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Abstract: Background: Within the UK, COVID-19 has contributed towards over 103,000 deaths.
Although multiple risk factors for COVID-19 have been identified, using this data to improve clinical
care has proven challenging. The main aim of this study is to develop a reliable, multivariable predic-
tive model for COVID-19 in-patient outcomes, thus enabling risk-stratification and earlier clinical
decision-making. Methods: Anonymised data consisting of 44 independent predictor variables from
355 adults diagnosed with COVID-19, at a UK hospital, was manually extracted from electronic pa-
tient records for retrospective, case–control analysis. Primary outcomes included inpatient mortality,
required ventilatory support, and duration of inpatient treatment. Pulmonary embolism sequala
was the only secondary outcome. After balancing data, key variables were feature selected for each
outcome using random forests. Predictive models were then learned and constructed using Bayesian
networks. Results: The proposed probabilistic models were able to predict, using feature selected
risk factors, the probability of the mentioned outcomes. Overall, our findings demonstrate reliable,
multivariable, quantitative predictive models for four outcomes, which utilise readily available
clinical information for COVID-19 adult inpatients. Further research is required to externally validate
our models and demonstrate their utility as risk stratification and clinical decision-making tools.

Keywords: Bayesian network; COVID-19; SARS CoV; random forest; risk stratification; synthetic
minority oversampling technique (SMOTE)

1. Introduction

On Thursday, the 5th of March 2020, within the UK, COVID-19 claimed the life of
its first victim and has since contributed towards over 103,000 deaths [1,2]. The Office
of National Statistics (ONS) has since issued statements, based on population data, in
conjunction with the National Health Service (NHS), indicating an increased risk of mor-
tality from COVID-19 amongst poorer socioeconomic groups, Black and Minority Ethnics
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(BAME), males and the elderly [2–5]. In addition to demographics, various biochemical
parameters and co-morbidities, such as obesity, diabetes, hypertension, chronic obstructive
pulmonary disease (COPD) and malignancy, have been identified as risk factors for poor
COVID-19 outcomes [6–9]. However, using this vast data to improve clinical care has
proven challenging. One particular challenge that remains is relatively quantifying the
impact of various prognostic indicators upon COVID-19 outcomes, especially whilst using
combinations of variables, in order to assist clinical decision-making and risk stratification.

Due to the limited nature of healthcare resources, such as hospital beds and ventilators,
clinicians are often faced with difficult decisions where they must ration resources between
patients, often having ethical implications [10–12]. Currently, clinicians are allocating
healthcare resources to COVID-19 patients semi-quantitatively, and often as a response to
clinical deterioration. Various risk stratification models have been described in the literature
such as the 4C tool [13], but are currently not being used clinically due to criticism in recent
systematic reviews [14,15]. Some of the key problems with existing risk-stratification tools
are unclear methodologies, the exclusion of patients diagnosed with COVID-19 using
Computed Tomography (CT) imaging but with negative Real Time-Polymerase Chain
Reaction (RT-PCR) nasopharyngeal swabs, small sample sizes, many patients not reaching
a study outcome, automated data extraction relying on clinical coding and many studies
only exploring inpatient mortality as a primary outcome. In addition, many predictive
models have been developed using patient data from other parts of the world, which may
not be generalizable to the UK population due to patient factors, hospital factors and virus
factors. Finally, only a small selection of risk-stratification tools analysed a wide host of
independent variables including vital observations, biochemical markers, demographics
and co-morbidities.

The multivariate predictive model showcased in this study uses Bayesian Networks
(BNs), which have received increasing attention during the last two decades [16,17] for
their efficacy in tackling challenging and complex problems whilst also aiding in making
decisions under uncertainty [18]. The ever-increasing volumes of health data has created
potential for developing new knowledge that could improve clinical practise and patient
care. The BNs and other machine learning (ML) methods have been extensively utilised in
a diverse range of health topics from genomics [19–21] to treatment selection, and outcome,
prognosis and prediction [22]. A compelling advantage of BNs over other suitable data-
driven methods is that they do not explicitly need massively large datasets. Furthermore,
BNs can combine the elicited knowledge of experts in circumstances where data are limited,
and still produce meaningful and accurate decision-support systems [23–26].

This paper seeks to develop a quantitative tool to aid risk-stratification, and earlier
clinical decision-making for adult COVID-19 inpatients by benefiting from the properties
of BNs, including making reliable predictions, and being robust in making decisions under
various sources of uncertainties in data.

2. Materials and Methods
2.1. Study Design and Setting

This retrospective case–control study was conducted at Milton Keynes University
Hospital (MKUH), which is a medium-sized, 550 bed, district general hospital in the United
Kingdom. Data was collected during the routine clinical care of patients for auditing
purposes, and upon receiving Health Research Authority (HRA) approval, the anonymous
data was then also used for research purposes. The study aimed to follow the Transparent
Reporting of a multivariable prediction model for the Individual Prediction of Diagnosis
(TRIPOD) checklist [27] and was conducted according to a pre-defined study protocol.

2.2. Study Population

Adult patients diagnosed with positive RT-PCR nasopharyngeal swabs or CT scans
with changes suggestive of COVID-19 [28], between 01/03/2020 (date of first COVID-19
patient diagnosis) and 22/04/2020 (date of initiating independent predictor variable data
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collection) at MKUH, were included in this study. Sixty-nine patients were excluded,
which is shown below in Table 1, to produce a final n number of 355. The sample size was
determined by using the maximum number of COVID-19 patients diagnosed during the
study period.

Table 1. Patient selection process.

