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Abstract 
This paper proposes a load scheduling approach for a 

residential home in an islanded PV micro grid scenario based on 

a Genetic Algorithm (GA). The primary aim is to inform on how 

a Demand Side Management (DSM) could reduce the capital 

cost of the residential home and operational cost of the 

microgrid by minimizing the use of fossil fuel generator. The 

research study proposes and describes the design for load 

allocation scheduling to achieve utilization of solar PV resources 

optimally. The proposed scheme is based on the time-of-use 

(TOU) and improvement of electricity users’ comfort. The 

demonstration of the concept is presented and discussed based 

on a smart single home scenario using a solar PV microgrid and 

battery in a rural community of Enugu State, Nigeria. 
     

 

  

Keywords—Microgeneration, Appliance Scheduling, DSM, 

Genetic Algorithm. 

I. INTRODUCTION 

Micro-grids can combine both fossil fuel and renewable 

energy resources to provide power to buildings [1], though 

managing these to be reliable, cost-effective and low-carbon 

is not straightforward. Islanded micro grids have no direct 

connection to national electricity infrastructure and so often 

need fossil fuel-powered generators to balance energy 

demand, since renewable energy sources are intermittent and 

variable [2][3]. A further complication for micro grid 

management is variations in energy demand of occupants of 

buildings [4]. To combat these complexities and variations, 

Demand-Side Management (DSM) is needed. DSM shifts 

energy usage from peak, to off-peak hours, [5, 6] thus, 

bringing demand within the limit of the available wattage 

provided by the microgrid [7]. DSM can improve energy 

efficiency and user comfort with cost minimization [8] and 

has previously been used in microgrids for residential 

dwellings [9].   

 

Other challenges for micro-grids exist, associated with 

having multiple power supplies, user time-of-use 

preferences, and engaging energy users to actively manage 

their demand [10]. Demand Response (DR) programs are 

type of DSM that promote the electricity users’ participation 

in shifting their energy consumption to reduce peak power 

demand [11].  DR can be price-based where the energy user 

is at liberty to  minimize energy consumption due to increase 

in energy price [12], or load-based, often called incentive 

based, where the Electricity providers have direct control of 

a portion of a user’s energy use for a certain period in 

exchange for incentive payments.  

 

Energy consumption in homes is complex, involving multiple 

appliances, thus, machine learning has previously been 

applied to optimize how microgrids operate [13]. Previous 

work has focused on micro-grids in built up areas, yet remote 

areas are often more prone to inconsistent power supply and 

have more potential for micro generation. Thus, remote areas 

could also benefit from micro-grids and DSM.  

This paper proposes a load scheduling approach for a 

residential home in an islanded PV micro grid scenario based 

on a Genetic Algorithm (GA). The primary aim is to inform 

on how a Demand Side Management (DSM) could reduce the 

capital cost of the residential home and operational cost of the 

microgrid by minimizing use of fossil fuel generator. The 

research study proposes and describes the design for load 

allocation scheduling to achieve utilization of solar PV 

resources optimally. The proposed scheme is based on the 

time-of-use (TOU) and improvement of electricity users’ 

comfort. The demonstration of the concept is presented and 

discussed based on smart single home scenario using a solar 

PV microgrid and battery in a rural community of Enugu 

state, Nigeria. The paper is divided into two phases: (i) a 

systematic review of domestic energy use and (ii) the 

proposed energy management algorithm.

 

II. GENETIC ALOGRITHMS FOR THE MICROGRID  

GA is a heuristic optimization search method that mimics the 

natural evolution to solve problems.  This can be achieved by 

encoding parameters into a sequence using a binary 

representation, referred to as the gene, which can be 

combined into chromosomes. Sets of chromosomes, or 

populations, pass through a process of natural selection by 

mating and mutation to create new offspring. Selective 

pressure based on goodness of fit (fitness of solution 

evaluation) of a defined function leads to an optimal solution 

[14]. A flowchart for GA is presented in Figure 1.  



