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ABSTRACT Principal Component Analysis (PCA) has been successfully applied to many applications,
including ear recognition. This paper presents a 2D Wavelet based Multi-Band Principal Component
Analysis (2D-WMBPCA) ear recognition method, inspired by PCA based techniques for multispectral
and hyperspectral images. The proposed 2D-WMBPCA method performs a 2D non-decimated wavelet
transform on the input image, dividing it into its wavelet subbands. Each resulting subband is then divided
into a number of frames based on its coefficient’s values. The multi frame generation boundaries are
calculated using either equal size or greedy hill climbing techniques. Conventional PCA is applied on each
subband’s resulting frames, yielding its eigenvectors, which are used for matching. The intersection of the
energy of the eigenvectors and the total number of features for each subband shows the number of bands
which yield the highest matching performance. Experimental results on the images of two benchmark ear
datasets, called IITD II and USTB I, demonstrated that the proposed 2D-WMBPCA technique significantly
outperforms Single Image PCA by up to 56.79% and the eigenfaces technique by up to 20.37% with respect
to matching accuracy. Furthermore, the proposed technique achieves very competitive results to those of
learning based techniques at a fraction of their computational time and without needing to be trained.

INDEX TERMS Biometrics, Principal component analysis, Image recognition, Wavelet transforms

I. INTRODUCTION

EAR recognition, a field within biometrics, concerns
itself with the use of images of the ears to identify

individuals. Much like fingerprints, ears are unique to an
individual; even identical twins can have distinguishable ears
[1]. Researchers have explored this topic extensively over
the last two decades, investigating both the feature extraction
and comparison of features of ear images [2], [3]. Successful
feature extraction techniques in ear recognition include Prin-
cipal Component Analysis (PCA) [2], [4]–[7], wavelet based
[8], and neural network based methods [9]–[11]. Amongst
these techniques, PCA has been found to be successful
for both feature extraction [4]–[6] and feature reduction to
reduce dimensionality of the data [2], [3]. In general, PCA
based techniques operate by converting an image into a 1D
vector and concatenating those vectors to form a 2D matrix.
While some PCA based ear recognition techniques have been
reported in the literature [2], [4], [5], [12], these techniques
involve projecting ear images into a common eigenspace. In
contrast, the authors previously introduced a single image

multi-band PCA based technique for ear recognition in [13],
inspired by hyperspectral PCA based techniques [14] such as
Segmented PCA [15] and Folded PCA [16], which solely use
the extracted principal components as features.

To the authors’ knowledge, no similar techniques that
utilize wavelets have been reported in the literature. This has
inspired the authors to propose a single image, PCA based
method for ear recognition, called 2D Wavelet based Multi-
Band PCA (2D-WMBPCA), which was originally introduced
in EUSIPCO in [17]. Unlike the aforementioned PCA based
methods, the proposed technique does not require the images
to be projected into a common eigenspace. Instead, the
proposed technique performs a 2D non-decimated wavelet
transform on the input image, dividing the image into its
wavelet subbands. Each resulting subband is then split into
a number of frames according to its coefficient values using
either of two methods: equal size and greedy hill climb-
ing. The proposed technique then applies the standard PCA
method on each subband’s resulting set of frames, extracting
their principal components. These features are then used
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for recognition. Experimental results on the images of two
benchmark ear image datasets, named IITD II [18] and USTB
I [19], demonstrated that the proposed 2D-WMBPCA tech-
nique greatly outperforms both Single Image PCA and the
eigenfaces technique. Experimental results also show that the
proposed technique achieves its highest performance when
the number of frames used is equal to the intersection of the
energy of the eigenvectors and the total number of features.
The rest of the paper is organized as follows: Section II
gives an overview of current techniques for ear recognition
and hyperspectral PCA algorithms, Section III introduces the
proposed 2D-WMBPCA technique, Section IV illustrates the
multiple frame generation techniques, Section V describes
the benchmark datasets used, Section VI discusses the exper-
imental results, and finally Section VII concludes the paper.

II. RELATED WORK
The proposed 2D-WMBPCA algorithm is among the first of
its kind to bring hyperspectral based techniques to the field
of single image ear recognition. Consequently, this section
is divided into two sub-sections. A brief literature review
on ear recognition techniques is first presented. This in-
cludes a discussion of PCA based techniques and the current
state of the art algorithms for ear recognition, which are
learning based. The second subsection covers PCA based
hyperspectral image classification algorithms that serve as
the inspiration for this research.

A. EAR RECOGNITION TECHNIQUES
Since its inception, ear recognition has often gone hand in
hand with facial recognition, as the two fields operate on
very similar kinds of data. Much research has been conducted
in the last decades in both categories [2], [3], [20]–[22].
A summary of existing techniques for ear recognition is
tabulated in Table 1.

Emeršič et al. proposed a taxonomy of ear recognition
techniques in [2], yielding four categories: geometric, local,
holistic, and hybrid. Geometric approaches to ear recognition
create a geometric model from the ear image. Examples
of geometric ear recognition algorithms include Voronoi
diagrams [28], outer ear points [29], and relative points on
the ear contour [30]. However, these techniques generally
depend on edge detection, which can produce erroneous
results in cases of partial occlusion and poor lighting. In
contrast, local approaches encode mainly texture information
by computing local descriptors. Some of these methods first
detect keypoints within the image and calculate the local
descriptor for each keypoint such as the Scale Invariant
Feature Transform (SIFT) [31], [32] and Speeded-Up Robust
Features (SURF) [33] methods. These algorithms allow for
partial matching and are robust to partial occlusion because
they only operate on keypoints, but global ear structure infor-
mation is discarded. Other local techniques densely calculate
the local descriptors of the entire image, such as wavelet [34],
curvelet [35], Gabor filters [36], log-Gabor filters [37], local
binary patterns [38], and histogram oriented gradients [39].

