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Dynamic Neural Network-based Feedback Linearization Control for a
Pressurized Water Reactor

Amine Naimi, Jiamei Deng, S. R. Shimjith, A. John Arul

Abstract— This note presents a nonlinear control approach
using dynamic neural network (DNN)-based feedback lineariza-
tion (FBL) for nuclear reactor power control. The reactor
model adopted in this study is based on neutronic dynamic and
thermal-hydraulic models. The nonlinear plant is identified by
a single-layer DNN trained using Quasi-Newton and Interior-
Point methods. The feedback linearization scheme is combined
with a Proportional-Integral (P-I) controller and simulations
show good performance of the proposed controller. The efficacy
of the controller is evaluated in the load-following mode of
operation. Moreover, the fault-tolerance performance of the
proposed approach is tested.

Index Terms— Feedback Linearization, Dynamic Neural Net-
work, Nonlinear Control System, Pressurized Water Reactor,
Nuclear Power Plant.

I. INTRODUCTION

Nuclear power plants (NPPs) are complex systems, and the
implementation of desirable control for the core is necessary
to ensure safety and effectiveness of the plant. In order to
guarantee efficiency and maintain safe operation, the plant
needs to achieve stability under uncertainties caused by
unmodeled dynamics, parameter variations and linearization.

Proportional-integral-derivative (PID) controllers have still
a predominant role in various industries including nuclear
applications [1]. Hence, several PID gains tuning methods
were developed [2], and various methods were employed
to optimize these gains for load-following issues in nuclear
plants. For instance, Mousakazemi et al. [3] proposed a
PID controller for power-level control of a pressurized water
reactor (PWR), the controller gains were optimised using the
particle swarm optimization (PSO) algorithm.

Linear control approaches are subject to lacking robustness
which is required to ensure good operational performance
of the NPPs. Therefore, in recent years, various nonlin-
ear control techniques have been used for nuclear reactor
power control, such as neural networks methods [4], fuzzy
logic methods [5], intelligent control systems [6] and robust
optimal control systems [7]. The above nonlinear control
methods require exact mathematical model of the PWR
reactor system.

A few researchers applied feedback linearization (FBL)
methods to control nuclear reactors, such as for the control
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of the power-level for the PWRs which was discussed in [8].
Eom et al. [9] presented a robust disturbance observer-based
FBL control system of a research reactor which possesses the
ability of estimating states as well as limiting the core power
change rate. Ansarifar et al. [10] proposed a combination of
Conventional FBL and Sliding mode control for Axial-Offset
control of pressurized water reactors during load following
operation. In [11], a Dynamic neural network (DNN) was
proposed to estimate a PWR reactor and was dedicated to
being used with FBL approach.

FBL techniques with artificial intelligence have been an
active research in the last 3 decades [12]. For instance, a
multi-layer controller-based was proposed to ensure bounded
control actions [13], moreover, a neuro-controller using FBL
was studied in [14]. Practical applications of DNN-Based
FBL control can be found in different areas. For example,
it was applied to an electromechanical process [15] and few
applications can be reported in the automotive field [16],
[17]]. Deng et al. [18] demonstrated the benefits of using
this approach by integrating it into a model predictive control
scheme. However, FBL and DNN methods have not been
applied to NPP control.

In this paper, an FBL approach based on a single-layer
DNN is used for the control of a PWR. The FBL is combined
with a linear PID controller to ensure the achievement of
a stable control. The paper is arranged as follows: Section
II introduces the PWR model. Section III presents the
DNN-based system identification. Section IV implements the
proposed controller. Section V shows the simulation results.
Finally, section VI concludes this work.