Sample Population

Patients diagnosed with COVID-19 between 01/03/2020 and 22/04/2020, at Milton Keynes
University Hospital (n = 424)

Inclusion Criteria Exclusion Criteria

1. Patients diagnosed with at least 1
positive RT-PCR Nasopharyngeal swab

2. Patients diagnosed with CT scan changes
consistent with COVID-19 [28]

3. Age 18 years and above

1. Patients diagnosed in the Outpatient
setting

2. Staff Members who were diagnosed via
Occupational Health, and who did not
receive a formal medical assessment

Final Study Participant Number (n = 355)

2.3. Data Collection

The hospital Picture Archiving and Communication System (PACS) was searched
to get the details of the CT scan reports of patients with suspected COVID-19 changes,
from 01/03/2020 until 22/04/2020. Reports dictated by a consultant radiologist, and CT
scan images where required, were screened for all patients who had changes suggestive of
COVID-19 [28]. The radiologically positive cases were included in the study. A record of
all the COVID-19 RT-PCR positive swabs was obtained from the microbiology department.
After removing the duplicates, the CT positive and RT-PCR swab positive cases were pop-
ulated to a Microsoft Excel spreadsheet. Further patient data from the hospital Electronic
Patient Record System (EPR), was collected in accordance with data protection and Good
Clinical Practise (GCP) guidelines, on a hospital computer, by a team of physicians. Specific
instructions were issued to the team of physicians to use during the collection of data to
ensure homogenous, standardised interpretation of data from EPR. Healthcare staff who
had historically recorded patient information on the EPR during clinical assessment were,
of course at the time, blind to the outcomes and hypotheses of this study. All data was
checked for systematic error by at least 1 other physician. After data collection, data was
fully anonymised.

2.4. Independent Predictor Variables

Independent predictor variables were selected for inclusion in this study a priori based
on three criteria; (i) having a postulated role for influencing COVID-19 severity based on
surrounding literature, (ii) values expected to be available for at least one-third of study
participants and (iii) values being collected during the routine care of study participants.
Forty-four independent predictor variables were used for analysis in this study, which are
shown and defined in Supplementary Table S1. Patient characteristic information is shown
in Supplementary Table S2.

2.5. Outcomes

All patients were either discharged or deceased and thus achieved all four outcomes;
(i) inpatient mortality (IPD), (ii) duration of COVID-19 treatment (ADT), and (iii) maximum
level of oxygen or ventilatory support during inpatient stay (MOoVS), which was divided
into 4 categories: (A) requiring room air or non-high-flow oxygen, (B) requiring high-flow
oxygen defined as using a venturi mask, (C) requiring non-invasive ventilation (continuous
positive airway pressure (CPAP) or bi-level positive airway pressure (BiPAP)) and (D)
requiring intubation. A new radiologically confirmed diagnosis of pulmonary embolism
during inpatient stay (NCPE) was the fourth outcome. The outcomes were selected for
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this study a priori based on 3 criteria: (i) all patients will be able to reach one of the
pre-defined study outcomes, (ii) the pre-defined study outcomes are representative of
COVID-19 severity based on the surrounding literature at the time of study design and
(iii) the pre-defined study outcomes will involve data collected in the routine care of study
participants. The follow-up period was defined as 2 months to give all patients ample time
to achieve a study outcome prior to outcome data collection. During the above-mentioned
data collection time-period, if a patient was admitted more than once, and both times were
for COVID-19 related reasons within 5 days of each other, this was counted as a failed
discharge and thus 1 admission. Days spent in hospital for social reasons or alternative
diagnoses prior to developing COVID-19 were subtracted from the duration of inpatient
stay to derive the duration of inpatient treatment outcome. The day of COVID-19 clinical
presentation was retrospectively determined by physicians during data collection, after
careful analysis of the patient notes, in order to determine the first day during the inpatient
stay where COVID-19 was diagnosed clinically, based on the full repertoire of available
clinical information.

2.6. Data Analysis
2.6.1. Missing Values

In this study, no outcome (or dependent) variable was missing, but there were several
independent variables with high numbers of missing values. The biochemistry features,
including max CRP levels at the different days were among the independent random vari-
ables with the highest percentages of missing values ranging from 40% to 70%. However,
limited numbers of missing values could be observed on the rest of independent variables.
Due to the high number of missing values in many of the independent random variables,
the multiple imputation (MI) technique was selected as the most suitable technique to
estimate the missing values in the dataset.

2.6.2. Balancing Outcomes

After converting the continuous and multi-scale discrete independent and dependent
random variables into the categorical ones using the discretisation method [29], and
estimating the missing values using the MI technique [30,31], it was observed that the
resulting outcome variables suffer from a considerable imbalance. The predictions derived
from fitting a suitable statistical model to the imbalanced datasets, whereby one class is
dominant, would be inherently biased towards the dominant class, thus decreasing the
reliability of the predictions made by the models [32–34].

In this study, the authors used the Synthetic Minority Oversampling Technique
(SMOTE) to overcome the imbalance in the dataset [35]. The advantage of this tech-
nique over other oversampling methods is that it decreases the imbalance in a dataset by
synthetically creating new examples of the minority class, and not duplicating them [35,36].
The authors applied the SMOTE on the entire dataset, in concordance with the surrounding
literature [37–40].

2.6.3. Feature Selection

One essential stage in the development of predictive models using supervised Machine
Learning (ML) techniques is feature selection, which includes identifying and choosing the
best combination of independent variables in a dataset for efficient and optimum analysis
of the problem at hand [32,33].

For its feature selection, this study adopts the recursive feature elimination (RFE)
method, which is a backward variable selection wrapper technique [40]. For this purpose,
the authors computed the RFE method in R (version 4.0.2) using the random forest (RF)
function embedded in the Caret package [41,42]. In this study, the performance of the
wrappers is assessed using k-fold Cross-Validation (k = 10), which repeats five times. The
result of the feature selection using the RFE method for each of these responses is shown
below in Table 2. In this table, the numbers against each variable for the corresponding
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response indicates the predictive importance of that factor. The RFE method is a multi-step
process. Firstly, the dataset is randomly split into 70% training and 30% testing using the
validation set approach [35]. Subsequently, using the training data, a predictive model
containing all features is developed based on the random forest method. This model then
ranks the features based on a measure of importance. The RFE method then eliminates the
least important feature, develops a new model based on a smaller number of independent
variables, and re-ranks the remaining predictors [40]. RFE identifies two parameters: the
number of subsets to evaluate and the number of predictors in each of the subsets. For each
subset, the process of eliminating the least-important features continues until it reaches
a determined subset size. Eventually, RFE compares the predictive performance of all
subsets and determines the best subset size with the best accuracy [40].

