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Abstract  

 

Gynaecological cancers continue to present a significant health burden upon the health of the 

global female population. This deficit is most prominent with ovarian cancer which possesses 

the lowest survival rate compared to all other cancers occurring within this anatomical region, 

with an annual UK-mortality of 7,300. The poor tolerability and selectively of the treatment 

options that are currently available is likely to have contributed to this high mortality rate thus, 

demonstrating the need for the development of enhanced therapeutic approaches. Aptamer 

technology would involve the engineering of specifically sequenced oligonucleotide chains, 

which bind to macromolecular targets with a high degree of affinity and selectively. Recent in-

vitro studies conducted upon the clinical utility of this technique have supported its superiority 

in targeting individual therapeutic drug targets compared to various other targeting moieties 

currently within therapeutic use such as, monoclonal antibodies. For this reason, the 

employment of this technique is likely to be favourable in reducing the incidence of non-

specific, chemotherapy-associated adverse effects. Kisspeptin is a naturally expressed 

polypeptide with an established role in the development of the reproductive system and other 

proposed roles in influencing the ability of ovarian cancer growths to exhibit the metastasis 

hallmark. This distinctive feature would indicate the potential for the manipulation of this 

pathway through the application of aptamer structures in developing a novel prophylactic 

strategy and improve the long-term outcome for ovarian cancer patients. 
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1. Introduction  

 

  Ovarian cancer can result from various abnormal growth of tissues originated from 

the fallopian tubes, uterus, cervix, and the superior area of the vagina and not just from ovaries. 

The current epidemiological figures have demonstrated ovarian cancer to possess the lowest 

survival rate compared to all other gynaecological cancers, with the condition being estimated 

to possess an annual mortality of 184,799 deaths globally (Bray et al., 2018). Ovarian cancer 

has been classified as the 6th most common cancer affecting UK-resident females and is 

estimated to possess an annual national mortality and morbidity equating to 4,227 and 7,300 

respectively (Office of National Statistics, 2018). It is also indicated as the second most 

common malignancy after breast cancer in women over the age of 40 particularly in developed 

countries (Vargas, 2014). The mortality rate has not significantly changed in the past 30 years. 

90% of patients diagnosed at stage I and II have a 5- year survival rate of 90% and 80%, 

respectively and this is significantly reduced to 25% when diagnosed at stage III and IV. Due 

to the lack of an accurate and reliable screening tool and vague symptoms over 70% of ovarian 

cancers are only diagnosed at stage III and IV and less than half of patients survive after 5 years 

of diagnosis (National Cancer Institute, 2018; Chien and Poole, 2018; Bowtell and Christie, 

2017; Bhoola and Hoskins, 2006). The risk of developing ovarian carcinomas increases with 

age and women are most at risk between the age of 50 and 70 years. Younger women under 

the age of 30 years rarely develop the disease (National Cancer Institute, 2018; American 

Cancer Society, 2018; Foong and Bolton, 2017). The objectives of this review article were to 

gain a greater insight into the therapies available for the treatment of ovarian cancers, and the 

potential benefits of considering the emerging evidence base surrounding aptamer technology 

and the Kisspeptin biochemical pathway in the development of new therapeutic strategies to 

improve the long-term outcomes of patients diagnosed with this condition.  

 

 

2. Information sources: 

The PubMed electronic database between 2004 and 2021 was consulted to gain an 

insight into the current advances of aptamer technology and the therapeutic potential of its use 

against ovarian cancer. In order to focus the effort upon evaluating the recent advances within 

this field, the literature search was restricted to only consider studies conducted within 2004 

and 2021, with the exception of historical discoveries. This search was further expanded 
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through applying a manual process of reference analysis of each of the articles identified from 

the initial search.  

 

 

3. Searching: 

The electronic database search conducted had identified 42562 studies 

(PubMed/Medline) using the following search terms: (Aptamer OR Aptasensor OR Aptamer-

targeted imaging OR targeted delivery OR aptamer-radiolabelling) AND (Cancer OR 

Kisspeptin OR ovarian cancer). Furthermore, an additional 94 information sources were 

individually identified through reference analysis and evidence-led investigation and thus, 

incorporated into this study. Through manually assessing the titles and abstracts of the studies 

initially identified, it had allowed for early exclusion of clearly irrelevant literature from this 

research. The eligibility of the remaining studies for incorporation into this research document 

were evaluated using the PRISMA checklist. A total of 42,533 studies were excluded from 

being incorporated into this systematic review and this led to 118 articles which were included 

in this review (Fig. 1). The vast majority of the studies incorporated into this review were 

conducted within North America and Europe.  