Principal Component Analysis (PCA) and other related
methods are examples of holistic techniques that extract
features using the entire face or ear image, where the re-
sulting features are used for recognition. The first use of
PCA for biometrics, known as the “eigenfaces” technique,
was reported by Turk and Pentland in [7]. This method
uses a training set to calculate the eigenvectors that span
the “eigenface” space and then project facial images into
the resulting space to create “eigenfaces”. The Euclidean
distances between the resulting projections are then used
to find the best match for a query image. Victor et al.
[4] later applied this method to both ear and face images,
concluding that the “eigenface” technique produces a higher
matching accuracy when applied to facial images than ear
images. However, the matching accuracy for ear recognition
using the “eigenface” method was high enough to warrant
further study. A similar experiment was later conducted by
Chang et al. [5], again on both face and ear images. They
concluded that the difference in accuracy between ear and
facial image recognition is not statistically significant. Yang
et al. introduced a technique for face recognition called
Two-Dimensional Principal Component Analysis (2DPCA)
in [12]. Unlike conventional PCA [7], 2DPCA uses 2D image
matrices rather than a concatenated set of 1D image vectors.
Their technique calculates a covariance matrix directly from
a set of training input images. The eigenvectors of this
covariance matrix are then used to project the testing images
and the resulting projections are classified using nearest
neighbor classification. The authors applied their technique
to three benchmark datasets and reported a superior matching
accuracy when compared to traditional PCA and other linear
based methods. Furthermore, their technique required much
less computation time than traditional PCA. Querencias-
Uceta et al. [6] examined various techniques to fine-tune
conventional PCA for ear recognition to increase the match-
ing accuracy using the “eigenface” method presented in [4],
using both Euclidean distance and Eigendistance to find the
best match. The authors concluded that Euclidean distance
results in a higher accuracy. Furthermore, their results show
that increasing the number of training images increases the
achieved accuracy. However, the number of the enrollment
images has no effect on accuracy of the technique.

PCA and other linear transformation techniques have also
been used in conjunction with other feature extraction and
classification methods to create hybrid classifiers [8], [9],
[23]–[25], [27], [40]. A hybrid ear recognition method based
on PCA and neural network was reported by Alaraj et al. in
[23]. This method uses a traditional multilayer feed-forward
neural network with images as the input and a target matrix,
which is a binary matrix, to indicate correct matches for the
output. The authors reported that the achieved recognition
accuracy of their method is a function of the used number of
training images per individual, and that the use of a greater
number of eigenvectors increases the achieved accuracy of
the matching. Moreover, their investigation determined that
their algorithm generates superior results in terms of accu-
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TABLE 1. Past and State of the Art Results in Ear Recognition

Statistical Based Techniques
Author Feature Extractor Dataset Train/Test% Accuracy%

[4] PCA Own 72/28 40
[5] PCA UND E Various 71.6
[8] Wavelet Transform and PCA USTB II 50/50 90.5

Learning Based Techniques
Author Feature Extractor Classifier Dataset Train/Test% Accuracy%

[23] PCA Neural Network UND 80/20 96
[24] ICA RBF Network CP 66/34 94.1
[25] LDA, SURF Neural Network Own 33/67 97
[9] Neural Network Pairwise SVM USTB I 67/33 98
[26] BSIF SVM IITD II 56/44 97.31
[27] BSIF SVM USTB I 32/68 96.53

racy when using larger images.
The eigenvectors generated by PCA have previously been

used successfully as features for ear recognition [8], [40].
Nosrati et al. demonstrated the use of PCA on 2D wavelet
coefficients of ear images in [8]. The authors used a 2D
wavelet transform to extract three sets of features for each
image, which are then summed into a single matrix. PCA was
then performed on the resulting matrix and the eigenvectors
were used for matching. The authors reported a superior
matching accuracy with their technique compared to those
of PCA and Independent Component Analysis (ICA). Zhang
et al. [40] compared the use of PCA with ICA, a similar
method to PCA, to extract features from the ear images. PCA
is first applied to the images to reduce their dimensionality,
generating their respective eigenvectors. The ICA transform
is then applied to the reduced resulting eigenvectors, generat-
ing a linear representation of the eigenvectors of ears, which
have minimum dependencies amongst its components. The
resultant features are then classified via a three-layer Radial
Basis Function (RBF) Network. They concluded that ICA
based method outperforms the PCA based method in terms
of the accuracy.

Galdámez et al. [25] used both Linear Discriminant Anal-
ysis (LDA) and Speeded-Up Robust Features (SURF) to ex-
tract features for ear recognition. LDA utilizes Fisher’s linear
discriminant to generate the earspace features, while SURF
is a scale and rotation invariant interest point detector and
descriptor method. The results of both LDA and SURF fea-
ture extraction are then fed to two three-layer feed-forward
neural networks. Results demonstrated that SURF method
outperforms the LDA algorithm and that both techniques give
superior results to that of the PCA based method. Omara
et al. [9] reported a hybrid ear recognition technique using
neural network, PCA and Support Vector Machine (SVM).
They have applied VGG-M Net [41], a commonly used
convolutional neural network for image recognition, on all
input images, extracting image features that are then reduced

through PCA. Both SVM and pairwise SVM were separately
applied to the selected features to find the best match. Their
results show that the application of pairwise SVM for finding
the best match results in higher accuracy than that of the
traditional SVM.