 
Fig 1, Typical GA process 

 

Various evolutionary techniques have been previously used 

in load allocation and optimizing microgrid design; Table 1 

summarizes the success of Genetic algorithm (GA), Bat 

Algorithm (BA), Hybrid Bat, Tugachi, Binary Particle 

Swamp Optimization (BPSO), Ant Colony Optimization 

(ACO) and, the variables used. 

 

Table 1, Summary of GA techniques 

 

 
 

 
 

from the reviewed works, it is clear that ga has been 

extensively applied in addressing load allocations and 

optimization problems. however, none has been able to 

address the comfort of rural residential users in an islanded 

pv microgrid scenario with dedicated energy storage system. 

therefore, the proposed ga will examine those challenges.  

III. PROBLEM DESCRIPTION 

This research project aims to optimize the design of a 4.4kW 

solar PV microgrid with batteries in the Aninri area of Enugu 

State, Nigeria, installed by the National Agency for Science 

and Engineering Infrastructure Abuja, Nigeria [23]. Data 

from this real world installation will be used to assess how a 

micro grid serving three homes as shown in Figure 2.  

 

 

 
 

Fig 2, Case Study PV Microgrid  

 

The proposed microgrid scheme consists of solar PV panel, 

the panel manager, a portable sized inverter system, an 

energy storage system (battery) and a central controller. In 

daylight hours, the solar PV panel generates DC that is passed 

to the storage system (battery). The charge controller decides 

whether to pass the generated DC to battery or to the inverter 

system depending on the intelligent signal received from the 

central controller. The inverter converts the generated DC to 



AC. The AC is passed to the intelligent central controller to 

be used by the  residential homes.   

A. Problem formulation 

The objective of the controller is to minimize total electricity 

cost and balance power consumption so that the available 

wattage is not exceeded at any particular time. To achieve 

this, for simplicity, appliances are assumed to be controlled 

using a time-of-use (TOU) tariff scheme so that additional 

energy generation can be stored during off peak hours and 

additional capacity offered at peak time. For simplicity in this 

study, the load profile of each home appliance follows pre-

set conditions obtained from the study site. Figure3 shows the 

individual load contributions of the residential home. Using 

the equation that relates price, energy and required quantity 

of energy, the estimated capacity needed at any given time is 

given as: 

 

Required amount (quantity in £) = 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑡𝑎𝑟𝑖𝑓𝑓 (𝐶𝑃)  
× 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐸) 

Where: 

 

energy E (KWh) = 𝑝𝑜𝑤𝑒𝑟 𝑃 × 𝑡𝑖𝑚𝑒 𝑇 (𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒) 

 

And therefore: 

𝑃 (𝑘𝑊) =  
𝐸 (𝑘𝑊ℎ)

𝑇(ℎ)
 

Each appliance has an execution time of 24hr divided into 

duty cycle time (𝜕𝑡) of 20 minutes each. Appliances can be 

shiftable ( 𝑁𝑠)  or nonshiftable ( ℵ𝑛)  [24]. The GA’s 

adjustable variable is the total allotted wattage  ℘𝑖𝑗
𝑡  (𝑖𝑛 𝑘𝑊) 

where 𝑖 the appliance, 𝑗 is the load profile for each appliance 

𝑖 and 𝑡 is the allotted time. Therefore, the total wattage is: 

 ℘𝑖𝑗
𝑡 =  𝑃𝑖1

𝑡 +  𝑃𝑖2
𝑡 +  𝑃𝑖3

𝑡 …  𝑃𝑖𝑛
𝑡  

 

The total number of shiftable appliances can represented 

by ℵ𝑠. Hence: 

ℵ𝑖 ∈ ℵ𝑠 
 

Therefore, two or more shiftable appliances of the same 

category in the residential home can be identified by a 

decimal notation: 

 

For ∀𝑡 = 1, 2,3, … 𝕋 and ∀𝑖 = 1, 2,3, … ℵ𝑠. 

 

Where 𝑡 represents the time index. 