Table 2. Feature selection results for four different outcomes; IPD, ADT, NCPE and MOoVS.

Predictor RFE (NCPE) RFE (MOoVS) RFE (ADT) RFE (IPD)

Age 2 1 7 1

Gender (Ge) 7 17 17 33

Ethnicity 17 5 24 4

Oxygen Saturations (OS) 16 2 9 2

Respiratory Rate (BPM) 19 12 26 9

Temperature 6 10 19 35

Obesity 11 8 11 28

Previous Venous Thromboembolism (PVTE) Rejected 33 33 36

Chronic Obstructive Pulmonary Disease (COPD) Rejected 37 37 37

Bronchiectasis Rejected 41 31

Asthma 21 27 34 10

Interstitial Lung Disease (ILD) Rejected 21 40 38

Lung Cancer (LC) Rejected 41 38 39

Diabetes Mellitus (DM) 29 16 27 21

Hypertension (HTN) 14 26 8 25

Ischaemic Heart Disease (IHD) 31 28 28 16

Chronic Kidney Disease (CKD) 32 31 31 8

Non-steroidal anti-inflammatory drugs (ANNC) 33 38 25 15

Anticoagulant 23 35 29 17

Long-Term Antibiotic (LTA) Rejected 34 36 30

Long Term Oral Steroid (LTO) Rejected 39 42 42

Immunosuppressants (ISES) Rejected 32 39 32

Oral NSAIDs (ONS) Rejected 40 32 41

Angiotensin Converting Enzyme Inhibitors (ACEI) 28 36 30 40

Angiotensin Receptor Blockers (ARBB) 27 29 35 27

CT imaging severity of COVID-19 related changes (UoB) 1 4 2 23

COVID-19 related Chest X-ray changes (CCX) 30 7 10 11

Lactate (LDP) 12 25 21 20

Lymphocytes (LyDP) 4 23 16 18

Neutrophils (NDP) 5 18 15 26

Albumin (MADA) 3 6 1 6
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Table 2. Cont.

Predictor RFE (NCPE) RFE (MOoVS) RFE (ADT) RFE (IPD)

Ferritin 24 20 23 24

D-Dimer (MDD) 8 11 6 7

C-Reactive Protein (CRP) Day 0 18 13 3 19

CRP Day 1–2 (MCRP1) 13 22 4 12

CRP Day 3–4 (MCRP3) 20 19 14 22

CRP Day 5–6 (MCRP5) 10 15 12 5

CRP Day 7–8 (MCRP7) 9 3 5 3

CRP Day 9–10 (MCRP9) 22 14 13 14

CRP Day 11–12 (MCRP11) 26 9 18 29

CRP Day 13–14 (MCRP13) 15 24 20 34

CRP Day 15–20 (MCRP15) 25 30 22 13

Figure 1 shows the performance of the RFE method based on the ranks of the variables.
Table 2 and Figures 1–4 both show that for each outcome, there is a specific combination of
independent variables that produce the highest predictive performance among all other
possible combination of variables for the selected outcome.

Figure 1. Performance of the RFE based on the ranks of the features of NCPE. The red circle shows the maximum achievable
performance based on the best combination of variables.
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Figure 2. Performance of the RFE based on the ranks of the features of MOoVS. The red circle shows the maximum
achievable performance based on the best combination of variables.

Figure 3. Performance of the RFE based on the ranks of the features of ADT. The red circle shows the maximum achievable
performance based on the best combination of variables.



Int. J. Environ. Res. Public Health 2021, 18, 6228 8 of 22

Figure 4. Performance of the RFE based on the ranks of the features of IPD. The red circle shows the maximum achievable
performance based on the best combination of variables.

2.7. Bayesian Network Modelling

A Bayesian network (BN) is a probabilistic graphical model that is used to represent
knowledge about an uncertain domain [43]. Applications of BN methods are found in a
growing number of disciplines and policies [44]. BN learning consists of two general steps:
(i) Finding Directed Acyclic Graphs (DAG), which illustrates the inter dependency between
the variables/nodes and is denoted by G, and (ii) Finding Conditional Probability Tables
(CPT) for each node given the values of its parents on the learned network structure G.

Finding the best DAG is the crucial step in BN design. Construction of a graph
to describe a BN is commonly achieved based on probabilistic methods, which utilise
databases of records [45], such as the search and score approach. In this approach, a search
through the space of possible DAGs is performed to find the best DAG. The number of
DAGs, f(p), as a function of the number of nodes, p, grows exponentially with p [46].

The BN structure learned from the data only for IPD based on the feature selected
factors affecting IPD is shown in Figure 5. This network structure was learned from the
completed data by evaluating the best model out of various score-based or constraints-
based methods [47]. In particular, the BN shown in Figure 5 was selected by employing
hill-climbing (or hc) algorithm and benchmarked with other suitable learning algorithms
(e.g., Tabu Search or simply tabu) available in “bnlearn” library in R package. We then used
the cross-validation, which is a standard way to obtain unbiased estimates of a model’s
goodness of fit to select the best models out of the learned networks using the learning
algorithms mentioned above. The cross-validation method used in this paper is 5-fold
cross-validation that can be simply computed using “bn.cv” function in “bnlearn” package.
This function provides us with log-likelihood loss, its standard deviation and BIC. Both
“tabu” and “hc” algorithms suggested the network structure illustrated in Figure 5, as the
best networks learn from data, with the same BIC.
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Figure 5. The BN that is fully learned from data to model “IPD” in terms of other relevant factors.