Benzaoui et al. [27] introduced a hybrid feature extraction
technique for ear recognition. They created a grayscale image
for each ear image color component in the RGB, HSV, and
YCbCr color spaces, and they then applied three feature ex-
traction methods called: Local Binary Patterns (LBP), Local
Phase Quantization (LPQ) and Binarized Statistical Images
Features (BSIF), to the resulting gray images, creating a his-
togram representation for each grayscale image. These three
histograms, which represent the ear features, are concate-
nated and then fed to the SVM classifier. Their experimental
results show that BSIF technique, in conjunction with the
RGB color space, generate the highest accuracy in finding the
best match compared to LPQ and LBP methods. Zhang et al.
proposed a technique for ear recognition with cases of partial
occlusion in [24]. Their proposed methodology uses a non-
negative sparse representation of each input image, treating it
as a signal representation of a linear additive combination of
all the training ear signals. They also introduce an algorithm
that solves the proposed system and is guaranteed to find the
global minimum. The authors report a perfect classification
of test ear images when the ear image is not occluded and
superior performance to the state of the art algorithms when
the ear is occluded.

Recently, Emeršič et al. established the Unconstrained Ear
Recognition Challenge (UERC), a challenge devoted to ear
recognition using images captured in the wild [42]. They
created a dataset by first establishing a list of celebrity names
and then using a web crawler to find their corresponding
images. The resulting images were then segmented using
convolutional encoder-decoder networks and then manually
screened. This process resulted in a total of 11,804 ear images
of 3,706 subjects. Six techniques were submitted for the
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challenge and compared with two baseline approaches: one
based on Local Binary Patters (LBP) [43] and the second a
Convolution Neural Network (CNN) based on the 16-layer
VGG architecture [44]. The results across all techniques sub-
mitted for the UERC show that the chainlet based technique
outperformed all others, with a 90.4% Rank-1 accuracy and
a 100% Rank-5 accuracy. For comparison, the LBP-baseline
produced a 14.3% Rank-1 accuracy and a 28.6% Rank-5
accuracy, while the VGG-baseline accuracies were 18.8%
and 37.5% respectively. However, the chainlet based method
uses a handcrafted descriptor; Safdaii’s convolutional neural
network technique [42], produced the highest Rank-1 and
Rank-5 accuracy (38.5% and 63.2%) of any learning based
descriptor.

B. HYPERSPECTRAL PCA BASED CLASSIFICATION
METHODS
Hyperspectral images consist of many small electromagnetic
bands, where each band represents the scene as perceived
at certain wavelengths. Each hyperspectral image can be
imagined as a data cube with coordinates (x, y, λ), where
x and y correspond to a 2D position and λ specifies the
electromagnetic band. The most common technique used for
capturing a hyperspectral image is spatial scanning, which
uses a “pushbroom” method to capture a scene line by
line [45]. It uses a prism or a grating to divide the one-
dimensional input line into its spectral components, forming
a two-dimensional pattern representing input light’s wave-
length versus position. The resulting light pattern’s intensities
are then captured by a two-dimensional photo-sensor, gener-
ating a spatial line within a hyperspectral image. This process
is repeated to capture a full two-dimensional scene. As it
can be seen, hyperspectral imaging systems acquire images
in over one hundred contiguous spectral bands, where each
band represents one of the hyperspectral image wavelength
resolutions, while RGB and gray imaging systems captures
images over three bands (red, green and blue) and a single
band, respectively. This is due to the different photo sensors
that these imaging systems use.

The use of orthogonal projections including PCA for fea-
ture extraction from hyperspectral images has been investi-
gated in [14]–[16], [46], [47]. Harsanyi and Chang reported
a method for dimensionality reduction and hyperspectral
image classification in [14]. They project each pixel vector
within the hyperspectral image onto an orthogonal subspace
to reduce interfering spectral signatures. The projected pixel
vectors are then projected onto a second basis to maximize
their signal to noise ratios, and the resulting components are
finally used for classification.

Several extensions of PCA for hyperspectral images have
been reported in the literature [15], [16], [46], [47]. Jia
and Richards introduced a PCA based technique called Seg-
mented Principal Component Transformation (Segmented
PCT) for hyperspectral image classification [15]. Their pro-
posed method first generates a covariance matrix for each
pixel vector in the hyperspectral image. Each resulting co-

FIGURE 1. A 196 waveband correlation matrix for the Jasper Ridge dataset
as presented in Jia and Richards [15].

variance matrix is then normalized to produce a correlation
matrix, an example of which can be seen in Fig. 1. A number
of subgroups within the correlation matrix is then chosen and
highly correlated bands are separated into these subgroups.
PCA is performed on each resulting subgroup to extract their
features. The process can be repeated multiple times using
the extracted features as the input for Segmented PCT until
the desired dimensionality reduction is achieved. The authors
opted to separate the data into three subgroups, which they
noted would reduce the total computation time by 2/3 if all
subgroups were of uniform size. They selected highly cor-
related bands by only considering coefficients with absolute
values exceeding 0.5 to find the boundaries of each subgroup.
The authors were able to reduce the number of features used
for classification of two benchmark images (Jasper Ridge and
Moffett Field [48]) from 196 to seven and from 187 to six,
respectively. Despite such a drastic reduction, their reported
classification accuracy is still quite high, with Jasper Ridge
having 98.6% and Moffett Field having 97.0%.