 

 

4. Study Selection 

The inclusion criteria were designed to assist in the identification of valid studies for 

consideration in regard to the research question prior to the application of the PRISMA 

checklist. This selection process involved assessing each study against 3 criteria. (1) 

Randomised controlled trails, systematic reviews, meta-analysis studies and observational 

(prospective and retrospective) studies; (2) Use of cancer-focused Kisspeptin and KiSS-1 

expression studies; (3) Oligonucleotide aptamer studies used. 

 

 

5. Background of ovarian cancer 

 

5. Ovarian cancer 

 

Approximately 5% of all ovarian cancers are derived from non-epithelial cells such as germ 

cells and sex-cord-stromal cells. Ovarian cancers derived from epithelial cells are the most 
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common type and can be divided into type 1 and type 2. Type 1 cancers consist of low-grade 

serous carcinoma, clear cell, mucinous and endometrioid, whilst type 2 cancers include high-

grade serous carcinomas (HGSCs) and are the most common type comprising 70%-80% of all 

epithelial ovarian cancers (Kurman and Shih, 2016). Type I carcinomas are suggested to be 

caused by inflammation, endometriosis and continued ovulation cycles. Type I cancers have a 

good prognosis as they are confined to the uterus at the time of diagnosis and have a low rate 

of recurrence of approximately 20% (Morice et al., 2016).  5%-15% of all epithelial ovarian 

cancers are derived from endometriosis which have a better outcome than the types that are not 

originated from endometriosis. Type II tumours which are more associated with significantly 

higher mortality rates and are often diagnosed late with poor prognosis, generally affect older 

women, and have higher rates of recurrence of approximately 50% with much lower survival 

rate of 5 years (Morice et al., 2016).  Type II tumours are linked to genetic mutations of genes 

such as BRCA and p53, RAD51D, RAD51C, BRIP1 and to a lesser extent HNPCC genes and 

certain transcription factors such as HOX, MYC, FOXM1, PAX8 and MECOM (Chen and 

Berek, 2018; Tung and Garber, 2018; Antoniou et al., 2003; Norquist et al., 2016; Geary et al., 

2008; Watson et al., 2001, Nameki et al., 2021).  

The employment of surgical, radiotherapeutic and chemotherapeutic techniques would 

constitute as the main strategies used to treat cancer (Sullivan et al., 2015; Cancer Research 

UK, 2018). The provision of carboplatin as a six-cycle drug therapy is recommended as a first-

line treatment for patients diagnosed with stage I ovarian cancer growths, this treatment would 

be substituted with paclitaxel in more progressed cases (Stage II-IV) (NICE, 2011) (Table 1). 

An open-label, randomized phase 3 trial (n=692) had evaluated the efficacy of the paclitaxel 

drug therapy at a weekly and 3-weekly dosage had concluded that the progression-free survival 

rate achieved to be not statistically significant between each of the treatment regimens (Chan 

et al., 2016). In more advanced stages of the disease surgical debulking is followed by 

chemotherapy. Platinum doublet therapy with usually paclitaxel either intraperitoneally or 

intravenously for 6 cycles has been the standard care for years (Jelovac and Armstrong, 2011). 

Although in majority of the patients a complete clinical response is achievable however, the 

rates of recurrence are high and can vary depending on the stage of the disease. For example, 

patients with stage III and higher have an approximately 70% chance of recurrence within two 

years of diagnosis (Ozols et al., 2003). Re-treatment with the platinum- based doublet therapy 

will be employed if the symptoms recur. In patients resistant to platinum therapy recurrence 

happens before 6 months after the last dose of platinum treatment. The treatment options for 

these patients are pegylated liposomal doxorubicin, gemcitabine, topotecan or paclitaxel alone 
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or in combination with bevacizumab (Pujade-Lauraine, et al., 2014). Patients who initially go 

through debulking surgery followed by chemotherapy with positive clinical response might 

also go through maintenance therapy (Table 1). The current maintenance therapies include the 

use of targeted therapies such as poly(ADP-ribose) polymerase (PARP) inhibitors such as 