From this model shown in Figure 5, it is evident that the way that several independent
variables affect IPD is incorrect. Therefore, it was important to discuss the resulting
BN model, illustrated in Figure 5 with the domain medical experts, and consequently
revise this BN by considering experts’ opinions. The revised BN model learned based on
the combination of data and expert opinions, whilst also validated using several model
diagnostic algorithms, such as k-fold cross validation, is illustrated in Figure 6. The
computed BIC metric for the network shown in Figure 6 (−4190.4, equivalent to 9.03 of
log-likelihood loss value and 0.008 standard deviation of the loss) is smaller than BIC of
the model shown in Figure 5, which was computed to be, −4000.3 (equivalent to 8.69 of
log-likelihood loss value and 0.011 standard deviation of the loss).

In the BN model proposed for modelling IPD, the strength of the link, as well as the
associated uncertainty, is captured using probabilities and statistical distributions, which
are estimated or derived based on the observed data. Figure 7 shows the learned BN with
the estimated marginal probabilities shown on each node. In this BN, three nodes (Age,
Chronic Kidney Disease (CKD), and Ethnicity) are considered as root nodes, and their
parameters are learned by estimating these probabilities using the maximum likelihood
method or Bayes estimate. The estimated marginal and conditional probabilities for the
variables can be updated in the light of new evidence or data using a statistical algorithm
known as the Bayes rule [45]. Hence, the BN can compute the probability of surviving or
dying due to COVID-19 based on the different combination of the parent nodes, including
Age, the minimum Albumin level during admission (MADA), and the mean C-Reactive
Protein (CRP) level during days 7–8 since clinical presentation of COVID-19 (MCRP7).

Using the same methods, BNs were constructed for the other 3 outcomes and are
shown in Supplementary Figures S1–S6.
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Figure 6. The BN learned by eliciting the domain expert combined with the (balanced and completed) data.

Figure 7. The BN with conditional probability tables (CPT) learned for “IPD” outcome based on the combined elicited
domain expert opinions with the (balanced) data.
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3. Results
3.1. Inpatient Mortality (IPD)

The results section describes the performance metrics of the predictive models con-
structed in this study, as well as the conditional probabilities of outcome occurrence given
different exemplary combinations of independent factor variables.

Based on the BN model shown in Figure 7, the probabilities of IPD and survival of
COVID-19 inpatients at different age groups can be computed, as shown in Supplementary
Table S3. It highlights that the death rate of COVID-19 patients with ≥70 years is five times
larger than patients’ with ≤40 years. These probabilities can be updated by observing more
evidence about the states of other influencing variables. Table 3 shows the conditional
probabilities of IPD given MADA (1 = <30, 2 = 30–35, 3 = 35<), MCRP7 (1 = <50, 2 = 51–100,
3 = 100<), and Age in years (1 = <40, 2 = 40–70, 3 = 70<). It can be concluded that for
the patients in the first age group (<40 years) if the MADA is above 35 g/L, they will
survive COVID-19 regardless of MCRP7. For a patient in this age group and with the
MADA level less than 30 g/L, they would more likely survive if their MCRP7 were less
than 50 mg/L. This means that when the MADA level is less than 30 g/L, patients are at
a particularly high risk, especially if their MCRP7 level is above 50 mg/L. Interestingly,
similar patterns can be found for the patients aged > 70 years old, but the corresponding
survival probabilities are considerably lower.

Table 3. The conditional probability of IPD given different configurations of the parent nodes.

Risk Factor
(MADA, MCRP7, Age)

Probability of
Inpatient Mortality

(3, 1, 1) 0

(2, 1, 2) 0

(3, 3, 1) 0

(2, 2, 2) 0.20

(1, 1, 1) 0.33

(1, 3, 1) 0.397

(3, 1, 3) 0.417

(1, 1, 3) 0.513

(1, 2, 2) 0.594

(3, 3, 3) 0.813

(1, 3, 3) 0.866

Overall, these results indicate how low albumin (reflective of malnourishment, as well
as infection owing to its negative acute phase protein property), high CRP, and old age
correlate with inpatient mortality in an additive manner.

Oxygen Saturations (OS) at the time of presentation with COVID-19 were also associ-
ated with mortality. As OS decreases from >92% to <92%, the risk of mortality increases
by 2%, suggesting that there is a negative association between these two variables, as
shown in Supplementary Table S4. We expected this association to be stronger, but found
it difficult to measure the oxygen saturations during admission at any other time, or as
an average, as it would be heavily affected by the level of oxygen therapy being received
by the patient. Although these findings are useful, it is also fascinating to observe how
OS could jointly, with other influencing independent variables, affect the risk of inpatient
mortality, as shown below in Table 4, where OS in % (2 = <91, 1 = 92<), CCX (1 = ‘No’,
2 = ‘Yes’), Ethnicity (1 = ‘Caucasian’, 2 = ‘Non-Caucasian’), and Age in years (1 = <40,
3 = 70<). The illustrated results in this table suggest that the risk of inpatient mortality is
elevated for patients with reduced oxygen saturations and older patients. Ethnicity seems
to increase the risk of death in patients 70< years, which is concordant with surrounding
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literature [3]; however, the results were not true for younger patients. This may have been
due to a skewed population demographic, whereby older patients tended to be Caucasian
and younger patients reflected a more multicultural demographic. Changes on chest X-ray
(CCX) did not seem to significantly affect the risk of IPD, perhaps because the presence of
changes is more likely an indicator of the time-point that an individual is along in their
COVID-19 infection rather than an indicator of severity.

Table 4. The conditional probability of IPD given different configurations of OS, Ethnicity, CCX and Age.