While Segmented PCT offers savings in terms of com-
putational cost when compared to PCA, it still requires the
Eigen problem to be solved multiple times. Zabalza et al.
proposed a similar PCA based technique called Folded-PCA
for hyperspectral image classification in [16]. In Folded-
PCA, each pixel vector within the hyperspectral image is
used to create its own partial covariance matrix. This is
accomplished by first folding the pixel vector into a 2D
matrix. The pixel vector of length F, where F is the number
of hyperspectral bands, is split into a number of groups H,
where H is a hyperparameter that has been preselected. The
resulting groups are then concatenated to form a 2D matrix
for each pixel, as shown in Fig. 2.

Each resulting 2D matrix is then used to form a covariance
matrix. The average of all resulting covariance matrices is
then calculated and used as the covariance of the input hy-
perspectral image. PCA is then applied on the resulting over-
all covariance matrix, extracting its principal components,
which are then used to classify the input image. The authors
reported improved classification accuracy on two benchmark
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FIGURE 2. A pixel vector from a hyperspectral image is folded into a 2D
matrix, as presented in Zabalza et al. [16].

datasets (Indian Pines A and B [49]) when compared with
both traditional PCA as well as Segmented PCT. On a third
dataset, which is a SAR dataset [50] for target classification,
classification accuracy was comparable for all three afore-
mentioned PCA methods. Furthermore, the computation cost
of Folded-PCA is approximately 10% and 7.65% lower on
the Indian Pines datasets and the SAR dataset in comparison
with that of standard PCA and Segmented PCT, respectively.

Holia and Thakar reported another PCA based technique,
called Windowed PCA, to combine multiple views or modes
for multi-focus and multi-modal images into a single focused
image [51]. Their proposed algorithm divides the input im-
ages into a number of windows, where each set of windows
corresponds to a particular region in all images and is referred
to as a window block. Standard PCA is then applied on
each resulting window to extract its principal components.
The resulting principal component vector associated with the
largest eigenvalue is normalized. Every individual window
within all input images is then multiplied by its resulting
normalized vector. The resulting registered weighted win-
dows within each window block are then summed. Finally,
all window blocks are aggregated to form a registered image.
The authors reported that the effectiveness of their algorithm
increases with the number of windows. However, a larger
number of windows increases the computation cost of the
algorithm and the transition from one window to another win-
dow may be visible as the intensity value of the background
may be different.

III. PROPOSED 2D-WMBPCA METHOD
A block diagram of the proposed 2D Wavelet based
Multi-Band Principal Component Analysis (2D-WMBPCA)
method is illustrated in Fig. 3. 2D-WMBPCA is inspired
by state of the art PCA based techniques for hyperspectral
images and wavelet based ear recognition algorithms. The
proposed method first performs a 2D non-decimated discrete
dyadic wavelet transform on the input ear image as intro-
duced in [52], splitting the image into its four subbands (LL,
LH, HL, HH). Each resulting subband is then pre-processed
to improve its contrast, and is then fed to a multiple-frames
generation algorithm, generating a number of frames based
on the magnitude of the subband’s coefficients. Finally, Prin-

FIGURE 3. Block diagram of the proposed 2D-WMBPCA method.

cipal Component Analysis (PCA) is applied to each resulting
set of multiple-frames, extracting its eigenvectors. The eigen-
vectors from all four wavelet subbands are then concatenated
and used for matching.

A. NON-DECIMATED WAVELET DECOMPOSITION
The 2D-WMBPCA algorithm begins by applying a 2D non-
decimated wavelet transform on the input ear image e. A
quadratic spline of compact support wavelet that is contin-
uously differentiable, introduced in [53] which highlights
the ear edges, is implemented using the non-orthogonal
wavelet fast computation algorithm as seen in [52]. This
decomposition splits the input image into four subbands,
called Low-Low (LL), Low-High (LH), High-Low (HL), and
High-High (HH). An example of the application of Mallat
and Hwang’s wavelet decomposition algorithm on a sample
image is illustrated in Fig. 4.

B. SUBBAND PREPROCESSING
Coefficients within each subband s are then mapped to the
[0,1] domain using (1):

p′ =
p−min(s)

max(s)−min(s)
(1)

where p represents an original coefficient in s and p′ rep-
resents the corresponding mapped coefficient. Histogram
equalization is then performed on the resulting subband co-
efficients to increase their contrast. To do so, the Probability
Mass Function (PMF) of the resulting subband’s coefficients
is first calculated using (2):

PX(xk) = P (X = xk) for k = 0, 1, ..., 255 (2)

where X = x1, x2, ..., xk represent the subbands’ coeffi-
cients and PX(xk) is the probability of coefficients in bin k.
The resulting PDF is then used to calculate the Cumulative
Distribution Function (CDF) of the subband using (3):

CX(k) = P (X ≤ xk) for k = 0, 1, ..., 255 (3)

where CX(k) is the cumulative probability of X ≤ xk.
Finally, all subband’s coefficients are mapped to new values
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FIGURE 4. (a) A sample ear image from the IITD II dataset [18] (b) The
non-decimated wavelet transform subbands (clockwise from upper left: LL, LH,
HH, HL), where each subband’s coefficients have been mapped to 0-255 for
illustration purposes.

using the resulting CDFs. This improves the contrast of the
subband’s coefficients.