B. Objective function 

The main objective of the GA is to reduce peak demand by 

optimum allocation and maximize power utilization from the 

solar PV microgrid. If we represent the rated 

power ℘𝑖𝑗
𝑡  (𝑖𝑛 𝑘𝑊) as the adjustable (decision) variable, 𝑗 as 

the load phase for each appliance 𝑖 and 𝑡 as the allotted time; 

and then ℊ𝑖,𝑡
𝑘  is taken as the supporting decision variable 

which is seen as the binary number (1,0) of the appliance 𝑖 
at given time t. Then, the cost function Υ𝑐  is given as 

 

Υ𝑐 = 𝑚𝑎𝑥 ∑ ∑ ∑ [ ℘𝑖𝑗
𝑡 ∗ ℊ𝑖,𝑡

𝑘 ]
ℵ𝑖
𝑗=1

ℵ𝑠
𝑖=1

𝕋
𝑡=1                           (1) 

 

The supporting binary decision variable is applicable as: 

ℊ𝑖,𝑡
𝑘 = 1, when appliance 𝑖 is turned ON at time 𝑡 and 

ℊ𝑖,𝑡
𝑘 = 0, when appliance 𝑖 is turned OFF at time 𝑡 

 

If we represent another supporting decision variable as the 

electricity user’s baseline for ON/OFF status of the appliance 

𝑖  at time 𝑡  as  ℎ𝑖,𝑡
𝑘  , then the second objective tends to get 

additional wattage from the dedicated energy storage of the 

micro grid. The equation above mathematically forms the 

new objective function expressed as[25]: 

Υ𝑐 = 𝑚𝑖𝑛 ∑ ∑ ∑ [ ℘𝑖𝑗
𝑡 [ℂ𝑡 ∗ ℊ𝑖,𝑡

𝑘 − 𝛼𝑡 ∗ 𝜖(ℎ𝑖,𝑡
𝑘  −

ℵ𝑖
𝑗=1

ℵ𝑠
𝑖=1

𝕋
𝑡=1

ℊ𝑖,𝑡
𝑘 )] ∗ 𝜕𝑡]                                                                        (2) 

 

Where ℂ𝑡  the electricity price or the TUO is tariff at given 

time 𝑡; 𝛼𝑡 is added incentive or additional wattage at a given 

time 𝑡; the decision time is represented as 𝜕𝑡.  

 

ℎ𝑖,𝑡
𝑘 + ℊ𝑖,𝑡

𝑘 = 1 , therefore it means that ℎ𝑖,𝑡
𝑘  and ℊ𝑖,𝑡

𝑘  

complement each other. 

 

Provided that  ℘𝑖𝑗
𝑡 ≥ 0, 𝛼𝑡 > 0, ℵ𝑠 = 6, 𝕋 = 166 , 

𝜖(ℎ𝑖,𝑡
𝑘 − ℊ𝑖,𝑡

𝑘 ) = 1, Only if(ℎ𝑖,𝑡
𝑘 − ℊ𝑖,𝑡

𝑘 ) is greater than zero, 

 But become 𝜖(ℎ𝑖,𝑡
𝑘 − ℊ𝑖,𝑡

𝑘 ) = 0,  only if (ℎ𝑖,𝑡
𝑘 − ℊ𝑖,𝑡

𝑘 )  is less 

than or equal to zero.  

 

Where 𝜖(ℎ𝑖,𝑡
𝑘 − ℊ𝑖,𝑡

𝑘 )  binary (1,0) is indicator function that 

shows the status of the model. Hence,  𝜖(ℎ𝑖,𝑡
𝑘 − ℊ𝑖,𝑡

𝑘 ) indicates 

one (1) when extra wattage is not required but zero (0) when 

extra wattage is required and when there is need to minimize 

consumption by turning off some appliances during peak 

time. In other words, 1 means get additional support while 0 

means no additional support. The study is subject to the 

following constraints from equation (1):  

∑ ∑ ∑ [ ℘𝑖𝑗
𝑡 [ℂ𝑡 ∗ ℊ𝑖,𝑡

𝑘2 − 𝛼𝑡 ∗ 𝜖(ℎ𝑖,𝑡
𝑘  − ℊ𝑖,𝑡

𝑘 )] ∗
ℵ𝑖
𝑗=1

ℵ𝑠
𝑖=1

𝕋
𝑡=1

𝜕𝑡]  ≤ 10                                                                   (3) 

 

Therefore, the constraint tends to regulate the amount of 

electricity tariff the user can afford on daily bases, which 

should be less than or equal to £10.   