Risk Factor
(OS, CCX, Ethnicity, Age)

Probability of
Inpatient Mortality

Age < 40

(1, 2, 2, 1) 0.1375

(1, 2, 1, 1) 0.1376

(2, 1, 1, 1) 0.1387

(1, 1, 1, 1) 0.1391

(2, 2, 1, 1) 0.1395

(1, 1, 2, 1) 0.1401

(2, 1, 2, 1) 0.1407

(2, 2, 2, 1) 0.1417

Age < 70

(1, 2, 2, 3) 0.6755

(1, 2, 1, 3) 0.6756

(1, 1, 1, 3) 0.6761

(1, 1, 2, 3) 0.6764

(2, 1, 2, 3) 0.6927

(2, 1, 1, 3) 0.6944

(2, 2, 1, 3) 0.6944

(2, 2, 2, 3) 0.6946

The next important research question is how the trend in CRP levels during the clinical
course of a COVID-19 infection can be incorporated and evaluated using an appropriate
model. This is because CRP levels can often correlate with infection severity, with a small
associated lag time. Therefore, the trend in CRP is clinically useful for predicting what will
happen to the patient. For example, if the gradient between the latest two CRP variables
were positive, it would indicate that the infection is getting worse, whereas if the gradient
were negative, it would indicate infection resolution. To account for the gradient between
the CRPs, a dynamic version of BN needs to be developed, which is not possible due to
the lack of training data. However, the BN model, illustrated in Figure 7, can be used to
compute the risk of inpatient mortality for different levels of CRP at the different days
during the clinical course of COVID-19 infection, as shown below in Table 5. This table
shows the conditional probability of IPD given different configurations of Mean CRP
between days 1–2 since clinical COVID-19 presentation (MCRP1) (1 = <30, 2 = 31–100,
3 = 100<) and Mean CRP between days 7–8 since clinical COVID-19 presentation (MCRP7)
(1 = <50, 2 = 50–100, 3 = 100<), Age in years (1 = <40, 3 = 70<) and Minimum Albumin
During Admission (MADA) (1 = <30, 2 = 30–35, 3 = 35<). As shown, if the level of MADA
is 35<, increases or decreases in CRP levels during the clinical course of COVID-19 infection
will not impose a mortality risk in patients <40 years. However, in patients aged 70< years,
any increase in CRP levels (mg/L) from days 1–2 to days 7–8, would significantly increase
mortality risk.
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Table 5. The conditional probability of IPD given different configurations of MADA, Age, MCRP1
and MCRP7.

Risk Factor
(MADA, Age, MCRP1, MCRP7)

Probability of
Inpatient Mortality

MADA > 35 and Age < 40 years

(3, 1, 2, 1)—Small CRP Decrease 0

(3, 1, 3, 1)—Large CRP Decrease 0

(3, 1, 1, 2)—Small CRP Increase 0

(3, 1, 1, 3)—Large CRP Increase 0

MADA > 35 and Age < 70 years

(3, 3, 2, 1)—Small CRP Decrease 0.418

(3, 3, 3, 1)—Large CRP Decrease 0.416

(3, 3, 1, 2)—Small CRP Increase 0.496

(3, 3, 1, 3)—Large CRP Increase 0.812

MADA < 30 and Age < 70 years

(1, 3, 2, 1)—Small CRP Decrease 0.515

(1, 3, 3, 1)—Large CRP Decrease 0.513

(1, 3, 1, 2)—Small CRP Increase 0.734

(1, 3, 1, 3)—Large CRP Increase 0.865

Table 6 below indicates the promising Positive Predictive Value (PPV), Negative
Predictive Value (NPV), Sensitivity, Specificity, Overall accuracy and F-Score, which are
used to evaluate the predictive performance of the BN suggested to model IPD in Figure 7,
in terms of the feature selected risk factors. The definitions and details of how these metrics
can be computed are described in [35]. F1 Score is the Harmonic Mean between precision
and recall. The F1 score (83.7%) and accuracy (84.1) of our BN model developed for IPD is
high, despite the small dataset used to train and test our BN model. Eighty-two percent
(PPV) of adult patients predicted to die as inpatients during clinical COVID-19 infection,
by our model, will die. However, only 67.86% (NPV) of adult COVID-19 patients predicted
to survive the inpatient admission will indeed survive. This indicates that our model
may fail to predict inpatient death of a sub-set of adult COVID-19 patients, but we expect
this to improve with a larger dataset, which also incorporates more variables such as
socioeconomic factors.

Table 6. Summary of the predictive performance results of the BN model developed to model IPD as
Illustrated in Figure 7.

Predictive
Performance Metric PPV NPV Specificity Sensitivity Overall Accuracy F1-Score

BN for IPD 82% 67.86% 82.6% 85.7% 84.1% 83.7%

3.2. Duration of Inpatient Treatment for COVID-19 (ADT)

Understanding the simultaneous impact of MADA, obesity, and MCRP1 on the dura-
tion of COVID-19 treatment in patients is increasingly important to manage the growing,
unrelenting pressures on hospitals and the NHS. Table 7 shows the probabilities of several
important queries computed from the learned BN. In this table, ADT categories are ‘1’
(<1 day), ‘2’ (>2 days but < 3 days) and ‘3’ (>3 days). MCRP1 has been divided into 3 cate-
gories: ‘1’ (<50), ‘2’ (51–100) and ‘3’ (>100), and MADA has been divided into 3 categories:
‘1’ (<30), ‘2’ (30–35) and ‘3’ (>35). As is evident from this table, the duration of treatment of
71% of non-obese COVID-19 patients with normal MADA levels (>35 g/L) and low MCRP1
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(<30 mg/L) is up to 1 day. In addition, the treatment duration of 95% of the patients with
the above characteristics would be less than 3 days. In comparison to the obese patients,
it can be observed that this probability (i.e., probability that the duration of treatment
is up to one day) will be reduced to 54.4% (with the same characteristics). On the other
hand, the predicted probabilities for duration of treatment of the obese and non-obese
patients, with very low levels of MADA (<30 g/L), regardless of levels of MCRP1, are
not significantly different from each other. Furthermore, the model and results reported
in Table 7 suggest that the levels of MCRP1 alone would not be adequate to accurately
predict the probabilities of treatment duration of more than 3 days. These probabilities
must be updated by adding more evidence about the levels of MCRP at other days. It
would be straightforward to revise and update the BN by augmenting the other outcomes,
for example “IPD”, to understand what proportion of patients with a treatment duration
<3 days may not survive. Overall, it can be observed that the COVID-19 treatment duration
is higher for obese patients with high CRP levels and low Albumin levels.