C. MULTIPLE FRAMES GENERATION
Various methods can be used by 2D Wavelet based Multi-
Band PCA (2D-WMBPCA) to generate multiple frames from
each input histogram equalized subband; two such methods
are detailed in Section IV. In general, a multiple frame
generation function f takes the form:

f : s→ F (4)

where s is the input subband and F = [f1, f2, ..., fN ] are the
output frames.

D. PRINCIPAL COMPONENT ANALYSIS
For each frame f ∈ F , a mean adjusted frame f ′ is created
using (5):

f ′ = f − f (5)

where f is the mean value of all coefficients in f . Every
frame is then converted to a column wise vector, allowing
F to be represented as a two dimensional matrix W . PCA is
then performed using Singular Value Decomposition (SVD)
on matrix W , creating the decomposition in (6):

W = UΣV T (6)

where U is a unitary matrix and the columns of V are the
orthonormal eigenvectors of the covariance matrix of W and
Σ is a diagonal matrix of their respective eigenvalues. The
eigenvectors form a basis for an eigenspace for each set of
frames F . The resulting principal components in V are finally
used for matching.

E. SUBBAND MATCHING
Let M = [m1,m2, ...,mN−1] be the set of principal
components of a query image subband q. Furthermore, let
L = [l1, l2, ..., lN−1] be the set of principal components
of subband r, a subband of an image in the image dataset.
The Euclidean distance D between q and r can be calculated
using (7):

D =
√

(Σn(mn − ln)2) (7)

The resulting differences across all four subbands (LL, LH,
HL, HH) are then summed to produce the total distance
between the two images. The best match for query image q
in the image database is the image with the lowest distance.

IV. MULTIPLE FRAME GENERATION TECHNIQUES
In this research, two frame generation techniques are pre-
sented.

A. EQUAL SIZE
The equal size multiple frame generation technique can be
formulated as follows:

Assume s is the input subband and N is the number of
desired frames to be generated from the subband s . The
proposed algorithm uses N − 1 boundaries to split the input
subband’s coefficients into N target frames according to the
coefficient values. Let B = [b1, b2, ..., bN−1] be the boundary
values, calculated according to (8):

bn = n/N for n = 1, ..., (N − 1) (8)

The coefficients in each input subband s are divided into
N target frames as follows:

1) Generate N frames of the same size of s and set their
coefficients to zero. These frames are called:
F = [f1, f2, ..., fN ]

2) Split the input subband’s coefficients into different
frames according to their values using the following
ranges: [0, b1), [b1, b2), ..., [bN−1, 1]

It generates F frames from input subband, where these
frames, in a sense, form a multispectral image. An illustration
of the process to generate four frames can be seen in Fig. 5.

B. GREEDY HILL CLIMBING
The greedy hill climbing algorithm calculates the boundaries
by iteratively running 2D-WMBPCA on a training set of
images. The proposed algorithm initializes with a set of
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FIGURE 5. An example of multiple frames generation: a) Pre-processed input
HL subband from an image in the IITD II dataset [18], resulting multiple frames
b) f1 c) f2 d) f3 e) f4. The coefficients for frames b) and c) have been
multiplied by 1.5 and 1.25 respectively for illustration purposes.

training images called input_images, set of boundaries called
bnds, and a pre-selected step size κ. It begins with the LL
subband and iteratively adds boundaries in a greedy manner
until a local optimum is reached. The process is then repeated
for the LH, HL, and HH bands respectively. Pseudocode for
the algorithm can be seen in Algorithm 1.

Data: The training input_images to be used
Result: The final_boundaries (to be used on the

testing set)

final_boundaries← ∅, top_percent← 0
current_boundary ← κ, best_percent← 0,
optimum_boundary ← 0

if current_boundary < 1 then
temp_boundaries← final_boundaries
temp_boundaries←
{temp_boundaries, optimum_boundary}
matching_percent←2D-
WMBPCA(input_images, temp_boundaries)
if matching_percent > best_percent then

best_percent← matching_percent
optimum_boundary ← current_boundary

end
current_boundary ← current_boundary + κ

else
if best_percent > top_percent then

top_percent← best_percent
final_boundaries←
{final_boundaries, optimum_boundary}
current_boundary ← κ, best_percent← 0
optimum_boundary ← 0

else
return final_boundaries

end
end

Algorithm 1: Pseudocode for the greedy hill climbing
algorithm

A κ value of 0.05 was empirically determined as a com-
promise between performance, overfitting, and computation
time for the results presented in this paper. Although this
greedy hill climbing approach is not guaranteed to find
the global optimum for boundary values, it produces suffi-
cient results while simultaneously reducing computation time
when compared to a brute force method.

FIGURE 6. Sample images of two unique individuals from the IITD II dataset
(a-b) [18]. Sample images of two unique individuals from the USTB I dataset
(c-d) [19].

V. BENCHMARK DATASETS

This investigation uses two benchmark ear image datasets:
The Indian Institute of Technology Delhi II (IITD II) dataset
[18] and the University of Science and Technology Beijing
I (USTB I) dataset [19]. The IITD II dataset consists of 793
images of the right ear of 221 participants. Each participant
was photographed between three and six times, with each
image being of size 180 × 50 pixels and in 8-bit grayscale.
For consistency, only the first three images for each individ-
ual are used in this research. The USTB I dataset consists of
180 images of the right ear of 60 participants, each of whom
were photographed three times. The images of this dataset
are 8-bit grayscale of size 150 × 80 and are tightly cropped;
however, some of the images exhibit slight yaw and shearing.
Examples from these two datasets can be seen in Fig. 6.

