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ABSTRACT Principal Component Analysis (PCA) has been successfully applied to many applications,
including ear recognition. This paper presents a 2D Wavelet based Multi-Band Principal Component
Analysis (2D-WMBPCA) ear recognition method, inspired by PCA based techniques for multispectral and
hyperspectral images. The proposed 2D-WMBPCAmethod performs a 2D non-decimatedwavelet transform
on the input image, dividing it into its wavelet subbands. Each resulting subband is then divided into a
number of frames based on its coefficient’s values. The multi frame generation boundaries are calculated
using either equal size or greedy hill climbing techniques. Conventional PCA is applied on each subband’s
resulting frames, yielding its eigenvectors, which are used for matching. The intersection of the energy of the
eigenvectors and the total number of features for each subband shows the number of bands which yield the
highest matching performance. Experimental results on the images of two benchmark ear datasets, called
IITD II and USTB I, demonstrated that the proposed 2D-WMBPCA technique significantly outperforms
Single Image PCA by up to 56.79% and the eigenfaces technique by up to 20.37% with respect to matching
accuracy. Furthermore, the proposed technique achieves very competitive results to those of learning based
techniques at a fraction of their computational time and without needing to be trained.

INDEX TERMS Biometrics, principal component analysis, image recognition, wavelet transforms.

I. INTRODUCTION
Ear recognition, a fieldwithin biometrics, concerns itself with
the use of images of the ears to identify individuals.Much like
fingerprints, ears are unique to an individual; even identical
twins can have distinguishable ears [1]. Researchers have
explored this topic extensively over the last two decades,
investigating both the feature extraction and comparison of
features of ear images [2], [3]. Successful feature extraction
techniques in ear recognition include Principal Component
Analysis (PCA) [2], [4]–[7], wavelet based [8], and neural
network based methods [9]–[11]. Amongst these techniques,
PCA has been found to be successful for both feature extrac-
tion [4]–[6] and feature reduction to reduce dimensionality
of the data [2], [3]. In general, PCA based techniques operate
by converting an image into a 1D vector and concatenating
those vectors to form a 2D matrix. While some PCA based
ear recognition techniques have been reported in the litera-
ture [2], [4], [5], [12], these techniques involve projecting ear
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images into a common eigenspace. In contrast, the authors
previously introduced a single image multi-band PCA based
technique for ear recognition in [13], inspired by hyperspec-
tral PCA based techniques [14] such as Segmented PCA [15]
and Folded PCA [16], which solely use the extracted principal
components as features.

To the authors’ knowledge, no similar techniques that
utilize wavelets have been reported in the literature. This
has inspired the authors to propose a single image, PCA
based method for ear recognition, called 2D Wavelet based
Multi-Band PCA (2D-WMBPCA), which was originally
introduced in EUSIPCO in [17]. Unlike the aforemen-
tioned PCA based methods, the proposed technique does
not require the images to be projected into a common
eigenspace. Instead, the proposed technique performs a 2D
non-decimated wavelet transform on the input image, divid-
ing the image into its wavelet subbands. Each resulting sub-
band is then split into a number of frames according to its
coefficient values using either of two methods: equal size and
greedy hill climbing. The proposed technique then applies
the standard PCA method on each subband’s resulting set
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of frames, extracting their principal components. These fea-
tures are then used for recognition. Experimental results on
the images of two benchmark ear image datasets, named
IITD II [18] and USTB I [19], demonstrated that the pro-
posed 2D-WMBPCA technique greatly outperforms both
Single Image PCA and the eigenfaces technique. Experimen-
tal results also show that the proposed technique achieves its
highest performance when the number of frames used is equal
to the intersection of the energy of the eigenvectors and the
total number of features. The rest of the paper is organized
as follows: Section II gives an overview of current tech-
niques for ear recognition and hyperspectral PCA algorithms,
Section III introduces the proposed 2D-WMBPCA technique,
Section IV illustrates the multiple frame generation tech-
niques, Section V describes the benchmark datasets used,
Section VI discusses the experimental results, and finally
Section VII concludes the paper.

II. RELATED WORK
The proposed 2D-WMBPCA algorithm is among the first of
its kind to bring hyperspectral based techniques to the field
of single image ear recognition. Consequently, this section
is divided into two sub-sections. A brief literature review on
ear recognition techniques is first presented. This includes
a discussion of PCA based techniques and the current state
of the art algorithms for ear recognition, which are learning
based. The second subsection covers PCA based hyperspec-
tral image classification algorithms that serve as the inspira-
tion for this research.

A. EAR RECOGNITION TECHNIQUES
Since its inception, ear recognition has often gone hand in
hand with facial recognition, as the two fields operate on very
similar kinds of data. Much research has been conducted in
the last decades in both categories [2], [3], [20]–[22]. A sum-
mary of existing techniques for ear recognition is tabulated in
Table 1.