 

We considered only the shiftable appliances as the flexible 

load at time range specified by the users. Hence, 𝜈𝑖and 𝜓𝑖  are 

the start and end of the appliance scheduled time range; 

It is important to ensure that wattage is available at the needed 

time interval. Hence, 

∑ ℊ𝑖,𝑡
𝑘𝜓𝑖

𝜈𝑖
≥  Ι𝑖                                                               (4) 

 

 Ι𝑖  is suitable time duration for the appliance 𝑖 to complete 

operating cycle. Therefore, the constraint in equation below 

is required for continuous operation appliances[26]: 

∑ ℊ𝑖,𝑡
𝑘 ∗  ℊ𝑖,𝑡+1

𝑘 ∗ ℊ𝑖,𝑡+2
𝑘𝜓𝑖−(Ι𝑖−1)

𝜈𝑖
. . . ℊ𝑖,𝑡+(Ι𝑖−1)

𝑘 ≥  1       (5) 

 

The constraint in the equation below allows the each 

appliance to start operation after the other: 

𝜈𝑖2 ≥ 𝑑𝑖1 + Ι𝑖                                                                (6) 

 

The second constraint means that at each daily operating 

cycle, the total available capacity or supplied power (W) must 

be greater than or equal to the total sum of individual load 

(total estimated wattage in W): 



 ℘𝑖𝑗𝑠𝑢𝑝
𝑡 ≥  𝑃𝑖1

𝑡 +  𝑃𝑖2
𝑡 +  𝑃𝑖3

𝑡                                              (7) 

 

Moreover, every residential home energy user has preference 

of appliance use based on LOT time constraints. 

a) The Discomfort parameter 

The comfort parameter 𝑙 ensures the reduction in mismatch 

that occur between the baseline and optimal scheduling 

parameters. The adjustment and shifting of use are taken as 

discomfort in this study. Therefore, the objective function in 

equation above can be reduced by the user as: 

 

𝑙 ∶= ∑ ∑ ∑ (ℎ𝑖,𝑡
𝑘 − ℊ𝑖,𝑡

𝑘 )
2ℵ𝑖

𝑗=1
ℵ𝑠
𝑖=1

𝕋
𝑡=1                                (8) 

We can then add the discomfort level in the objective 

equation 1. Hence the adjusted objective the user tends to 

minimize: 

Υ𝑐+∝ 𝑙 = 𝑚𝑖𝑛Υ 

C. Residential Home Appliances 

This study, for simplicity uses one of the homes in the case 

study on which to base the GA. The home proposed is a semi-

detached bungalow with multiple appliances each with 

definite length of operation time (LOT) or duty cycle time 

which is used to generate an energy consumption vector [27, 

28]. Figure3 shows the total estimated load and the available 

load. This study is based on the actual solar PV plant from 

the National Agency for Science and Engineering 

Infrastructure Abuja, Nigeria [23].  

 

Tables 2 and 3 show the proposed energy consumption in the 

case study house for non-shiftable appliances [29], which 

have fixed energy consumption at each time slot, and 

shiftable appliances, which have adjustable energy 

consumption at each time slot and can be sub-categorized as 

interruptible and non-interruptible. C. Chen et al (2013) and 

Agnetis et al (2013) described these as:  

 Non-interruptible shiftable appliances (𝑁𝑎) : 

appliances consume the same amount of 

energy for every hour without being 

interrupted. The appliances in this category 

cannot be turned OFF or ON during their time 

of operation. Moreover, the electricity 

consumption of these appliances is not 

adjustable. e.g. washing machines.  

 Interruptible shiftable appliances: The 

appliances in this category can be turned OFF 

or ON during their operating time. Some 

appliances in this category also depend on the 

environmental (weather) condition during 

their operating time. e.g. iron, cooker, 

refrigerator and air conditioner. 