Olaparib, rucaparib, and niraparib, or angiogenesis inhibitors such as bevacizumab  alone or in 

combination (Gonzalez-Martin et al., 2019; Lin et al., 2021; Gogineni et al., 2021).   Although 

the targeted therapies recently approved as the effective maintenance therapies however, they 

are not devoid of adverse effects. For example, PARP inhibitors, which disrupt the DNA repair 

mechanisms, such as olaparib that was used in BRCA mutant platinum -sensitive advanced or 

high-grade ovarian cancer induced haematological abnormalities such as anaemia, neutropenia, 

and thrombocytopenia (LaFargue, et al., 2019). In addition, there was also a risk of developing 

myelodysplastic syndromes and acute myeloid leukaemia (AstraZeneca, 2020; 

GlaxoSmithKline, 2020).  

Despite the therapeutic advantages gained through the inclusion of monoclonal 

antibodies in numerous oncological treatment guidelines, these benefits did not replicate across 

all cancer types; with a relatively poor level of efficacy being seen in patients suffering from 

gynaecological cancers (Burstein, 2005). This could have been due to the physiology of ovarian 

cancer cells compared to those of other cancer types, in which monoclonal antibody therapy 

has demonstrated greater success. It was known that a significant proportion of breast cancers 

are associated with an overexpression of the human epidermal growth factor receptor (HER2) 

protein and therefore, would be more susceptible to the actions of an anti-HER2 monoclonal 

antibody such as Trastuzumab, that was engineered to target and inhibit the HER2 receptor site 

(Burstein, 2005; Romond et al., 2005; Chames et al., 2009). With consideration of the 

mechanism of trastuzumab, it is clear that the efficacy of this therapy relies largely upon the 

cancer cells overexpressing the HER2 receptors to promote its further proliferation. This 

mechanism is likely to be responsible for the variation in the treatment’s efficacy between both 

breast and ovarian cancer, as the HER2 receptor overexpression exhibited by each of these 

cancer types is seen to present in approximately 30% and 11% of the total cases respectively 

(Burstein, 2005; Mitri et al., 2012). This is supported by another study which found that 

trastuzumab failed to demonstrate a significant improvement in those suffering from ovarian 

cancer when used as a single agent and suggested that its efficacy may be enhanced in 

combination with other traditional chemotherapy agents (Mabuchi and Kimura , 2010). 

However, some years later the FDA approved an angiogenesis inhibitor, bevacizumab, 

a monoclonal antibody, to the chemotherapy regimens in platinum-sensitive or resistant 
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recurrent ovarian carcinomas, as well as in the maintenance therapy which improved the 

progression-free survival in some phase III studies; although it did not significantly affect the 

overall survival (Pujade-Lauraine et al., 2014). However, some other phase III studies indicated 

an improvement in both the progression-free survival and overall survival (Coleman et al., 

2017; Ruan et al., 2018).   

      In addition to the conflicting results associated with the beneficial effect of bevacizumab 

on overall survival from phase III clinical trials, it also became apparent that the use of this 

drug is also associated with some adverse effects such as hypertension, proteinuria, exfoliative 

dermatitis, renal haemorrhage. Furthermore, bevacizumab also increased the risk of 

development of non-gastrointestinal fistula formation, arterial thromboembolic events, and 

nephrotic syndrome and bowel perforation in ovarian cancer patients (Randall and Monk, 

2010).  

 Another major drawback of the clinical use of monoclonal antibodies relates to their 

acceptability to the host’s immune system and the risks of non-specific effects (Chames et al., 

2009). Many of the murine-based antibodies synthesised at the initial stages of antibody 

development were observed to often stimulate the immune system of the patient shortly after 

their administration, leading to their quick destruction (Chames et al., 2009). Moreover, the 

necessary large-scale production of antibodies and extensive purification steps greatly 

contribute to their elevated production cost compared to conventional medicines.  This 

requirement is coupled with the average effective dose of antibodies requiring 8-16 doses of 

375mgmL-2 to achieve clinical efficacy, causing the health costs incurred for each patient 

receiving monoclonal antibody therapy to be deemed unaffordable by many of the lower 

economic classes (Chames et al., 2009). In addition, the large size and relatively high molecular 

weight of antibodies compared to conventional drug compounds can become problematic when 

considering the accessibility of these proteins into deeper regions of tumour growths, a 

disadvantage which is known to be a contributor to the limited efficacy of this drug class.  