Table 7. The heat-mapped, conditional probabilities of ADT given different configurations of Obesity, MADA and MCRPI.

Probability of ADT Given
Obesity, MADA and MCRP7

MADA (3) and
MCRP1 (1)

MADA (3) and
MCRP1 (3)

MADA (1) and
MCRP1 (1)

MADA (1) and
MCRP1 (3)

BMI < 30 (Non-Obese patients)

<1 day 71.2% 68.7% 10.5% 10.5%

>2 days but <3 days 23.7% 25% 32.7% 30.3%

>3 days 5.1% 6.3% 56.8% 59.2%

BMI > 30 (Obese patients)

<1 day 54.4% 49.4% 13.2% 11%

>2 days but <3 days 40.7% 45.2% 34.6% 32.5%

>3 days 4.8% 5.4% 52.2% 56.5%

Several metrics to assess the predictive performance of the proposed BN for the three
different categories of ADT are shown in Table 8.

Table 8. Summary of the predictive performance results of BN model developed to model ADT.

Predictive Performance
Metrics of ADT Category

Balanced
Accuracy

Sensitivity
(Recall) Specificity Precision Overall

Accuracy F1-Score

<1 day 74.8% 66.2% 83.5% 73.7% 61.5% 69.8%

>2 days but <3 days 60.6% 41.4% 79.8% 53.5% 61.5% 46.7%

>3 days 71.3% 76.9% 65.7% 57.9% 61.5% 66.1%

The computed sensitivity measures, which is the metric to evaluate the learned BN
ability to predict true positives of each available category of ADT, suggest that “ADT > 3”
days has the highest rate (77%), and ‘2 ≤ ADT < 3ˆ’ days has the lowest sensitivity rate
(41.4%). We also compute specificity, which is the metric to evaluate the fitted BN ability
to predict true negatives of each ADT category. The results suggest “ADT < 1” days
(83.5%) and “ADT > 3” days are the categories with the highest and lowest specificity rates,
respectively. The next important metric is F1-score that can be interpreted as a weighted
average of the precision and sensitivity values, where an F1 score reaches its best value at 1
and worst value at 0. Since, the F1-score takes both false positives and false negatives into
account; it will be usually more useful than accuracy, especially if the original test dataset
has an uneven class distribution. The computed F1-scores for the ADT categories suggest
promising accuracy for ‘ADT < 1’ days and ‘ADT > 3’ days.
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3.3. Max Oxygen or Ventilatory Support (MOoVS)

It is of great important to understand how the right level of oxygen therapy or
ventilatory support should be selected to enhance the survival rate and recovery speed
of COVID-19 patients. Table 9 shows the conditional probabilities (as heat-mapped) of
Max Oxygen or Ventilatory Support (MOoVS) given the different configurations of MADA
(1 = ‘<30’, 2 = ‘30–35’, 3 = ‘35<’), OS (‘1’ = >92 and ‘2’ < 92) and MCRP11 (1 = <100 and
2 = >100).

Table 9. The heat-mapped, conditional probabilities of MOoVS given the different configurations of MADA, OS
and MCRP11.

Probability of MOoVS
Given Category of OS,
MADA and MCRP11

OS (1), MADA
(3) and

MCRP11 (1)

OS (1), MADA
(1) and

MCRP11 (2)

OS (1), MADA
(1) and

MCRP11 (1)

OS (2), MADA
(3) and

MCRP11 (1)

OS (2), MADA
(1) and

MCRP11 (1)

OS (2), MADA
(1) and

MCRP11 (2)

NHF 72.80% 39.30% 34.80% 20.10% 9.80% 1.80%

HF 12.50% 10.10% 38.90% 45.90% 25.40% 12.40%

CPN 14.70% 26.90% 18.60% 34% 39.30% 36.90%

ITU 0% 23.70% 7.70% 0% 25.50% 48.90%

Patients either required no high-flow oxygen (NHF), high-flow oxygen (HF), CPAP/NIV
(CPN) or ITU admission (ITU). The illustrated results in this table suggest that most of
the patients with the better health characteristics such as high MADA (>35 g/L), high
OS (≥92%), and low MCRP11 (≤100 mg/L) are likely to only require no-high flow O2
(73%) or high flow O2 (12.5%). These patients are thus suitable for ward-based care and
will not need ITU admission. On the contrary, when MADA and OS levels, respectively,
drop to below 30 g/L and 91%, and MCRP11 level increases to over 100 mg/L, the need is
increased for these patients to receive CPAP/NIV (37%) or ITU admission (49%).

The probabilities given in Table 9 can be significantly altered in the light of new
evidence, such as patient age. The updated probabilities are shown below in Table 10.
Table 10 shows the conditional probabilities (as heat-mapped,) of MOoVS given the differ-
ent configurations of MADA, OS, MCRP11, and Age (1 = ‘<40 years’ and 3 = ‘>70 years’).
As mentioned above, patients required either NHF, HF, CPN or ITU.

Table 10. The heat-mapped, conditional probabilities of MOoVS given the different configurations of Age, MADA, OS
and MCRP11.

Probability of MOoVS
Given OS, MADA,
MCRP11 and Age

OS (1), MADA
(3), MCRP11

(1) and Age (1)

OS (1), MADA
(1), MCRP11

(1) and Age (1)

OS (1), MADA
(3), MCRP11

(1) and Age (3)

OS (1), MADA
(1), MCRP11

(1) and Age (3)

OS (2), MADA
(1), MCRP11

(2) and Age (1)

OS (2), MADA
(1), MCRP11

(2), and Age (3)

NHF 92.60% 79.80% 61% 39.90% 0% 2.10%

HF 7.40% 20.20% 33.60% 53.90% 0% 22%

CPN 0% 0% 5.40% 3.10% 36.50% 75.90%

ITU 0% 0% 0% 3.10% 63.50% 0%

From this table, it can be concluded that all young patients with OS ≥ 92, MADA ≤ 30
and MCRP11 ≤ 100 require either NHF (80%) or HF (20%) to recover. If MADA levels of
young patients increase to over 35 g/L, with the same levels of OS (≥92) and MCRP11
(<30), they will more likely need to use only NHF (93%) to recover. However, if the health
of the patients starts to deteriorate, as MADA and OS levels, respectively, drop to <30 g/L
and <92%; and MCRP11 level increases to over 100 mg/L, their need for HF, CPAP/NIV
(CPN) or ITU will significantly increase depending to the age of patient. For the young
patients, CPAP/NIV (36.5%) or ITU (63.5%) would be recommended. However, for patients
> 70 years, either HF (22%) or CPAP/NIV (76%), and paradoxically not ITU (0%), would
be recommended, usually because they are deemed unsuitable for ITU admission due to
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the futility of ITU-based treatment relative to a younger patient. This reflects the rationing
of healthcare resources that occurs in hospitals after difficult medico-ethical decisions.

