belongs
to the same participants, this cut-point is likely to result in
a high but misleading accuracy value, because it was cali-
brated with knowledge of ENMO values from the study par-
ticipants. On the other hand, our approach relies on the vari-
ation in the personal characteristics of the study participants,
without knowledge of the ENMO values. Therefore, having
a larger training dataset that represents a much wider varia-
tion of individual characteristics would be beneficial.

6. Conclusion

The use of accelerometer-based data in physical activ-
ity (PA) research have brought tremendous advances. Users
are now able to capture, store and/or transmit large volumes
of raw acceleration signal data. These data provides op-
portunities to characterise and represent PA better, but the
opportunities are accompanied by several challenges, such
as PA data analysis and interpretation. A notable challenge
identified in this research is the wide variety of predictive
equations available for characterising PA levels. As shown
in Table 1, PA estimates derived from these equations are
conceptually incompatible even though they are expressed
in the same metrics. This diversity reduces the ability to
make direct data comparisons between PA research studies,
even when they used the same accelerometer.

Thankfully, there is growing effort in PA research to
shift away from multiple independent calibration studies and
move towards a consensus analytic method. This is evident
in Sanders et al. [51] who opted for a post-data collection an-

alytical process with Receiver Operating Curve (ROC) anal-
ysis. The results were promising but left some questions
unattended, such as (a) the use of a single feature for PA char-
acterisation, i.e., ENMO values derived from the accelerom-
eter, (b) the generic nature of the cut-points, i.e., the one size
fits all approach, and (c) the potential bias in their validation
approach, because they calibrated and tested with data from
the same group of individuals. We extended this research
by using multiple features relating to a person’s individual
characteristics to predict PA cut-points. In addition, adopt-
ing a machine learning approach allowed us to personalise
PA cut-points with improved performance against the state-
of-the-art, particularly when validated with 10-Fold CV.

An advantage of our approach is that it can be easily
replicated, thereby providing greater methodological trans-
parency and improved comparability between different stud-
ies and accelerometer devices. Of course some logistical
issues still remain, such as data availability, which is com-
pounded by issues of compliance and attachment site for
the accelerometer device, i.e., wrist, hip etc. The wrist has
been highly recommended by the wider PA research commu-
nity and advances in data storage, transmission, and big data
computing will hopefully minimise the logistic challenges.

It may be possible to improve the performance of our
approach. For example, we could apply additional optimisa-
tion techniques to the additive regression algorithm such as
parameter tuning or replace the underlying machine learn-
ing algorithm used Decision Stump. In fact, there are many
other simpler regression models that could be used such as
the non-linear least squares [37] among others. In the fu-
ture, we would consider optimisation options with the ad-
ditive regression algorithm and compare results with other
regression algorithms.
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