Emeršič et al. proposed a taxonomy of ear recognition
techniques in [2], yielding four categories: geometric, local,
holistic, and hybrid. Geometric approaches to ear recognition
seek to establish the geometry of an ear from its image.
This can be performed using a number of methods including
Voronoi diagrams [28], outer ear points [29], and relative
points on the ear contour [30]. However, these techniques
generally depend on edge detection, which can produce erro-
neous results in cases of partial occlusion and poor lighting.
In contrast, local approaches encode mainly texture informa-
tion by computing local descriptors. Some of these methods
first detect keypoints within the image and calculate the
local descriptor for each keypoint such as the Scale Invariant
Feature Transform (SIFT) [31], [32] and Speeded-Up Robust
Features (SURF) [33] methods. These algorithms allow for
partial matching and are robust to partial occlusion because
they only operate on keypoints, but global ear structure infor-
mation is discarded. Other local techniques densely calculate
the local descriptors of the entire image, such as wavelet [34],

curvelet [35], Gabor filters [36], log-Gabor filters [37], local
binary patterns [38], and histogram oriented gradients [39].

Principal Component Analysis (PCA) and other related
methods are examples of holistic techniques that extract fea-
tures using the entire face or ear image, where the resulting
features are used for recognition. The first use of PCA for bio-
metrics, known as the ‘‘eigenfaces’’ technique, was reported
by Turk and Pentland in [7]. This method uses a training
set to calculate the eigenvectors that span the ‘‘eigenface’’
space and then project facial images into the resulting space
to create ‘‘eigenfaces’’. The Euclidean distances between the
resulting projections are then used to find the best match for
a query image. Victor et al. [4] later applied this method to
both ear and face images. They reported that the ‘‘eigenface’’
technique produces a higher matching accuracy when applied
to facial images than ear images, however, the matching accu-
racy for ear recognition using the ‘‘eigenface’’ method was
high enough to warrant further study. A similar experiment
was later conducted by Chang et al. [5], again on both face
and ear images. They concluded that the difference in accu-
racy between ear and facial image recognition is not statisti-
cally significant. Yang et al. introduced a technique for face
recognition called Two-Dimensional Principal Component
Analysis (2DPCA) in [12]. Unlike conventional PCA [7],
2DPCA uses 2D image matrices rather than a concatenated
set of 1D image vectors. Their technique calculates a covari-
ance matrix directly from a set of training input images. The
eigenvectors of this covariance matrix are then used to project
the testing images and the resulting projections are classified
using nearest neighbor classification. The authors applied
their technique to three benchmark datasets and reported a
superior matching accuracy when compared to traditional
PCA and other linear based methods. Furthermore, their
technique required much less computation time than tradi-
tional PCA. Querencias-Uceta et al. [6] examined various
techniques to fine-tune conventional PCA for ear recognition
to increase the matching accuracy using the ‘‘eigenface’’
method presented in [4]. They used both Euclidean distance
and Eigendistance to find the best match. The authors con-
cluded that Euclidean distance results in a higher accuracy.
Furthermore, their results show that increasing the number
of training images increases the achieved accuracy. However,
the number of the enrollment images has no effect on accu-
racy of the technique.

PCA and other linear transformation techniques have
also been used in conjunction with other feature extrac-
tion and classification methods to create hybrid classi-
fiers [8], [9], [23]–[25], [27], [40]. A hybrid ear recognition
method based on PCA and neural network was reported by
Alaraj et al. in [23]. This method uses a traditional multilayer
feed-forward neural network with images as the input and a
target matrix, which is a binary matrix, to indicate correct
matches for the output. They have reported that the achieved
recognition accuracy of their method is a function of the
used number of training images per individual. Moreover,
they showed that the use of a greater number of eigenvectors
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TABLE 1. Past and state of the art results in ear recognition.

increases the achieved accuracy of the matching. Last but
not least, their investigation determined that their algorithm
generates superior results in terms of accuracy when using
larger images.

The eigenvectors generated by PCA have previously been
used successfully as features for ear recognition [8], [40].
Nosrati, Faez, and Faradji demonstrated the use of PCA on
2D wavelet coefficients of ear images in [8]. The authors
used a 2D wavelet transform to extract three sets of features
for each image, which are then summed into a single matrix.
PCA was then performed on the resulting matrix and the
eigenvectors were used for matching. The authors reported a
superior matching accuracy with their technique compared to
those of PCA and Independent Component Analysis (ICA).
Zhang et al. [40] compared the use of PCA with ICA, a sim-
ilar method to PCA, to extract features from the ear images.
PCA is first applied to the images to reduce their dimension-
ality, generating their respective eigenvectors. The ICA trans-
form is then applied to the reduced resulting eigenvectors,
generating a linear representation of the eigenvectors of ears,
which have minimum dependencies amongst its components.
The resultant features are then classified via a three-layer
Radial Basis Function (RBF) Network. They concluded that
ICA based method outperforms the PCA based method in
terms of the accuracy.

Galdámez et al. [25] used both Linear Discriminant Anal-
ysis (LDA) and Speeded-Up Robust Features (SURF) to
extract features for ear recognition. LDA is similar transform
to PCA except it utilizes Fisher’s linear discriminant than
eigenvectors to create earspace dataset. SURF is a scale
and rotation invariant interest point detector and descriptor
method. The results of both LDA and SURF feature extrac-
tion are then fed to two three-layer feed-forward neural net-
works. Results demonstrated that SURF method outperforms
the LDA algorithm and that both techniques give superior
results to that of the PCA based method. Omara et al. [9]
reported a hybrid ear recognition technique using neural net-

work, PCA and Support Vector Machine (SVM). They have
applied VGG-M Net [41], a commonly used convolutional
neural network for image recognition, on all input images,
extracting image features that are then reduced through PCA.
Both SVM and pairwise SVM were separately applied to the
selected features to find the best match. Their results show
that the application of pairwise SVM for finding the best
match results in higher accuracy than that of the traditional
SVM.