II. NON-LINEAR PWR MODEL

In this paper, the mathematical model of the PWR assumes
point kinetics equation coupled with six delayed neutron
groups and lumped thermal hydraulic model. For control
purpose, the reactivity and the power are considered as input
and output of the reactor, respectively. The PWR model used
can be found in the literature [19]. The dynamic model is
described as follows:

dP

dt
=

ρt −
6∑
i=1

βi

Λ
P +

6∑
i=1

λiCi, (1)

dCi
dt

=
βi
Λ
P − λiCi, i = 1, 2, . . . 6. (2)



dTf
dt

= HfPn −
1

τf
(Tf − Tc1) , (3)

dTc1
dt

= HcPn +
1

τc
(Tf − Tc1)− 2

τr
(Tc1 − Tcin) , (4)

dTc2
dt

= HcPn +
1

τc
(Tf − Tc1)− 2

τr
(Tc2 − Tc1) . (5)

In the above set of equations, P is the neutronic power, Λ
is the prompt neutron; Ci, Λ and βi are delayed neutron
precursors’s concentration, decay constant and fraction of
delayed neutrons, respectively. Tf , Tc1, and Tc2 are the
temperatures at fuel, coolant node 1 and node 2, respectively.
Hf and Hc are proportionality constants. τf , τc, and τr
are time constants. The effects of variation in temperatures
of fuel and coolants are considered in terms of reactivity
feedback. Hence, the total reactivity is given by:

ρt = ρrod + ρf + ρc1 + ρc2

ρt = ρrod + αfTf + αc (Tc1 + Tc2) (6)

where ρrod, ρf , ρc1, and ρc2 denote the reactivity due to
control rod, fuel temperature, coolant temperature at node
1 and 2, respectively. αf and αc denote the temperature
coefficients of reactivity due to fuel and coolant, respectively.

III. DNN-BASED SYSTEM IDENTIFICATION

DNNs have, in comparison to static neural networks,
more complex architectures. They provide the possibility to
analyze time-dependent data, since the network elements are
made of interconnected dynamic neurons. Such networks can
be represented by a nonlinear state space model. The general
equation of the DNN can be expressed as follows [12]:

ẋ(t) = f (x (t) , u (t) , θ)

ŷ(t) = h (x (t) , θ) (7)

where x ∈ RN are the states of the network, u ∈ Rm, is the
external input, θ is a vector of parameters of the network,
and y ∈ Rp is the output. f and h are functions that represent
the structure of the network and the relationships between the
output and state, respectively. The structure of the DNN used
in this paper us a specific case of (7) and can be expressed
as the equation (8):

ẋi = −βixi +

N∑
j=1

ωijσ (xj) +

m∑
j=1

γijuj (8)

where βi, ωi, and γi are adjustable weights, 1
βi

is a positive
time constant, xi the states of the system and uj the input
signals. The block diagram of a dynamic neuron is shown
in Fig. 1. The vectorized form of (8) is given by:

ẋ = −βx+ ωσ (x) + γu (9)
ŷ = Cx (10)

where x are coordinates on RN , ω ∈ RN×N , σ (x) =[
σ (x1) · · · σ (xN )

]T
, γ ∈ RN×m, u ∈ Rm, C =[

Ip×p 0p×(N−p)
]
, and β ∈ RN×N is a diagnosable matrix

Fig. 1: A dynamic neuron.

Fig. 2: Reactor Identifier block diagram.

with diagonal elements
{
β1 · · · βN

}
.

In an earlier work [11], the DNN described previously was
trained to learn the dynamic of the process from reactivity
and power data sets (Fig.2). Trainings were carried out
using Quasi-Newton algorithm (Q-N) as well as Interior-
Point methods. The model found was a second order for the
two DNNs, more details about the approach can be found
in [11]. The DNN model trained using Q-N methods can be
represented as follows:

ẋ1 = −β1x1 + ω11σ (x1) + ω12σ (x2) + γ1u (11)
ẋ2 = −β2x2 + ω21σ (x1) + ω22σ (x2) + γ2u (12)
y = Cx (13)

where

β =

0.5767 0
0 −0.1038

 ;ω =

[
−0.4523 0.7762
−0.1850 −0.3670

]
;

γ =

[
0.620 0.1837

]T
;C =

[
1 0
]
. (14)