          In summary, the above studies have demonstrated the current advances and clinical 

applications of this field of targeted pharmacotherapy as well as, the various factors limiting 

its efficacy within practice. With consideration of this and the rising morbidity of cancer, it is 

demonstrated that there is a strong need for the development of more efficient, targeting 

techniques to assist in improving the safety, tolerability, and selectiveness of the current 

chemotherapeutic agents. 
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6. Significance of the Kisspeptin pathway 

 

KiSS-1 was originally identified as a human malignant melanoma metastasis 

suppressor gene localised on chromosome 1q32.1 (Lee et al., 1996), that encoded for the 54 

amino acid metastin peptide, which acted via the Kisspeptin receptor (KISS1R) to inhibit 

metastasis (Ohtaki et al., 2001). The term Kisspeptin is now used for the metastin peptide and 

its derivatives that bind to KISS1R, also known as GPR54 (Kotani et al., 2001; Pinilla et al., 

2012). The Kisspetin peptides and the KISS1R plus associated mRNA are both found in the 

CNS (Gottsch et al., 2004; Kotani et al., 2001; Muir et al., 2001; Rometo et al., 2007). The 

biological activity of Kisspeptin is linked to the C-terminus of the 54 amino acid Kisspeptin, 

with shorter C-terminal fragments of 10, 13 and 14 amino acids (Kisspeptin-10, Kisspeptin-13 

and Kisspeptin-14 respectively) retaining activity via the KISS1R to inhibit metastasis (Kotani 

et al., 2001; Pinilla et al., 2012). 

The metabolism of the Kisspeptin by matrix metalloproteases (MMP) results in 

inactivation of the peptide in terms of its anti-metastatic action (Takino et al., 2003). However, 

recent studies have identified the Kissorphin peptides (Milton, 2012) which are Kisspeptin 

fragments that have lost the last 4 C-terminal residues required for KISS1R binding but are still 

able to activate both NPFF1 (GPR147) and NPFF2 (GPR74) receptors and exert biological 

actions (Milton 2012; Gibula-Tarlowska et al., 2017; Gibula-Tarlowska et al., 2019a; Gibula-

Tarlowska et al., 2019b; Gibula-Tarlowska and Kotlinska, 2020). The generation of 

Kissorphins could be mediated via MMP processing of Kisspeptins. Some of the biological 

actions of Kissorphin peptides are shared with via the NPFF1 and NPFF2 receptors natural 

ligand Neuropeptide-FF (NPFF) and Kisspeptin peptides (Lyubimov et al., 2010; Oishi et al., 

2010; Milton, 2012; Elhabazi et al., 2013). These actions of Kisspeptins and their metabolites 

the Kissorphins may be relevant to therapeutic use of Kisspeptins in an ovarian cancer setting. 

Similarly, studies have shown that antibodies against Kisspeptin can cross-react with NPFF 

(Iijima et al., 2011; Chilumuri et al., 2013), raising the possibility that immunoassay 

measurement of Kisspeptin could be influenced by natural NPFF levels. Immunoassays used 

to measure Kisspeptin 10 (Milton, et al., 2012) are known to use the same antibody as used by 

Chilumuri et al., (2013) and were shown to cross react synthetic NPFF plus Kissorphin 

derivatives. As such immunoassay determination of Kisspeptin as a potential marker in an 

ovarian cancer setting may not always reflect biologically active material and therefore not 

always be fully representative of the anti-metastatic activity of Kisspeptin present in patient 

samples. 
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Kisspeptin is a central regulator of the reproductive axis via stimulation of gonadotropin 

releasing hormone release (Holly et al., 2015). Depletion of either KiSS-1, Kisspeptins or the 