Benzaoui andBoukrouche [27] introduced a feature extrac-
tion technique for ear recognition. They created a grayscale
image for each ear image color component in the RGB, HSV,
and YCbCr color spaces, and they then applied three fea-
ture extraction methods called: Local Binary Patterns (LBP),
Local Phase Quantization (LPQ) and Binarized Statistical
Images Features (BSIF), to the resulting gray images, cre-
ating a histogram representation for each grayscale image.
These three histograms, which represent the ear features, are
concatenated and then fed to the SVM classifier. Their exper-
imental results show that BSIF technique, in conjunction
with the RGB color space, generate the highest accuracy in
finding the best match compared to LPQ and LBP methods.
Zhang et al. proposed a technique for ear recognition with
cases of partial occlusion in [24]. Their proposed methodol-
ogy uses a non-negative sparse representation of each input
image, treating it as a signal representation of a linear addi-
tive combination of all the training ear signals. They also
introduce an algorithm that solves the proposed system and
is guaranteed to find the global minimum. The authors report
a perfect classification of test ear images when the ear image
is not occluded and superior performance to the state of the
art algorithms when the ear is occluded.

Recently, Emeršič et al. established the Unconstrained Ear
Recognition Challenge (UERC), a challenge devoted to ear
recognition using images captured in the wild [42]. They
created a dataset by first establishing a list of celebrity names
and then using a web crawler to find their corresponding
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images. The resulting images were then segmented using
convolutional encoder-decoder networks and then manually
screened. This process resulted in a total of 11,804 ear images
of 3,706 subjects. Six techniques were submitted for the
challenge and compared with two baseline approaches: one
based on Local Binary Patters (LBP) [43] and the second a
Convolution Neural Network (CNN) based on the 16-layer
VGG architecture [44]. The results across all techniques sub-
mitted for the UERC show that the chainlet based technique
outperformed all others, with a 90.4% Rank-1 accuracy and
a 100% Rank-5 accuracy. For comparison, the LBP-baseline
produced a 14.3% Rank-1 accuracy and a 28.6% Rank-5
accuracy, while the VGG-baseline accuracies were 18.8%
and 37.5% respectively. However, the chainlet based method
uses a handcrafted descriptor; the best learned descriptor
method was Safdaii’s convolutional neural network tech-
nique [42] that exhibited a Rank-1 accuracy of 38.5% and
Rank-5 accuracy of 63.2%.

B. HYPERSPECTRAL PCA BASED CLASSIFICATION
METHODS
Hyperspectral images consist of many small electromagnetic
bands, where each band represents the scene as perceived
at certain wavelengths. Each hyperspectral image can be
imagined as a data cube with coordinates (x, y, λ), where x
and y correspond to a 2D position and λ specifies the electro-
magnetic band. The most common technique used for cap-
turing a hyperspectral image is spatial scanning, which uses
a ‘‘pushbroom’’ method to capture a scene line by line [45].
It uses a prism or a grating to divide the one-dimensional input
line into its spectral components, forming a two-dimensional
pattern representing input light’s wavelength versus position.
The resulting light pattern’s intensities are then captured by
a two-dimensional photo-sensor, generating a spatial line
within a hyperspectral image. This process is repeated to cap-
ture a full two-dimensional scene. As it can be seen, hyper-
spectral imaging systems acquire images in over one hundred
contiguous spectral bands, where each band represents one of
the hyperspectral image wavelength resolutions, while RGB
and gray imaging systems captures images over three bands
(red, green and blue) and a single band, respectively. This is
due to the different photo sensors that these imaging systems
use.

The use of orthogonal projections including PCA for fea-
ture extraction from hyperspectral images has been investi-
gated in [14]–[16], [46], [47]. Harsanyi and Chang reported
a method for dimensionality reduction and hyperspectral
image classification in [14]. They project each pixel vector
within the hyperspectral image onto an orthogonal subspace
to reduce interfering spectral signatures. The projected pixel
vectors are then projected onto a second basis to maximize
their signal to noise ratios, and the resulting components are
finally used for classification.