VI. EXPERIMENTAL RESULTS

To assess the performance of the proposed 2D Wavelet based
Multi-Band PCA (2D-WMBPCA) technique and compare
its performance against other ear recognition algorithms, the
images of the aforementioned two ear image datasets were
used. The proposed 2D-WMBPCA method using the two
boundary selection algorithms described in Section IV, Sin-
gle Image PCA, and the eigenfaces technique were applied
to the images of both datasets. All of the experiments began
by selecting the first image of each subject to serve as a
query set and the rest of the images to be a dataset. Given
a particular query image, the Euclidean distance between
this image and its correct corresponding image in the dataset
is the lowest among all images, it is marked as Rank-1.
Similarly, if the Euclidean distance between this image and
its correct corresponding image in the dataset is within the
lowest five distances, it is marked as Rank-5. This process is
repeated for the second and third images for each individual,
with the Rank-1 and Rank-5 accuracies averaged across all
three trials.
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TABLE 2. Experimental Results for Single Image PCA (%)

Dataset Type of Match
Rank-1 Rank-5

IITD II 36.35 52.94
USTB I 45.00 70.00

TABLE 3. Experimental results for the Eigenfaces PCA method (%)

Dataset Type of Match
Rank-1 Rank-5

IITD II 89.78 95.64
USTB I 75.93 90.74

A. EXPERIMENTAL RESULTS FOR THE SINGLE IMAGE
PCA METHOD
To create results for the Single Image PCA method, standard
PCA was applied to each original image individually. Their
resulting eigenvectors were then compared using Euclidean
distance. The results for the application of PCA on the images
of the IITD II and USTB I datasets are presented in Table 2.
From Table 2, it can be seen that the performance of PCA
on the images of the IITD II dataset is lower than that of the
USTB I dataset. This can be explained by the fact that some
of the IITD II’s images have a slight yaw, which causes slight
occlusion.

B. EXPERIMENTAL RESULTS FOR THE EIGENFACES
METHOD
To generate experimental results for the PCA based eigen-
faces method [5], 10% of images of each ear dataset were
used to calculate the eigenvectors. The remaining images
were then projected along the resulting eigenvectors to cre-
ate eigenears, which were compared using the Euclidean
distance. The experimental results are tabulated in Table 3.
From Table 3, it can be seen that the eigenfaces method
vastly outperforms Single Image PCA on the images of both
the IITD II and USTB I datasets. Interestingly, however, the
eigenfaces method achieves higher accuracy on the images of
IITD II dataset. This could be attributed to the wider diversity
of ear images which IITD II contains compared to the images
within the USTB I dataset.

C. EXPERIMENTAL RESULTS FOR THE PROPOSED
2D-WMBPCA USING EQUAL SIZE BOUNDARIES
The proposed 2D-WMBPCA method was applied to both
images of the IITD II and USTB I datasets using two to ten
frames of constant size, as discussed in Section IV-A. The
number of correct matches was calculated for each set of
frames. A subset of the results for both the IITD II and USTB
I image datasets are tabulated in Tables 4 and 5.

From Tables 4 and 5, it can be seen that the proposed 2D-
WMBPCA method significantly outperforms Single Image
PCA on images from both the IITD II and USTB I datasets.

TABLE 4. Rank-1 and Rank-5 matching accuracy (%) using equal size
boundaries on the images of the IITD II [18] dataset.

Type of Match Number of Bands
Rank-1 Rank-5
90.28 94.64 2
94.14 97.49 3
92.80 97.32 4

TABLE 5. Rank-1 and Rank-5 matching accuracy (%) using equal size
boundaries on the images of the USTB I [19] dataset.

Type of Match Number of Bands
Rank-1 Rank-5
93.83 97.53 3
96.30 98.15 4
96.30 98.15 5
94.44 98.15 6

TABLE 6. Rank-1 and Rank-5 matching accuracy (%) using greedy hill
climbing based boundary selection on the IITD II and USTB I datasets.

Dataset Rank-1 Rank-5
IITD II 94.47 97.32
USTB I 97.53 97.15

From Table 2 and 3, it is evident that the Rank-1 accuracy of
matching has been improved by 57.79% and 51.30% on the
images of the IITD II dataset using three bins and images
of the USTB I dataset using four bins when compared to
Single Image PCA, respectively. Furthermore, the Rank-1
accuracy for 2D-WMBPCA on the IITD II and USTB I
datasets increased by 4.36% and 20.37% when compared
to eigenfaces, respectively. From the experiments presented
in these two tables, it can be seen that the proposed 2D-
WMBPCA method achieves its highest performance when
using just three/four bands.

D. EXPERIMENTAL RESULTS FOR THE PROPOSED
2D-WMBPCA USING GREEDY HILL CLIMBING BASED
BOUNDARIES
For this experiment, 2D-WMBPCA was performed using
the greedy hill climbing based boundary selection method
described in Section IV-B. κ values from 0.01 to 0.1 with
a step size of 0.01 were tested on a 10% validation set.
The value κ = 0.05 was chosen as a middle point between
matching accuracy and computational complexity. Although
this approach is not guaranteed to find the boundaries that
globally maximize the matching accuracy, it produces suf-
ficient results while simultaneously reducing computation
time. The results are shown in Table 6. From Table 6, it can be
seen that the greedy hill climbing based boundary selection
method generates promising results on both datasets.