Table 11 illustrates several metrics to assess predictive performance of the proposed
BN for the different states of “MOoVS”. The overall classification accuracy suggests that
over 60% of cases have been correctly classified. Despite the small sample size of data and
high percentages of missing values of the raw data, the computed overall accuracy (60.25%)
is quite promising. The ability to predict true positives of each available category of MOoVS
is measured by Recall, or Sensitivity, which suggests ITU admission has the highest rate
(89%), and “CPN” has the lowest sensitivity rate (36%). We also compute specificity,
whereby “CPN” (91%) and ITU admission (73%) are the categories with the highest and
lowest rates, respectively. Since the original raw data has an uneven class distribution,
F1-score as a weighted average of the precision and sensitivity values were calculated.

Table 11. Summary of the predictive performance results of BN developed to model MOoVS.

Predictive Performance
Metrics

Balanced
Accuracy

Recall
(Sensitivity) Specificity Precision Overall

Accuracy F1-Score

NHF 72.3% 56% 88.7% 70.8% 60.25 % 62.5%

HF 68.5% 61.2% 75.8% 51.3% 60.25 % 55.8%

CPN 63.6% 36.2% 91.1% 64.8% 60.25% 66.4%

ITU 80.7% 88.84% 72.7% 59.9% 60.25 % 71.5%

3.4. New Confirmed Pulmonary Embolism during Admission (NCPE)

Understanding the influence of various independent variables upon the conditional
probability of having an NCPE is important for clinicians in guiding their use of thrombo-
prophylaxis within the context of COVID-19. Our results confirmed that having bilateral
COVID-19 changes on CT scan can increase the risk of NCPE from 13.9% to 72.4%. This
suggests that more extensive ground-glass or consolidative changes on CT scan secondary
to COVID-19 may be associated with NCPE secondary to COVID-19. Another well-known
key predictor variable is the maximum D-dimer during admission (MDD), which is often
an indicator of thrombosis. Our results indicated that having an MDD of 400<, as opposed
to <400, increases the risk of NCPE from 34.6% to 54.5%. Interestingly, NCPE appeared to
be more significantly influenced by the presence of MADA < 30 or bilateral ground-glass
or consolidative CT scan changes secondary to COVID-19, rather than levels of MDD, as
shown below in Table 12. This may be explained by the fact that many other conditions
can also increase D-Dimer, such as disseminated intravascular coagulation, deep vein
thrombosis and infection, which could thus be leading to high rates of PE false positives
amongst COVID-19 patients. Furthermore, not all patients with raised D-dimers would
have had CT-scans to investigate for PE, especially if it was deemed futile and the patient
was palliative.

Table 12. The heat-mapped, conditional probabilities of NCPE given the different states of MDD, MADA and UoB. The
results suggest that the presence of NCPE is more significantly influenced by the presence of bilateral ground-glass or
consolidative CT scan changes.

Probability of NCPE
Given UoB and MDD

Bilateral CT Changes
and MDD < 400

Bilateral CT Changes
and MDD > 400

Unilateral CT Changes
and MDD < 400

Unilateral CT Changes
and MDD > 400

No NCPE 27.20% 27.80% 86.50% 85.90%

NCPE 72.80% 72.20% 13.50% 14.10%

Probability of NCPE Given
Categories of UoB and MADA

Bilateral CT Changes
and MADA < 30

Bilateral CT Changes
and MADA > 35

Unilateral CT Changes
and MADA < 30

Unilateral CT Changes
and MADA > 35

No NCPE 27% 51% 85.30% 98.60%

NCP 73% 49% 14.70% 1.40%
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We finally investigated the impact of obesity alongside MADA and MCRP7 levels on
NCPE in Table 13. It can be concluded that there is a strong association (70%) between the
presence of NCPE and MADA < 30, as well as MCRP7 > 100, for the non-obese patients. If
the patient is obese, MADA < 30 seems to be more influential in contributing towards the
risk of NCPE, as opposed to MCRP7 > 100.

Table 13. The heat-mapped, conditional probabilities of NCPE given the different states of MADA, MCRP7 and Obesity.

Probability of NCPE Given Categories
of MADA, MCRP7 and Obesity

MADA (1) and
MCRP7 (1)

MADA (1) and
MCRP7 (3)

MADA (3) and
MCRP7 (1)

MADA (3) and
MCRP7 (3)

BMI < 30 (Non-Obese Patients)

No NCPE 44.20% 30.90% 63% 44.70%

NCPE 55.80% 69.10% 37% 55.30%

BMI > 30 (Obese Patients)

No NCPE 68.20% 51.50% 94.30% 87.80%

NCPE 31.80% 48.50% 5.70% 12.20%

Various metrics, including PPV, NPV, sensitivity, specificity, overall accuracy, and
F-Score, have been used to evaluate the predictive performance of the BN created to model
NCPE, as shown in Table 14. The computed F1-score of almost 86% shows the classification
prediction of the learned BN for NCPE is precise and robust. In addition, the PPV (83.7%),
sensitivity (88%) and NPV (80.9%), which collectively represent the BN model’s ability to
predict inpatient NCPE, was high.