KISS1R is associated with several forms of infertility, such as isolated hypogonadotropic 

hypogonadism (IHH) and central precocious puberty (CPP) (Chan, 2013; Brioude et al., 2013; 

Gottsch et al., 2009; Miraoui et al., 2013). Mutations within the KiSS-1 and KISS1R genes 

also contribute to the presentation of either IHH or CPP (Lanfranco et al., 2005 ; Pallais et al., 

2006). Kisspeptin influences the progression of several diseases including, Alzheimer’s 

disease, Polycystic ovary syndrome (PCOS) and specific types of cancer (Vincenza et al., 2018; 

Milton et al., 2012; Murphy and LeVine, 2010). PCOS is linked to a range of metabolic 

symptoms and associated with changes in the reproductive hormones activated by kisspeptin 

(Kotani et al., 2001; Holly et al., 2015; Legro et al., 1999; Glueck et al., 2003; Dunaif et 

al.,1989; Elting et al., 2001; Holte et al., 1996; Diamanti-Kandarakis et al., 2007; Talbott et al., 

2000; Valkenburg et al., 2008). Kisspeptin has a pathophysiological role in PCOS and may be 

a useful biomarker (De Assis Rodrigues et al., 2019; Yilmaz et al., 2014). 

The Kisspeptin peptides influence the incidence of metastasis in several cancer types, 

including bladder, gastric and ovarian cancers (Beck and Welch, 2010; Ciaramella et al., 2018). 

Downregulation of KiSS-1 gene expression is associated with greater risk of distant metastasis 

in gastric cancer (Dhar et al., 2004) and has been demonstrated in more severe forms of bladder 

cancer (Sanchez-Carbayo et al., 2003). There are therefore suggestions that the KiSS-1 and 

KISS1R are potential targets for treatment of metastatic cancer (Vincenza et al., 2018). The 

anti-metastatic role of Kisspeptin involves an inhibitory effect upon cell invasion, motility and 

adhesion; all of which play key roles in the embryonic development thus, potentially 

influencing the reproductive potential of a female (Lee et al., 1996; Trevisan et al., 2018; 

Ohtaki et al., 2001). This proposition is further supported by the expression of both KiSS-1 and 

KISS1R genes at the ovary, ovarian duct and uterus, and the presence of significantly higher 

concentrations of Kisspeptin within pregnant females (Jayasena et al., 2014). The KiSS-1 gene 

mediates an anti-metastatic effect on ovarian cancerous tumours via a direct-action inhibiting 

protein kinase C in addition to inhibiting the detachment and migration of cancerous cells that 

are morphologically-adapted to undertake the epithelial-mesenchymal transition dissemination 

process (Jiang et al., 2005; Ciaramella et al., 2018). A clinical study investigating the 

association between the expression of a gene product of the KiSS-1 gene (Kisspeptin-54) and 

the prognosis of patients diagnosed with ovarian cancer had found patients expressing the 

greater levels of polypeptide macromolecule to possess a statistically significant reduction of 

presenting with microscopic residual tumours following surgical resection procedures 
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(p=0.0084) (Stafford et al., 2007). A promising proposition in manipulating this biological 

pathway involved the exogenous administration of Kisspeptin-54.  Despite the preliminary data 

not associating this intervention with the production of significant adverse effects, the reduced 

expression of the complimentary G-protein coupled receptor of this macromolecule (KISS1R) 

by the majority of cancerous growths was found to present a challenge in preserving the 

efficacy of this supplementary therapy in-vivo (Vincenza et al., 2018; Beck and Welch, 2010).    

 The increased expression of MMP’s within cancerous growths not expressing the KiSS-

1 gene could contribute to tissue invasion and metastasis (Hata et al., 2007; Zucker et al., 1993). 

The relationship between MMP and KiSS-1 expression has also been observed with the 

development of liver metastasis originating from colorectal cancer types with low KiSS-1 

expression in patients with elevated MMP-9 (Nomura et al., 1995). Earlier evidence 

surrounding this interaction had also eluded the role of inhibiting MMP-2 and MMP-9, which 

would potentially prevent inactivation of the Kisspeptin, preserving the anti-metastatic effects 

(Zhu et al., 2015). The use of Kisspeptin as a novel biomarker in monitoring the development 

of tumour metastasis within patients has been suggested for ovarian cancer (Chen et al., 2016; 

Prentice et al., 2007), however the crossreactivity of inactive MMP processed forms in 

immunoassays needs to be overcome (Chilumuri et al., 2013; Milton, et al., 2012). 