To compare the performance of the proposed 2D-
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FIGURE 7. Region of interest of CMC curves for the equal size (red) and
greedy hill climbing (blue) techniques for the IITD II dataset [18].

FIGURE 8. Region of interest of CMC curves for the equal size (red) and
greedy hill climbing (blue) techniques for the USTB I dataset [19].

WMBPCA using the equal size and greedy hill climbing
techniques, a zoomed portion of the Cumulative Match
Curves (CMC) for the IITD II and USTB I datasets are
presented in Fig. 7 and 8, respectively. From these figures,
it can be easily seen that the greedy hill climbing technique
generates more accurate matching than the equal size tech-
nique.

To compare the performance of the proposed technique
with the state of the art PCA and learning based tech-
niques, the Rank-1 experimental results of the proposed 2D-
WMBPCA, Single Image PCA, eigenfaces [5], 2D-MBPCA
[13], BSIF [26], GoogLeNet [10], ResNet18 and SVM [11],
VGG-based Ensembles [54] and neural network and SVM
based [9] techniques are tabulated in Table 7. From Table
7, it can be noted that the proposed 2D-WMBPCA technique
significantly outperforms Single Image PCA, eigenfaces, and
2D-MBPCA methods. Furthermore, the proposed method
gives competitive results compared to learning based tech-
niques.

A further comparison between the proposed 2D-
WMBPCA technique and Single Image PCA, eigenfaces,
and 2D-MBPCA is demonstrated using Cumulative Match

TABLE 7. Rank-1 results for the Proposed Technique and Other PCA and
learning Based Techniques (%)

Algorithm Dataset
IITD II USTB I

PCA based Techniques
Single Image PCA 36.35 45.00

Eigenfaces [5] 89.78 75.93
2D-MBPCA [13] 92.76 96.11

Proposed Technique 94.47 97.53
Learning based Techniques

BSIF and SVM [26] 97.31 -
GoogLeNet [10] 98.57 99.36

ResNet18 and SVM [11] 98.76 99.45
VGG-based Ensembles [54] 98.88 99.24

Neural Network and SVM [9] - 98.30

FIGURE 9. CMC curves for Single Image PCA (light blue), eigenfaces (green),
2D-MBPCA (red), and 2D-WMBPCA (dark blue) for the IITD II dataset [18].

Curves (CMC). The CMC curves for the IITD II dataset
are shown Fig. 9 and its zoomed portion Fig. 10, while the
CMC curves for the USTB I dataset are shown in Fig. 11
and its zoomed portion Fig. 12, respectively. From Fig. 9 and
Fig. 11, it can be seen that the proposed 2D-WMBPCA and
its anchor 2D-MBPCA significantly outperform both Single
Image PCA and the eigenfaces technique. To enable the
reader to differentiate between the proposed 2D-WMBPCA
technique and its anchor 2D-MBPCA, a zoomed version of
these two curves are shown in Fig. 10 and Fig. 12. From these
two zoomed figures, it can be seen that the proposed 2D-
WMBPCA technique gives higher accuracy to that of 2D-
MBPCA.

E. JUSTIFICATION OF THE ACHIEVED PERFORMANCE
From the experimental results, it is clear that the proposed
2D-WMBPCA technique significantly outperforms other
PCA based methods. This improvement can be explained by
the fact that the proposed technique expands the feature space
by a factor of b−1, where b is the number of frames (the num-
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FIGURE 10. Region of interest of the CMC curves for Single Image PCA (light
blue), eigenfaces (green), 2D-MBPCA (red), and 2D-WMBPCA (dark blue) for
the IITD II dataset [18].

FIGURE 11. CMC curves for Single Image PCA (light blue), eigenfaces
(green), 2D-MBPCA (red), and 2D-WMBPCA (dark blue) for the USTB I
dataset [19].

FIGURE 12. Region of interest of the CMC curves for Single Image PCA (light
blue), eigenfaces (green), 2D-MBPCA (red), and 2D-WMBPCA (dark blue) for
the USTB I dataset [19].

FIGURE 13. The number of features and total eigenvector energy versus the
number of frames, where the intersection demonstrates the number of frames
for maximum achievable performance, for the IITD II dataset [18].

ber of features for Single Image PCA is x∗y, while the num-
ber of features for 2D-WMBPCA is x ∗ y ∗ (b− 1) ∗ 4, where
the original image is of size x ∗ y). Although increasing the
number of frames within each image linearly increases the
feature space, the effectiveness of the features is limited by
the energy of individual eigenvectors. Consequently, there is
a theoretical limitation on the maximum number of features,
and thus the number of frames, that can be used for matching.
This limitation is consistent with the experimental results
in Section VI-D, where the matching performance of 2D-
MBPCA first increases as the number of frames increases,
reaching a maximum, and then decreases. To demonstrate
this finding, the number of features and the total eigenvector
energy for each number of frames were calculated for both
datasets and are illustrated in Fig. 13 and 14.

From Fig. 13 and 14, it can be seen that as the number
of bands increases, the total eigenvector energy decreases
inversely. The intersection of the Eigenvector Energy and
Number of Features graphs occurs at approximately six
bands in both figures. For both datasets, when using the
greedy hill climbing technique, the HL subband required
exactly six partitions; the most of any subband.