Several extensions of PCA for hyperspectral images have
been reported in the literature [15], [16], [46], [47]. Jia
and Richards introduced a PCA based technique called Seg-

FIGURE 1. A 196 waveband correlation matrix for the Jasper Ridge
dataset as presented in Jia and Richards [15].

mented Principal Component Transformation (Segmented
PCT) for hyperspectral image classification [15]. Their pro-
posed method first generates a covariance matrix for each
pixel vector in the hyperspectral image. Each resulting covari-
ance matrix is then normalized to produce a correlation
matrix, an example of which can be seen in Fig. 1. A number
of subgroups within the correlation matrix is then chosen and
highly correlated bands are separated into these subgroups.
PCA is performed on each resulting subgroup to extract their
features. The process can be repeated multiple times using
the extracted features as the input for Segmented PCT until
the desired dimensionality reduction is achieved. For their
presented results, the authors opted to separate the data into
three subgroups, which they noted would reduce the total
computation time by 2/3 if all subgroups were of uniform
size. They selected highly correlated bands by only consider-
ing coefficients with absolute values exceeding 0.5 to find the
boundaries of each subgroup. The authors were able to reduce
the number of features used for classification of two bench-
mark images (Jasper Ridge and Moffett Field [48]) from
196 to seven and from 187 to six, respectively. Despite such
a drastic reduction, their reported classification accuracy is
still quite high, with Jasper Ridge having 98.6% and Moffett
Field having 97.0%.

While Segmented PCT offers savings in terms of computa-
tional cost when compared to PCA, it still requires the Eigen
problem to be solved multiple times. Zabalza et al. proposed
a similar PCA based technique called Folded-PCA for hyper-
spectral image classification in [16]. In Folded-PCA, each
pixel vector within the hyperspectral image is used to create
its own partial covariance matrix. This is accomplished by
first folding the pixel vector into a 2Dmatrix. The pixel vector
of length F, where F is the number of hyperspectral bands,
is split into a number of groups H, where H is a hyperparam-
eter that has been preselected. The resulting groups are then
concatenated to form a 2D matrix for each pixel, as shown in
Fig. 2.
Each resulting 2D matrix is then used to form a covariance

matrix. The average of all resulting covariance matrices is
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FIGURE 2. A pixel vector from a hyperspectral image is folded into a 2D
matrix, as presented in Zabalza et al. [16].

then calculated and used as the covariance of the input hyper-
spectral image. PCA is then applied on the resulting over-
all covariance matrix, extracting its principal components,
which are then used to classify the input image. The authors
reported improved classification accuracy on two benchmark
datasets (Indian Pines A and B [49]) when compared with
both traditional PCA as well as Segmented PCT. On a third
dataset, which is a SAR dataset [50] for target classification,
classification accuracy was comparable for all three afore-
mentioned PCA methods. Furthermore, the computation cost
of Folded-PCA is approximately 10% and 7.65% lower on
the Indian Pines datasets and the SAR dataset in comparison
with that of standard PCA and Segmented PCT, respectively.

Holia and Thakar reported another PCA based technique,
called Windowed PCA, to combine multiple views or modes
for multi-focus and multi-modal images into a single focused
image [51]. Their proposed algorithm divides the input
images into a number of windows, where each set of win-
dows corresponds to a particular region in all images and is
referred to as a window block. It then applies standard PCA
on each resulting window to extract its principal components.
The resulting principal component vector associated with the
largest eigenvalue is normalized. Every individual window
within all input images is then multiplied by its resulting
normalized vector. The resulting registered weighted win-
dows within each window block are then summed. Finally,
all window blocks are aggregated to form a registered image.
The authors reported that the effectiveness of their algorithm
increases with the number of windows. However, a larger
number of windows increases the computation cost of the
algorithm and the transition from one window to another win-
dow may be visible as the intensity value of the background
may be different.

III. PROPOSED 2D-WMBPCA METHOD
A block diagram of the proposed 2D Wavelet based
Multi-Band Principal Component Analysis (2D-WMBPCA)
method is illustrated in Fig. 3. 2D-WMBPCA is inspired
by state of the art PCA based techniques for hyperspectral
images and wavelet based ear recognition algorithms. The
proposed method first performs a 2D non-decimated discrete
dyadicwavelet transform on the input ear image as introduced
in [52], splitting the image into its four subbands (LL, LH,

FIGURE 3. Block diagram of the proposed 2D-WMBPCA method.

HL, HH). Each resulting subband is then pre-processed to
improve its contrast, and is then fed to a multiple-frames gen-
eration algorithm, generating a number of frames based on
themagnitude of the subband’s coefficients. Finally, Principal
Component Analysis (PCA) is applied to each resulting set of
multiple-frames, extracting its eigenvectors. The eigenvectors
from all four wavelet subbands are then concatenated and
used for matching.

A. NON-DECIMATED WAVELET DECOMPOSITION
The 2D-WMBPCA algorithm begins by applying a 2D non-
decimated wavelet transform on the input ear image e.
A quadratic spline of compact support wavelet that is contin-
uously differentiable, introduced in [53] which highlights the
ear edges, is implemented using the non-orthogonal wavelet
fast computation algorithm as seen in [52]. This decomposi-
tion splits the input image into four subbands, called Low-
Low (LL), Low-High (LH), High-Low (HL), and High-High
(HH). An example of the application of Mallat and Hwang’s
wavelet decomposition algorithm on a sample image is illus-
trated in Fig. 4.