 

7. Aptamer technology 

 

The use of aptamer technologies provides a potential solution to the cross-reactivity issues with 

antibodies plus a potential route to develop both diagnostic and therapeutic compounds. 

Nucleic acid aptamers are single stranded DNA- or RNA-based oligonucleotide structures that 

possess an ability to bind to their complementary target with a great degree of affinity and 

specificity (Famulok and Mayer, 2014; Garst et al., 2011; Ku et al., 2015; Lakhin et al., 2013; 

Ellington and Szostak, 1990; Tuerk and Gold, 1990). Using libraries of short random nucleic 

acid sequences combined with selection assays allows the identification of aptamers sequences 

that are specific for a target which could be used in both diagnostic and therapeutic settings. 

The main methods for doing this involve the application of the Systematic Evolution of Ligands 

by EXponential enrichment (SELEX) process (Hori et al., 2018). Using a library with fixed 

primer regions at the 5’ and 3’ ends of the random sequences, the target protein can then be 

used to pull down binding aptamers which can then be amplified through the repeated 

application of the Polymerase Chain Reaction PCR) (Darmostuk et al., 2015). This process 

would allow the selection of specific Kisspeptin binding aptamers (Fig. 2). A range of selection 
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processes can be employed so for example with raising KISS1R specific aptamers it may be 

necessary to use Whole Cell SELEX, which would utilise the KISS1R target proteins present 

upon the membrane of living cells within an environment that resembles the structure in-vivo 

to a greater extent (Chauveau  et al., 2007; Liu et al., 2009; Ohuchi, 2012). Aptamers can also 

be used in the development of sensors for disease monitoring, detection of pollutants and the 

drug discovery process (Bhalla et al., 2016). Aptamer based biosensors or ‘aptasensors’ are 

known to be superior in their accuracy compared to those employing monoclonal antibodies, 

due conformational changes during the binding of the aptamer to the target (Morita et al., 2018). 

There are many different types of aptasensors used within clinical study with one of the most 

notable involving the incorporation of an electrochemical molecule. This technique involved 

chemically bonding an aptamer bioreceptor to an electrode surface to which an analyte would 

be presented and retained. Following this, the aptamer-analyte complex would be exposed to a 

secondary aptamer molecule that would be targeted to bind to a different site on the surface of 

the analyte thus, producing an aptamer-analyte-aptamer complex often termed as an ‘Aptamer 

sandwich’ (Fig. 3). The secondary aptamer molecule is often conjugated with another charged 

species such as, gold nanoparticles, which would be detected by the electrode (Pavlov et al., 

2004). Earlier detection of ovarian cancer growths using aptasensors has shown the strength of 

this technology in the ovarian cancer diagnostic field for the detection of CA125 (Hamd-

Ghadareh et al., 2017) and there is the potential to apply similar strategies for detection of 

Kisppeptin or the KISS1R. 

The use of aptamers for both diagnostic and therapeutic purposes would require the 

consideration of several factors such as, the relatively short shelf life, chemical stability and 

delivery strategies to ensure the aptamers are able to reach their molecular target. Currently, 

the use of base and backbone modification of the aptamer structure have demonstrated positive 

results in improving the stability of aptamer molecules thus, allowing them to become practical 

within a healthcare setting (Hori et al., 2018; Famulok et al., 2007; Hassanzadeh et al., 2018). 

Aptamer delivery into the central nervous system can also be achieved through the application 

of various techniques including, the entrapment of aptamer molecules into liposomes and 

protein transduction domains, and the manipulation of nanoparticles (Cheng et al., 2013;  

Koffie et al., 2011), this has been used with aptamers against targets relevant to Alzheimer’s 

disease (Huiyu et al., 2015). 

The use of aptamers has also displayed promise in optimising the current anti-cancer 

treatments through providing a potentially novel route in delivering these chemotherapeutic 

agents to cancerous growths at a great selectively and more cost-effective manner compared to 
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other targeting moieties that are currently used within practice notably, monoclonal antibodies. 