Table 2, Non-shiftable appliances in case study building 

 
Load ID Appliance Power 

Rating 
(kW) 

Category description 

𝑁𝑎1  

Energy Bulb (for 
indoor and 
security lights) 

0.20 Non-shiftable load that 
can operate for 24 hours 
daily. Their minimum and 
maximum power loads 
are between 0kW to 
0.20kW during their 
operating cycle. Can 
consume the energy of  
around 0.16kWh daily. 

𝑁𝑎2 Computer 
system (desktop, 
laptop, printer) 
and phones   

0.30 Non-shiftable load that 
can operate for 24 hours 
daily.  

𝑁𝑎3 Television and 
accessories(TV, 
Radio,  

0.25 Non-shiftable load that 
can operate for 24 hours 
daily.  

 

Table 3,  Shiftable parameters in case stusy building 

Load 
ID 

Appliance  

(× Available 
Number) 

Start 
– End 
Time 

Power 
Rating 
(𝑘𝑊) 

Daily 
LOT 
(ℎ) 

Daily 
Require
d 
Energy 
(𝑘𝑊ℎ) 

Category 
Description 

𝑆𝑎1 Refrigerator 
(*2) 

1am 
– 
12am 

0.
4 

0.8 23 18.4 Environment
ally weather 
controlled. 

𝑆𝑎2 Washing 
Machine (*1) 

9am 
– 
10.45
am 

0.
6 

0.6 2.45 1.47 Non-
interruptble 
Shiftable 
load  

𝑆𝑎3 Electric 
cooker Hob 
(*1)   

6am 
– 
8.30a
m 

0.
5 

0.5 2.30 1.15 Interruptible 
Shiftable 
load  

𝑆𝑎4 Air Conditioner 
(*2) 

8pm 
– 
11pm  

0.
55 

1.1 4 4.4 Environment
ally weather 
controlled 
Shiftable 
load. 

𝑆𝑎5  Oven (*1) 3pm 
– 
4.50p
m 

2.
3 

2.3 1.50 3.45 Interruptible 
Shiftable 
load  

𝑆𝑎6 

 

Electric Iron 
(*1) 

6am – 

7am  
1 

 

1 

 

0.30  0.3 

 

Interruptible 

shiftable load 

 

𝑆𝑎1 is environmentally weather controlled shiftable load that 

can operate 24 hours daily. It can operate between 0kW to 

0.38kW during their operating cycle and also consume the 

estimated energy of 3.43kWh daily. The minimum and 

maximum power loads are between 0kW to 0.38kW during 

their operating cycle. Can consume the estimated energy of 

3.43kWh daily. 

 

𝑆𝑎2  is Non-interruptble Shiftable load with three cycles of 

operation (washing, rinsing and drying). Power load can vary 

between 0.52kW to 0.65kW. The full cycle of operation takes 

about 45mins – 150 mins. The power load of cloth dryer is 

about 0.19kW – 2.97kW. 



𝑆𝑎3 is interruptible Shiftable load that can be used more than 

once daily. The operating power load varies between 0.75kW 

to 2.35kW. 

𝑆𝑎4  is Environmentally weather controlled Shiftable load 

with peak of 2.75kW working hours and 0.25kW during the 

compressor off period. Normal AC (2.5-ton) can consume 

31.15kWh of energy daily. Can consume energy of  1.72kWh 

daily. 

𝑆𝑎5 is Interruptible Shiftable load that can operate more than 

once daily. The minimum and maximum loads are between 

1.25kW to 0.93kW during the operating cycle. 

𝑆𝑎6 is Interruptible shiftable load operating more than once 

daily. Their minimum and maximum power loads are 

between 0kW to 2.4kW during the operating cycle. Can 

consume the energy of  2kWh daily. 

 
Fig3: the total hourly scheduled load and the available 

capacity 

 

 

 
Fig4: Daily individual load contributions 

D. Appliance Operation Time 

User preference determines the appliance operation period. 

The minimum start and end time for each scheduled load on 

this case study is specified in fig5 with colour coding for 

shiftable appliance scheduling and allocated load points. See 

the appendix for the detailed analysis.  