B. SUBBAND PREPROCESSING
Coefficients within each subband s are then mapped to the
[0,1] domain using (1):

p′ =
p− min(s)

max(s)− min(s)
(1)

where p represents an original coefficient in s and p′ rep-
resents the corresponding mapped coefficient. Histogram
equalization is then performed on the resulting subband coef-
ficients to increase their contrast. To do so, the Probability
Mass Function (PMF) of the resulting subband’s coefficients
is first calculated using (2):

PX (xk ) = P(X = xk ) for k = 0, 1, . . . , 255 (2)

where X = x1, x2, . . . , xk represent the subbands’ coeffi-
cients and PX (xk ) is the probability of coefficients in bin k .
The resulting PDF is then used to calculate the Cumulative
Distribution Function (CDF) of the subband using (3):

CX (k) = P(X ≤ xk ) for k = 0, 1, . . . , 255 (3)
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FIGURE 4. (a) A sample ear image from the IITD II dataset [18] (b) The
non-decimated wavelet transform subbands (clockwise from upper left:
LL, LH, HH, HL), where each subband’s coefficients have been mapped to
0-255 for illustration purposes.

where CX (k) is the cumulative probability of X ≤ xk . Finally,
all subband’s coefficients are mapped to new values using the
resulting CDFs. This improves the contrast of the subband’s
coefficients.

C. MULTIPLE FRAMES GENERATION
Various methods can be used by 2D Wavelet based
Multi-Band PCA (2D-WMBPCA) to generate multiple
frames from each input histogram equalized subband; two
suchmethods are detailed in Section IV. In general, amultiple
frame generation function f takes the form:

f : s→ F (4)

where s is the input subband and F = [f1, f2, . . . , fN ] are the
output frames.

D. PRINCIPAL COMPONENT ANALYSIS
For each frame f ∈ F , a mean adjusted frame f ′ is created
using (5):

f ′ = f − f (5)

where f is the mean value of all coefficients in f . Every
frame is then converted to a column wise vector, allowing
F to be represented as a two dimensional matrix W . PCA is
then performed using Singular Value Decomposition (SVD)

on matrixW , creating the decomposition in (6):

W = U6V T (6)

where U is a unitary matrix and the columns of V are the
orthonormal eigenvectors of the covariance matrix of W and
6 is a diagonal matrix of their respective eigenvalues. The
eigenvectors form a basis for an eigenspace for each set of
frames F . The resulting principal components in V are finally
used for matching.

E. SUBBAND MATCHING
Let M = [m1,m2, . . . ,mN−1] be the set of principal com-
ponents of a query image subband q. Furthermore, let L =
[l1, l2, . . . , lN−1] be the set of principal components of sub-
band r , a subband of an image in the image dataset. The
Euclidean distance D between q and r can be calculated
using (7):

D =
√
(6n(mn − ln)2) (7)

The resulting differences across all four subbands (LL, LH,
HL, HH) are then summed to produce the total distance
between the two images. The best match for query image q
in the image database is the image with the lowest distance.

IV. MULTIPLE FRAME GENERATION TECHNIQUES
In this research, two frame generation techniques are pre-
sented.

A. EQUAL SIZE
The equal size multiple frame generation technique can be
formulated as follows:

Assume s is the input subband and N is the number of
desired frames to be generated from the subband s. The
proposed algorithm uses N − 1 boundaries to split the input
subband’s coefficients into N target frames according to the
coefficient values. Let B = [b1, b2, . . . , bN−1] be the bound-
ary values, calculated according to (8):

bn = n/N for n = 1, . . . , (N − 1) (8)

The coefficients in each input subband s are divided into N
target frames as follows:

1) Generate N frames of the same size of s and set their
coefficients to zero. These frames are called:
F = [f1, f2, . . . , fN ]

2) Split the input subband’s coefficients into different
frames according to their values using the following
ranges: [0, b1), [b1, b2), . . . , [bN−1, 1]

It generates F frames from input subband, where these
frames, in a sense, form a multispectral image. An illustration
of the process to generate four frames can be seen in Fig. 5.

B. GREEDY HILL CLIMBING
The greedy hill climbing algorithm calculates the bound-
aries by iteratively running 2D-WMBPCA on a training set
of images. The proposed algorithm initializes with a set of
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FIGURE 5. An example of multiple frames generation: a) Pre-processed
input HL subband from an image in the IITD II dataset [18], resulting
multiple frames b) f1 c) f2 d) f3 e) f4. The coefficients for frames b) and c)
have been multiplied by 1.5 and 1.25 respectively for illustration
purposes.

training images called input_images, set of boundaries called
bnds, and a pre-selected step size κ . It begins with the LL
subband and iteratively adds boundaries in a greedy manner
until a local optimum is reached. The process is then repeated
for the LH, HL, and HH bands respectively. Pseudocode for
the algorithm can be seen in Algorithm 1.

A κ value of 0.05 was empirically determined as a compro-
mise between performance, overfitting, and computation time
for the results presented in this paper. Although this greedy
hill climbing approach is not guaranteed to find the global
optimum for boundary values, it produces sufficient results
while simultaneously reducing computation time when com-
pared to a brute force method.

V. BENCHMARK DATASETS
This investigation uses two benchmark ear image datasets:
The Indian Institute of Technology Delhi II (IITD II)
dataset [18] and the University of Science and Technology
Beijing I (USTB I) dataset [19]. The IITD II dataset consists
of 793 images of the right ear of 221 participants. Each
participant was photographed between three and six times,
with each image being of size 180 × 50 pixels and in 8-bit
grayscale. For consistency, only the first three images for
each individual are used in this research. The USTB I dataset
consists of 180 images of the right ear of 60 participants, each
of whom were photographed three times. The images of this
dataset are 8-bit grayscale of size 150 × 80 and are tightly
cropped; however, some of the images exhibit slight yaw and
shearing. Examples from these two datasets can be seen in
Fig. 6.