As mentioned previously, aptamer molecules possess a much higher degree of specificity in 

their binding to a molecular target compared to other targeting moieties. When coupled with 

the reduced cost incurred in aptamer production and the wide acceptability of targets ranging 

from small chemical mediators to entire cells, it is clear that their use within biosensor 

technology would be advantageous (Hori et al., 2018). A recent review of aptamers for use in 

ovarian cancer diagnosis and treatment has highlighted aptamers to known cancer markers such 

as CA125, CA70 plus HER2 for potential therapeutic use and CA125 for potential diagnostic 

use (Ruan & Li, 2021). 

 

8. Strategies 

 

Kisspeptin and KISS1R for ovarian cancer therapeutic plus diagnostic targeting are 

viable options based on the observations for the biological activities of Kisspeptin in relation 

to inhibitory effects on metastasis via activation of KISS1R. The multiple forms of Kisspeptins 

(Kotani et al., 2001; Pinilla et al., 2012) and the cross-reactivity of other peptides plus inactive 

metabolites (Iijima et al., 2011; Milton et al 2012; Milton, 2012; Chilumuri et al., 2013) cause 

potential problems in using immunoassays for diagnosis or therapy monitoring. A solution to 

this may be to use aptamer technologies and select specific aptamers with both positive and 

negative selection strategies to effectively identify Kisspeptin specific aptamers that are 

suitable for diagnostic use. It is clear from recent studies that diagnosis is likely to need multiple 

measures (Menon et al., 2021) rather than just Kisspeptin levels, for example a combination of 

Kisspeptin with known tumour markers (Chen et al., 2016).  

The pharmacokinetic and pharmacodynamic properties of Kisspeptin and synthetic 

KISS1R agonists in humans (Abbara et al., 2020) raise the possibility of using such compounds 

in an ovarian cancer setting. Aptamers that act as receptor ligands show potential in cancer 

therapy (Zhang et al., 2021). Specific aptamers against the KISS1R may also offer potential 

and may help to rule out biological actions at other receptors such as the NPFF1 and NPFF2 

which respond to Kisspeptin. Allosteric aptamers have been shown to enhance receptor 

activation by insulin (Yunn et al., 2021) and this approach may also provide a mechanism to 

enhance Kisspeptin activity. Peptide aptamers with structural similarities to Kisspeptin may 

also offer potential in this setting. A major advantage of using Kisspeptin itself is that it is an 

endogenous peptide and therefore less likely to be seen as foreign by the body and trigger an 

unwanted immune response. A disadvantage of Kisspeptin is the observation of desensitization 
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of KISS1R by repeated administration of Kisspeptin 10 (Seminara et al., 2006) and there is 

evidence of KISS1R downregulation in some cancer settings (Ly et al., 2020). There is also 

evidence of antimetastatic actions of Kisspeptin that are independent of KISS1R and these 

areas require further study (Ly et al., 2020). 

The use of specific aptamers which have a high affinity for the Kisspeptin would allow 

for the more selective targeting of this molecular target within cancer pathophysiological 

mechanisms and reduce the incidence of a non-specific blockade of other chemical mediators 

or the blockade of Kisspeptin in a different signalling pathway, each of which could facilitate 

the production of adverse effects within the patient. For this reason, their application in ovarian 

cancer therapeutic strategies would be largely advantageous in the clinical management of 

these conditions and warrants further research. 
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Table 1. Recommended strategies for the treatment of ovarian carcinomas. 
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Fig 1. PRISMA diagram for the screening and selection of studies. 
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Fig 2. A schematic diagram of the SELEX procedures used to isolate oligonucleotide 

sequences specific to a desired molecular target from an entire DNA library 
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Fig 3. A labelled diagram depicting the sequence involved in the production of an aptamer-

analyte-aptamer complex. (1) Analyte approaches the primary aptamer-electrode complex, (2) 

Analyte binds to the primary aptamer-electrode complex, (3) The secondary aptamer labelled 

with an ionised molecule approaches the electrode-primary aptamer- analyte structure, (4) The 

secondary aptamer binds to the analyte 

 



From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-
Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097 

 
For more information, visit www.prisma-statement.org. 
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