 
Fig5: Colour coding for shiftable appliance Scheduling   

 

 

GA Solution Representation 

The appliance is shceduled based on priority during the 24h 

period. Hence, a certain appliance can be preferred for 

operation at a particular time depending on the time of use 

and category of the load (i.e controllable, weather controlled 

etc.). From fig6, the scheduled appliance profile in fig5 is 

further described and classified based on the actual daily 

demand of the home. 

 

 
 

Fig6: Proposed GA based solution representation 

 

It is envisioned that the evolutionary operation of proposed 

GA for load allocation would produce a solution set which 

represent optimal search of parameters under the active 

demand scenarios. A set of the generated binary values would 

determine state (ON/OFF) of loads in the Node Slot (see 

fig6). The GA would evolve the set of solution using the 

proposed format guided by the objective function described 

in section B.   

IV. SUMMARY AND CONCLUSION  

The current state-of-art in micro generation technology and 

energy management reviewed showed that many different 

mathematical models and optimization techniques have been 

explored for residential home scheduling using DSM and 

more specifically DR. In remote regions, microgeneration 

and renewable energy resources serve as the major source of 

electricity but these can be expensive especially where 
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battery storage is needed. It is possible to use GA to optimize 

micro-grids and reduce the initial capital cost of the batteries 

and peak loads. A design for such a micro-grid is proposed, 

this would use the objective function to optimize the 

performance. 

 

 

 

ACKNOWLEDGMENT  

My special gratitude goes to Petroleum Technology 
Development Fund (PTDF), Nigeria for their financial and 
moral supports during this work.  

References 

1. IRENA, INNOVATION LANDSCAPE FOR A RENEWABLE-

POWERED FUTURE: SOLUTIONS TO INTEGRATE 

VARIABLE RENEWABLES. International Renewable Energy 
Agency, Abu Dhabi., 2019. 

2. James A. Momoh, Smart Grid: Fundamentals of Design and 

Analysis. Wiley-IEEE Press, 2012. 
3. Samuel C.Johnson et al, D.J.P.S.M.A.D.D.R.E.W., Evaluating 

rotational inertia as a component of grid reliability with high 

penetrations of variable renewable energy. Energy, 2019. 
Volume 180, : p. Pages 258-271. 

4. P Du  and N Lu, Appliance Commitment for Household Load 
Scheduling. IEEE TRANSACTIONS ON SMART GRID, 2011. 

VOL. 2(2). 

5. CherrelleEid et al, E.K., Mercedes Valles, Javier Reneses, Rudi 
Hakvoort, Time-based pricing and electricity demand response: 

Existing barriers and next steps. Utilities Policy, 2016. 40: p. 

Pages 15-25. 
6. Sarah J. Darby & Eoghan McKenna, Social implications of 

residential demand response in cool temperate climates. Energy 

Policy, 2012. 49: p. Pages 759-769. 
7. Pei-yangGuo et al, D.-y., JacquelineLam, Victor O.K. Li, The 

Future of Wind Energy Development in China. Wind Energy 

Engineering, 2017: p. 75-94. 
8. D.Li et al, W.-Y.C., H.Sun,, Demand Side Management in 

Microgrid Control Systems. Advanced Control Methods and 
Renewable Energy System Integration 

2017: p. Pages 203-230. 

9. C. W. Gellings, The concept of demand-side management for 
electric utilities. in Proceedings of the IEEE,  . 73(10): p. pp. 

1468-1470, Oct. 1985. 

10. C. Abreu et al, D.R., P. Machado, J. A. Peças Lopes and M. 
Heleno, Advanced Energy Management for Demand Response 

and Microgeneration Integration. 2018 Power Systems 

Computation Conference, 2018: p. 1-7. 
11. Goran Strbac, Demand side management: Benefits and 

challenges. energy Policy, 2008. 36(12): p. 4419-4426. 

12. S. Nithin, ICT Application of DSM. Smart Micro Grid, 2020. 
13. Ming-Wen Tsai et al , T.-P.H., and Woo-Tsong Lin,, A Two-

Dimensional Genetic Algorithm and Its Application to Aircraft 

Scheduling Problem. mathematical Problems in Engineering, 
2015. Volume 2015 p. 12. 