F. EXECUTION TIME
Ear recognition techniques are generally classified into two
main categories: statistical- and learning-based techniques.
Statistical based techniques, including PCA, Eigenfaces
and the proposed 2D-WMBPCA algorithm, extract features
(statistics) directly from the input image data and use these
features to perform matching, while learning based tech-
niques use a range of information including image data statis-
tics and features, and other information, such as annotated
image data, to train classifiers such as neural networks and
support vector machines. The trained classifiers are then
used to perform classification or matching. Consequently,
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FIGURE 14. The number of features and total eigenvector energy versus the
number of frames, where the intersection demonstrates the number of frames
for maximum achievable performance, for the USTB I dataset [19].

learning based ear recognition algorithms are much more
computationally expensive than their statistical based coun-
terparts. In addition, their performance exhibits significant
data dependency.

To compare the performance of the proposed 2D-
WMBPCA algorithm to other statistical based methods, as
well as the state of the art learning based techniques, 2D-
WMBPCA, Single Image PCA, eigenfaces [5], 2D-MBPCA
[13], BSIF [26], GoogLeNet [10], ResNet18 and SVM [11],
VGG-based Ensembles [54] and neural network and SVM
based [9] were implemented in MATLAB. The implemented
algorithms were then executed on a Windows 10 personal
computer equipped with a 7th generation Intel core i7 pro-
cessor, an Nvidia GTX 1080 graphics card, and a 512 GB
Toshiba NVMe solid-state drive (no other applications, up-
dates or background programs were running during the com-
putation). The average execution time for processing a query
image using each algorithm (learning based techniques were
already trained and their training time is not included in these
measurements) was measured using 100 randomly selected
query images from each dataset. The resulting measurements
are tabulated in Table 8.

From Table 8, it can be seen that the proposed 2D-
WMBPCA technique’s execution time is significantly lower
than the state of the art learning based methods, while gen-
erating very competitive matching performance. It is worth
mentioning that the learning based methods require a train-
ing phase which is computationally intensive and has not
been counted in the results presented in this table. However,
the performance of the learning based techniques is highly
data dependent and can significantly deteriorate when using
cross-dataset validation, while the proposed 2D-WMBPCA
method’s performance has significantly less data dependency.

From Table 8, it can also be seen that the proposed 2D-
WMBPCA technique’s execution time is almost the same

TABLE 8. Average execution time (milliseconds) of the proposed
2D-WMBPCA and the state of the art PCA based and learning based
algorithms.

Algorithm Dataset
IITD II USTB I

PCA based Techniques
Single Image PCA 13.55 12.16

Eigenfaces [5] 3.10 1.82
2D-MBPCA [13] 13.64 13.07

Proposed Technique 13.88 13.21
Learning based Techniques

BSIF and SVM [26] 23.57 -
GoogLeNet [10] 22.88 21.59

ResNet18 and SVM [11] 24.24 23.88
VGG-based Ensembles [54] 23.51 22.79

Neural Network and SVM [9] - 22.78

as Single Image PCA and 2D-MBPCA methods, while it
outperforms both techniques. For example, the proposed
technique takes 2.44% more time than Single Image PCA
on the IITD II dataset, yet increases the Rank-1 accuracy by
58.12%. The eigenfaces technique is significantly faster than
the proposed 2D-WMBPCA algorithm. This is due to the
fact that 2D-WMBPCA performs PCA on each query image,
whereas the eigenfaces method simply projects the query
image along the pre-calculated eigenvectors. However, the
performance of the proposed technique is significantly higher
than the eigenfaces technique, e.g the Rank-1 accuracy for
2D-WMBPCA is 20.37% higher than the Rank-1 accuracy
for the eigenfaces technique on the images of the USTB I
dataset.

It is general knowledge that the performance of learning
based techniques is dependent on their feature extraction
techniques. The proposed 2D-WMBPCA algorithm gener-
ates significantly higher performance to those of statisti-
cal based techniques, which is due to the fact that 2D-
WMBPCA extracts more eigenvectors with higher energy
than other PCA based techniques. Therefore, the proposed
2D-WMBPCA technique has an inherent ability to further
improve the performance of learning-based classification al-
gorithms, including ear recognition techniques, when it is
used as their primary feature extractor.

VII. CONCLUSION
In this paper, a non-decimated wavelet and PCA based ear
recognition algorithm, called 2D Wavelet based Multi-Band
PCA (2D-WMBPCA), was presented. The proposed algo-
rithm performs a 2D non-decimated wavelet transform on
the input image, dividing it into its subbands. Each resulting
subband is then divided into a number of frames based on
its coefficients. The standard PCA method is then applied
on each subband’s resulting frames, extracting their eigen-
vectors. The proposed technique uses the graph intersection
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of the number of resulting multiple frames features and their
total eigenvector energies, which empirically has been shown
to achieve the highest matching performance as the number
of frames for each subband. Experimental results on the
images of two benchmark ear image datasets show that the
proposed 2D-WMBPCA technique significantly outperforms
the Single Image PCA, eigenfaces, and 2D-MBPCA meth-
ods. Furthermore, it generates competitive results to those of
the state of the art learning based techniques at much reduced
computational cost.

REFERENCES
[1] H. Nejati, L. Zhang, T. Sim, E. Martinez-Marroquin, and G. Dong, “Won-

der ears: Identification of identical twins from ear images,” in Proceedings
of the 21st International Conference on Pattern Recognition (ICPR2012),
Nov. 2012, pp. 1201–1204.
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