VI. EXPERIMENTAL RESULTS
To assess the performance of the proposed 2DWavelet based
Multi-Band PCA (2D-WMBPCA) technique and compare
its performance against other ear recognition algorithms, the
images of the aforementioned two ear image datasets were
used. The proposed 2D-WMBPCA method using the two
boundary selection algorithms described in Section IV, Sin-
gle Image PCA, and the eigenfaces technique were applied
to the images of both datasets. All of the experiments began

Algorithm 1: Pseudocode for the Greedy Hill Climbing
Algorithm
Data: The training input_images to be used
Result: The final_boundaries (to be used on the testing

set)

final_boundaries← ∅, top_percent ← 0
current_boundary← κ , best_percent ← 0,
optimum_boundary← 0
if current_boundary < 1 then

temp_boundaries← final_boundaries
temp_boundaries←
{temp_boundaries, optimum_boundary}
matching_percent ←2D-
WMBPCA(input_images, temp_boundaries) if
matching_percent > best_percent then
best_percent ← matching_percent
optimum_boundary← current_boundary

end
current_boundary← current_boundary+ κ

else
if best_percent > top_percent then

top_percent ← best_percent
final_boundaries←
{final_boundaries, optimum_boundary}
current_boundary← κ , best_percent ← 0
optimum_boundary← 0

else
return final_boundaries

end
end

FIGURE 6. Sample images of two unique individuals from the IITD II
dataset (a-b) [18]. Sample images of two unique individuals from the
USTB I dataset (c-d) [19].

by selecting the first image of each subject to serve as a
query set and the rest of the images to be a dataset. Given
a particular query image, the Euclidean distance between this
image and its correct corresponding image in the dataset is the
lowest among all images, it is marked as Rank-1. Similarly,
if the Euclidean distance between this image and its correct
corresponding image in the dataset is within the lowest five
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TABLE 2. Experimental results for single image PCA (%).

TABLE 3. Experimental results for the Eigenfaces PCA method (%).

distances, it is marked as Rank-5. This process is repeated
for the second and third images for each individual, with the
Rank-1 andRank-5 accuracies averaged across all three trials.

A. EXPERIMENTAL RESULTS FOR THE SINGLE IMAGE PCA
METHOD
To create results for the Single Image PCA method, standard
PCA was applied to each original image individually. Their
resulting eigenvectors were then compared using Euclidean
distance. The results for the application of PCA on the images
of the IITD II and USTB I datasets are presented in Table 2.
From Table 2, it can be seen that the performance of PCA
on the images of the IITD II dataset is lower than that of the
USTB I dataset. This can be explained by the fact that some
of the IITD II’s images have a slight yaw, which causes slight
occlusion.

B. EXPERIMENTAL RESULTS FOR THE EIGENFACES
METHOD
To generate experimental results for the PCA based eigen-
faces method [5], 10% of images of each ear dataset were
used to calculate the eigenvectors. The remaining images
were then projected along the resulting eigenvectors to cre-
ate eigenears, which were compared using the Euclidean
distance. The experimental results are tabulated in Table 3.
From Table 3, it can be seen that the eigenfaces method
vastly outperforms Single Image PCA on the images of both
the IITD II and USTB I datasets. Interestingly, however, the
eigenfaces method achieves higher accuracy on the images of
IITD II dataset. This could be attributed to the wider diversity
of ear images which IITD II contains compared to the images
within the USTB I dataset.

C. EXPERIMENTAL RESULTS FOR THE PROPOSED
2D-WMBPCA USING EQUAL SIZE BOUNDARIES
The proposed 2D-WMBPCA method was applied to both
images of the IITD II and USTB I datasets using two to ten
frames of constant size, as discussed in Section IV-A. The
number of correct matches was calculated for each set of

TABLE 4. Rank-1 and Rank-5 matching accuracy (%) using equal size
boundaries on the images of the IITD II [18] dataset.

TABLE 5. Rank-1 and Rank-5 matching accuracy (%) using equal size
boundaries on the images of the USTB I [19] dataset.

frames. A subset of the results for both the IITD II andUSTB I
image datasets are tabulated in Tables 4 and 5.

From Tables 4 and 5, it can be seen that the pro-
posed 2D-WMBPCA method significantly outperforms Sin-
gle Image PCA on images from both the IITD II and USTB I
datasets. From Table 2 and 3, it is evident that the Rank-1
accuracy of matching has been improved by 57.79% and
51.30% on the images of the IITD II dataset using three
bins and images of the USTB I dataset using four bins
when compared to Single Image PCA, respectively. Further-
more, the Rank-1 accuracy for 2D-WMBPCA on the IITD II
and USTB I datasets increased by 4.36% and 20.37% when
compared to eigenfaces, respectively. From the experiments
presented in these two tables, it can be seen that the pro-
posed 2D-WMBPCA method achieves its highest perfor-
mance when using just three/four bands.