14. D. E. Goldberg and K. Deb, a comparative analysis of selection 

schemes used in genetic algorithms. 1991: Morgan Kaufmann 
Publishers, Inc. 

15. A. Chakir et al., M.T., F. Moutaouakkil  et  al.,  Mohamed 

TabaaFouad MoutaouakkilHicham MedromiMaya Julien-
SalameAbbas DandacheKarim Alami, Optimal energy 

management for a grid connected PV-battery system. Energy 

Report, 2019. 
16. U. Latif et al, N.J., S. S. Zarin, M. Naz, A. Jamal and A. 

Mateen,  Krakow, , Cost Optimization in Home Energy 

Management System Using Genetic Algorithm, Bat Algorithm 
and Hybrid Bat Genetic Algorithm. 2018 IEEE 32nd 

International Conference on Advanced Information Networking 

and Applications (AINA),, 2018: p. pp. 667-677. 
17. A. Ahmad et al, N.J., S. Ahmad, S. Saud, U. Qasim and Z. A. 

Khan, , Realistic Home Energy Management System Using 

Exogenous Grid Signals. 2016 19th International Conference on 

Network-Based Information Systems (NBiS), Ostrava, , 2016: 
p. pp. 458-463. 

18. X. Jiang and C. Xiao, Household Energy Demand Management 

Strategy Based on Operating Power by Genetic Algorithm. in 

IEEE Access, 2019. 7: p. 96414-96423. 

19. S. Lin and C. Chen, Optimal energy consumption scheduling in 

home energy management system. International Conference on 
Machine Learning and Cybernetics (ICMLC), Jeju, 2016, 2016: 

p. 638-643. 

20. S. Wang et al., Genetic Algorithm Based Optimal Strategy for 
Smart Home Energy Management System with Solar Power and 

Electric Vehicle. 4th International Conference on Mechanical, 

Control and Computer Engineering (ICMCCE), Hohhot, China, 
2019, , 2019: p. pp. 979-9793. 

21. Sahar Rahim et al, Exploiting heuristic algorithms to efficiently 

utilize energy management controllers with renewable energy 
sources. energy and building, 2016. 

22. S. L. Arun and M. P. Selvan, Intelligent Residential Energy 

Management System for Dynamic Demand Response in Smart 
Buildings. in IEEE Systems Journal, , June 2018, 2018. vol. 

12(2): p. pp. 1329-1340. 

23. D.O.Akinyele et al, R.K.R., N.K.C.Nair, Global progress in 
photovoltaic technologies and the scenario of development of 

solar panel plant and module performance estimation − 
Application in Nigeria 

Renewable and Sustainable Energy Reviews, 2015. 48: p. Pages 112-139. 
24. C. Chen et al, J.W., Y. Heo and S. Kishore,  , MPC-

basedappliancescheduling for residential building energy 

management controller. in IEEE Transactions on Smart Grid,, 
2013. 4(3): p. pp. 1401-1410. 

25. C. Wang et al, Y.Z., J. Wang, P. Peng, A novel traversal-and-

pruning algorithm for household load scheduling. Applied 
Energy, 2013. 102 p. pp. 1430-1438. 

26. U.E. Ekpenyong et al, J.Z., X. Xia, An improved robust model 

for generator maintenance scheduling. Electr. Power Syst. Res., 
, 2012. 92 p. pp. 29-36. 

27. Agnetis et al, G.d.P., Paolo Detti, and Antonio Vicino, Load 

Scheduling for Household Energy Consumption Optimization. 
IEEE TRANSACTIONS ON SMART GRID, 2013. 4(4). 

28. F. A. QAYYUM et al, M.N., A. S. KHWAJA, A. 

ANPALAGAN, L. GUAN1 AND B. VENKATESH1, 

Appliance Scheduling Optimization in Smart Home Networks. 

IEEE Access, Appliance Scheduling Optimization in Smart 

Home Networks, 2015. 
29. !!! INVALID CITATION !!! [37-40]. 

 

 

Appendix  

 

The load allocation table 

 

 
 

 

 

 