Table 14. Summary of predictive performance results of the BN learned for “NCPE”. The computed
F1-score of almost 86% shows the classification prediction of the learned BN for NCPE is precise
and robust.

Predictive
Performance Metric PPV NPV Specificity Sensitivity Overall Accuracy F1-Score

BN for IPD 83.7% 80.9% 75% 87.9% 82.7% 85.8%

4. Discussion

In this study, in addition to quantifying the significance of feature-selected risk factors,
we showcase the use of Bayesian Networks to accurately predict four different COVID-19
inpatient outcomes, using different combinations of readily available clinical data, which
serve as the independent predictor variables, whilst also accounting for interdependency
between these variables.

Various COVID-19 prognostic indicators have been described in the literature, such as
neutrophil:lymphocyte ratio, CRP, age, gender, ethnicity, oxygen saturation on admission,
diabetes mellitus, hypertension, malignancy, obesity and COPD [48]. However, drawing
insights from this information is impeded by the lack of clarity as to the relative influence
each of these indicators has on mortality. In the clinical setting, patients often present
with different combinations of these risk factors and biomarkers. Consequently, weighing
them all up to allocate scarce healthcare resources can be challenging. This highlights a
role for a predictive, quantitative risk-stratification tool. Our model has been constructed
so that it can utilise data at first clinical presentation, for example, in the emergency
department, but also after 3 and 7 days of inpatient treatment. This can allow clinicians
to risk stratify at different time-points during an inpatient stay. In addition, our model
can also predict the duration of inpatient COVID-19 treatment and maximum level of
oxygen requirement that a patient may need during their inpatient stay. This may aid
emergency physicians with the decision as to whether to admit a patient to hospital and
avoid failed discharges, but also medical physicians with the decision as to whether to
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refer to ITU prior to a patient’s clinical deterioration. The predicted duration of inpatient
COVID-19 treatment can be especially useful for bed managers in orchestrating patient
flow, which is essential to prevent the growing problem of hospital-acquired COVID-19
secondary cross-contamination [49]. Furthermore, within the context of hospitals, which
have reached their maximum ITU capacity, by using our predictive model to identify
high-risk patients earlier on in their disease course, clinicians can transfer these high-risk
patients to neighbouring hospitals prior to their clinical deterioration.

One of the major strengths of our study is that we predict four outcomes. This increases
the amount of clinical utility that can be offered to guide clinical decision making. Secondly,
this data set has incorporated 44 different variables from 355 patients who all received
the primary study outcomes, reducing the risk of confounding errors and selection bias.
Another strength of this study is that data extraction was conducted and checked manually
by trained medical physicians rather than by using coding. It has been well documented
that hospital clinical coding is still not entirely accurate within the UK [50,51], and therefore
insights drawn from national databases may be prone to significant information bias and
thus systematic error. Furthermore, it has now been estimated that the sensitivity of the
COVID-19 RT-PCR nasopharyngeal swab is likely to be 50–75% [52–56]. This has created a
huge global problem in diagnosing and identifying COVID-19 patients, especially because
not all patients exhibit symptoms [57–61]. To overcome this issue, the cohort of patients
with COVID-19 who had negative RT-PCR swabs but positive CT scan imaging (n = 55)
were also included in this study.

The biggest limitation to our study is that since the study was conducted in a single
centre, not only is the n number limited, but also the data only reflects the demographics
of the surrounding population. Within the UK, geographical location and socio-economic
factors are heavily influencing death rates [3] and, thus, our data may have limited gen-
eralizability to the wider UK population by not accounting for these factors. The level of
generalizability could have also been better assessed by using external validation methods
to test the performance of the model, but this would have required an additional inde-
pendent dataset. Secondly, data was not always available, or accurate, for all patients.
This was sometimes due to a lack of documentation, usually if the attending physicians at
the time did not deem the information relevant, or if the information was not available,
especially in patients who were cognitively impaired without any next of kin to provide
collateral histories. Moreover, not all investigations, such as CT scans, were required for
every patient and may have not been done due to the limited resources available in the
NHS. Subsequently, only patients deemed to have abnormal results would have been the
patients to receive the investigation. Additionally, some patients had different treatment
goals to others. For example, patients with severe COVID-19 who could have had ventila-
tory support may have not had it because their treatment goal was palliation instead. All
these factors together introduce information bias secondary to data measurement. Finally,
although most parameters were objectively documented, some data, such as ethnicity, was
self-reported by patients, thus also introducing a modest element of recall bias.

As a future work, it would be appealing to further investigate the impact of SMOTH
technique on the validity of the BN classifiers. As discussed above, it was observed that
the response variables in this study are significantly imbalance (e.g., the minority class
percentages of NCPE or MOoVS were less than 5%). In order to overcome the imbalance
in the dataset, the SMOTE technique was applied on the entire dataset, as recommended
in [62–65]. However, the alternative approach, which is more plausible, would be to apply
the SMOTH on training datasets only, and re-evaluate the performance measures using the
test data.

5. Conclusions

In this study, we were facing several numerical challenges whilst constructing a robust,
reliable and computationally efficient probabilistic data-driven model, including a very
small sample size in comparison to the dimension of input variables, and significant rates
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of missing values for several variables. These challenges were all efficiently resolved
by selecting and employing a range of ML methods. The output of this study was a
quantitative tool, which can aid in both risk-stratification, and earlier clinical decision
making, for COVID-19 inpatients.

Overall, our findings demonstrate reliable, ML-based predictive models for four
outcomes that utilise readily available clinical information for COVID-19 adult inpatients.
Our model not only computes the probability distributions of children nodes given the
values of their parent nodes, but also the distributions of the parents given the values of
their children. In other words, they can proceed not only from causes to consequences,
but also deduce the probabilities of different causes given the consequences. All these
probabilities can be instantly computed using the codes developed in R. The codes are
available on request from the corresponding author (A. D).

The developed models in this study, if provided with more training data, have the
potential to be refined even further. Future research is required to externally validate our
models and demonstrate their utility as clinical decision-making tools.
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