D. EXPERIMENTAL RESULTS FOR THE PROPOSED
2D-WMBPCA USING GREEDY HILL CLIMBING BASED
BOUNDARIES
For this experiment, 2D-WMBPCA was performed using
the greedy hill climbing based boundary selection method
described in Section IV-B. κ values from 0.01 to 0.1 with
a step size of 0.01 were tested on a 10% validation set.
The value κ = 0.05 was chosen as a middle point between
matching accuracy and computational complexity. Although
this approach is not guaranteed to find the boundaries that
globally maximize the matching accuracy, it produces suf-
ficient results while simultaneously reducing computation
time. The results are shown in Table 6. From Table 6, it can be
seen that the greedy hill climbing based boundary selection
method generates promising results on both datasets.

To compare the performance of the proposed
2D-WMBPCA using the equal size and greedy hill climb-
ing techniques, a zoomed portion of the Cumulative Match
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TABLE 6. Rank-1 and Rank-5 matching accuracy (%) using greedy hill
climbing based boundary selection on the IITD II and USTB I datasets.

FIGURE 7. Region of interest of CMC curves for the equal size (red) and
greedy hill climbing (blue) techniques for the IITD II dataset [18].

FIGURE 8. Region of interest of CMC curves for the equal size (red) and
greedy hill climbing (blue) techniques for the USTB I dataset [19].

Curves (CMC) for the IITD II and USTB I datasets are
presented in Fig. 7 and 8, respectively. From these figures,
it can be easily seen that the greedy hill climbing tech-
nique generates more accurate matching than the equal size
technique.

To compare the performance of the proposed tech-
nique with the state of the art PCA and learning based
techniques, the Rank-1 experimental results of the pro-
posed 2D-WMBPCA, Single Image PCA, eigenfaces [5],
2D-MBPCA [13], BSIF [26], GoogLeNet [10], ResNet18 and
SVM [11], VGG-based Ensembles [54] and neural network
and SVM based [9] techniques are tabulated in Table 7. From
Table 7, it can be noted that the proposed 2D-WMBPCA tech-
nique significantly outperforms Single Image PCA, eigen-
faces, and 2D-MBPCA methods. Furthermore, the proposed
method gives competitive results compared to learning based
techniques.

TABLE 7. Rank-1 results for the proposed technique and other PCA and
learning based techniques (%).

FIGURE 9. CMC curves for single image PCA (light blue), eigenfaces
(green), 2D-MBPCA (red), and 2D-WMBPCA (dark blue) for the IITD II
dataset [18].

A further comparison between the proposed 2D-WMBPCA
technique and Single Image PCA, eigenfaces, and
2D-MBPCA is demonstrated using Cumulative Match
Curves (CMC). The CMC curves for the IITD II dataset
are shown Fig. 9 and its zoomed portion Fig. 10, while the
CMC curves for the USTB I dataset are shown in Fig. 11
and its zoomed portion Fig. 12, respectively. From Fig. 9 and
Fig. 11, it can be seen that the proposed 2D-WMBPCA and
its anchor 2D-MBPCA significantly outperform both Single
Image PCA and the eigenfaces technique. To enable the
reader to differentiate between the proposed 2D-WMBPCA
technique and its anchor 2D-MBPCA, a zoomed version of
these two curves are shown in Fig. 10 and Fig. 12. From
these two zoomed figures, it can be seen that the proposed
2D-WMBPCA technique gives higher accuracy to that of
2D-MBPCA.

E. JUSTIFICATION OF THE ACHIEVED PERFORMANCE
From the experimental results, it is clear that the proposed
2D-WMBPCA technique significantly outperforms other
PCA based methods. This improvement can be explained by
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FIGURE 10. Region of interest of the CMC curves for Single Image PCA
(light blue), eigenfaces (green), 2D-MBPCA (red), and 2D-WMBPCA (dark
blue) for the IITD II dataset [18].

FIGURE 11. CMC curves for single Image PCA (light blue), eigenfaces
(green), 2D-MBPCA (red), and 2D-WMBPCA (dark blue) for the USTB I
dataset [19].

FIGURE 12. Region of interest of the CMC curves for Single Image PCA
(light blue), eigenfaces (green), 2D-MBPCA (red), and 2D-WMBPCA (dark
blue) for the USTB I dataset [19].

the fact that the proposed technique expands the feature space
by a factor of b − 1, where b is the number of frames (the
number of features for Single Image PCA is x ∗ y, while
the number of features for 2D-WMBPCA is x ∗ y ∗ (b −
1) ∗ 4, where the original image is of size x ∗ y). Although
increasing the number of frames within each image linearly
increases the feature space, the effectiveness of the features

FIGURE 13. The number of features and total eigenvector energy versus
the number of frames, where the intersection demonstrates the number
of frames for maximum achievable performance, for the IITD II
dataset [18].