IV. CONTROLLER DESIGN

FBL is a common approach used for the control of
nonlinear systems. The main objective of this control is to
transform a nonlinear dynamic system into a linear system
using nonlinear coordinate transformations and nonlinear
state feedback. By eliminating nonlinearities in the closed
loop system, conventional linear control techniques can be
applied. FBL may be applied to nonlinear systems of the



following form: {
ẋ = f (x) + g (x)u
y = h (x)

(15)

where x is a state vector, u is a control function and y is
a controlled output. Also, the system described in (15) has
a relative degree if [12]:

{
LgL

k
fh (x) = 0,

LgL
r−1
f h (x) 6= 0

(16)

where Lph(x)=∂h(x)/∂x. p for p=f , g is the lie derivative
of the function f(x).
According to this definition of relative degree and consider-
ing the DNN model described in (12-14), the relative degree
of the reactor system is 1. Hence, the desirable control law
according to feedback-linearization can be represented as
follows:

u = P (x) +Q (x) v (17)

where

P (x) = −A (x)
−1

+B (x) , (18)
Q (x) = A (x)

−1 (19)

with

A (x) =


λ̂1r1Lg1L

r1−1
f h (x) ... λ̂1r1LgpL

r1−1
f h1 (x)

... ... ...

λ̂prpLg1L
rp−1
f hp (x) ... λ̂prpLgpL

rp−1
f hp (x)


p×p

(20)

B (x) =



r1∑
k=0

λ̂1kL
k
fh1 (x)

...
rp∑
k=0

λ̂pkL
k
fhp (x)


p×1

(21)

u =
1

λ1γ1
(v − λ0x1 − λ1 (β1x1 + ω11σ (x1) + ω12σ (x2)))(22)

where λ̂1k are arbitrary values. λ0 and λ1 were chosen such
that the linearized system v-y is subject to the same static
gain and time constant as the DNN model given in equations
(12-14). In this study, a conventional P-I controller is used
in the outer control loop. The proposed control strategy is
described in Fig.3.

V. SIMULATION RESULTS

To evaluate the performance of the proposed controller,
a load-following transient is considered. The transient
is chosen to be within the range 50%<P<100% as
it is where the controller is performing well. The
desired core power level is changing as follows:
100%�50%�65%�80%�95%�80%�65%�50%.
The performance of the controller is shown in Fig. 4. It can
be seen that the controller tracks well the load changes. The

Fig. 3: Structure of the control strategy.
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Fig. 4: Variation of the power for normal mode.

control signal (reactivity) as well as the rate of change of
reactivity are shown in Fig. 5 and Fig. 6, respectively. In
this paper, it is assumed that the reactivity is constrained by
-0.01<u<0.01.

In addition to the normal mode, a simulation is performed
in the presence of faults in order to evaluate the fault-
tolerance of the proposed controller. The performance of
the controller in case of faults in the actuator and sensor
power is shown in Fig. 7. The actuator-based fault can be
described as a signal with a period of 5s and a magnitude
of 7.10-3. The sensor-based fault is the same signal type
with a magnitude of 0.016. It can be observed a variation in
the power when the faults are introduced but the controller
is able to track the set-point. As for the fault introduced in
the actuator, the controller is able to track back the set-point
after a period of 8 s while for the fault in the sensor it needs
5s for the correction to be made. However, it can be noticed
that the variation of the control signal caused by the faults
is important. The control signal is indeed facing an increase
of 6.10-3 at 250s for only 1s in the presence of the fault in
the actuator.

VI. CONCLUSIONS

A FBL strategy based on a DNN has been studied for
a PWR nuclear reactor. The DNN was previously trained
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Fig. 6: Variation of rate of change of reactivity for nornal
mode.

offline using the Quasi-Newton algorithm.The simulation re-
sults demonstrate the effectiveness and the good performance
of the proposed controller for load-following. The proposed
control method is able to track the desired power with a
good precision. Moreover, a simulation is performed with
the presence of a fault in the actuator and in the sensor.
The control strategy is proved to be able to deal with the
perturbations. However, the level of control effort is found
to be important in the presence of faults.
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