FIGURE 14. The number of features and total eigenvector energy versus
the number of frames, where the intersection demonstrates the number
of frames for maximum achievable performance, for the USTB I
dataset [19].

is limited by the energy of individual eigenvectors. Conse-
quently, there is a theoretical limitation on the maximum
number of features, and thus the number of frames, that can
be used for matching. This limitation is consistent with the
experimental results in Section VI-D, where the matching
performance of 2D-MBPCA first increases as the number of
frames increases, reaching a maximum, and then decreases.
To demonstrate this finding, the number of features and the
total eigenvector energy for each number of frames were
calculated for both datasets and are illustrated in Fig. 13
and 14.

From Fig. 13 and 14, it can be seen that as the number
of bands increases, the total eigenvector energy decreases
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inversely. The intersection of the Eigenvector Energy and
Number of Features graphs occurs at approximately six bands
in both figures. For both datasets, when using the greedy
hill climbing technique, the HL subband required exactly six
partitions; the most of any subband.

F. EXECUTION TIME
Ear recognition techniques are generally classified into
two main categories: statistical- and learning-based tech-
niques. Statistical based techniques, including PCA, Eigen-
faces and the proposed 2D-WMBPCA algorithm, extract
features (statistics) directly from the input image data and
use these features to perform matching, while learning based
techniques use a range of information including image data
statistics and features, and other information, such as anno-
tated image data, to train classifiers such as neural networks
and support vector machines. The trained classifiers are then
used to perform classification or matching. Consequently,
learning based ear recognition algorithms are much more
computationally expensive than their statistical based coun-
terparts. In addition, their performance exhibits significant
data dependency.

To compare the performance of the proposed 2D-WMBPCA
algorithm to other statistical based methods, as well as the
state of the art learning based techniques, 2D-WMBPCA,
Single Image PCA, eigenfaces [5], 2D-MBPCA [13],
BSIF [26], GoogLeNet [10], ResNet18 and SVM [11], VGG-
based Ensembles [54] and neural network and SVMbased [9]
were implemented in MATLAB. The implemented algo-
rithms were then executed on a Windows 10 personal com-
puter equipped with a 7th generation Intel core i7 processor,
an Nvidia GTX 1080 graphics card, and a 512 GB Toshiba
NVMe solid-state drive (no other applications, updates or
background programs were running during the computation).
The average execution time for processing a query image
using each algorithm (learning based techniques were already
trained and their training time is not included in these mea-
surements) was measured using 100 randomly selected query
images from each dataset. The resulting measurements are
tabulated in Table 8.

From Table 8, it can be seen that the proposed
2D-WMBPCA technique’s execution time is significantly
lower than the state of the art learning based methods, while
generating very competitive matching performance. It is
worth mentioning that the learning based methods require a
training phase which is computationally intensive and has not
been counted in the results presented in this table. However,
the performance of the learning based techniques is highly
data dependent and can significantly deteriorate when using
cross-dataset validation, while the proposed 2D-WMBPCA
method’s performance has significantly less data dependency.

From Table 8, it can also be seen that the proposed
2D-WMBPCA technique’s execution time is almost the same
as Single Image PCA and 2D-MBPCA methods, while it
outperforms both techniques. For example, the proposed
technique takes 2.44% more time than Single Image PCA

TABLE 8. Average execution time (milliseconds) of the proposed
2D-WMBPCA and the state of the art PCA based and learning based
algorithms.

on the IITD II dataset, yet increases the Rank-1 accuracy by
58.12%. The eigenfaces technique is significantly faster than
the proposed 2D-WMBPCA algorithm. This is due to the
fact that 2D-WMBPCA performs PCA on each query image,
whereas the eigenfaces method simply projects the query
image along the pre-calculated eigenvectors. However, the
performance of the proposed technique is significantly higher
than the eigenfaces technique, e.g the Rank-1 accuracy for
2D-WMBPCA is 20.37% higher than the Rank-1 accuracy
for the eigenfaces technique on the images of the USTB I
dataset.

It is general knowledge that the performance of learning
based techniques is dependent on their feature extraction
techniques. The proposed 2D-WMBPCA algorithm gen-
erates significantly higher performance to those of sta-
tistical based techniques, which is due to the fact that
2D-WMBPCA extractsmore eigenvectors with higher energy
than other PCA based techniques. Therefore, the proposed
2D-WMBPCA technique has an inherent ability to further
improve the performance of learning-based classification
algorithms, including ear recognition techniques, when it is
used as their primary feature extractor.

VII. CONCLUSION
In this paper, a non-decimated wavelet and PCA based ear
recognition algorithm, called 2D Wavelet based Multi-Band
PCA (2D-WMBPCA), was presented. The proposed algo-
rithm performs a 2D non-decimated wavelet transform on
the input image, dividing it into its subbands. Each resulting
subband is then divided into a number of frames based on
its coefficients. The standard PCA method is then applied
on each subband’s resulting frames, extracting their eigen-
vectors. The proposed technique uses the graph intersection
of the number of resulting multiple frames features and their
total eigenvector energies, which empirically has been shown
to achieve the highest matching performance as the number of
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frames for each subband. Experimental results on the images
of two benchmark ear image datasets show that the pro-
posed 2D-WMBPCA technique significantly outperforms the
Single Image PCA, eigenfaces, and 2D-MBPCA methods.
Furthermore, it generates competitive results to those of the
state of the art learning based techniques at much reduced
computational cost.
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