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PERFORMANCE EVALUATION OF VARIOUS DEPLOYMENT SCENARIOS OF
THE 3-REPLICATED CASSANDRA NOSQL CLUSTER ON AWS

A concept of distributed replicated NoSQL data storages like Cassandra, HBase, MongoDB has been proposed
to effectively manage the Big Data sets whose volume, velocity and variability are difficult to deal with by using
the traditional Relational Database Management Systems. Trade-offs between consistency, availability, partition
tolerance and latency are intrinsic to such systems. Although relations between these properties have been pre-
viously identified by the well-known CAP and PACELC theorems in qualitative terms, it is still necessary to
quantify how different consistency settings, deployment patterns and other properties affect system performance.
This experience report analyses performance of the Cassandra NoSQL database cluster and studies the trade-
off between data consistency guaranties and performance in distributed data storages. The primary focus is on
investigating the quantitative interplay between Cassandra response time, throughput and its consistency set-
tings considering different single- and multi-region deployment scenarios. The paper uses the YCSB benchmark-
ing framework and reports the results of the read and write performance tests of the three-replicated Cassandra
cluster deployed in the Amazon AWS. In the paper we also put forward a notation which can be used to formally
describe distributed deployment of Cassandra cluster and its nodes relatively to each other and to a client ap-
plication. We present quantitative results showing how different consistency settings and deployment patterns
affect Cassandra performance under different workloads. In particular, our experiments show that strong con-
sistency costs up to 22% of performance in case of the centralized Cassandra cluster deployment and can cause
600% increase of the read/write requests if Cassandra replicas and its clients are globally distributed across
different AWS Regions.
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Introduction

NoSQL (or Not Only SQL) databases are a new
generation of distributed data storages that have been re-
cently designed to efficiently deal with rapid data growth
[1]. They adhere to the schema-less philosophy and em-
ploy horizontal scalability (sharding), Internet-scale rep-
lication and relaxed consistency model to store extremely
large datasets and guaranty high throughput, availability
and low read/write latency.

NoSQL databases are now widely used in different
application domains which generate, store and process
BigData. This includes social networks and media, busi-
ness-critical systems, critical infrastructures, smart in-
dustrial applications. For example, Cassandra NoSQL is
widely adopted by Uber, Facebook, Instagram and Netflix.
Apple, eBay, GitHub and the European Organization for
Nuclear Research (CERN) use Cassandra either as a main
data store or for specific tasks [2].

Attempting to guarantee the atomicity, consistency,
isolation and durability (ACID) of database transactions
when storing large distributed datasets results in dramat-
ically increased latency and degraded availability. Thus,

NoSQL databases have to sacrifice the ACID concept in
favour of the BASE (basically available, soft state, even-
tually consistent) model [3], which is the price to pay for
distributed data handling and horizontal scalability.

The NoSQL ecosystem includes several dozen da-
tabases, for instance, Cassandra, HBase, MongoDB,
BigTable, Riak, BigTable, Redis, CosmoDB, Neo4J, etc.
They cover different application niches by offering vari-
ous data model categories (e.g. key-value, document,
wide-column or graph stores), consistency models, repli-
cation strategies and other features [4].

Apache Cassandra is one of the top three in use
NoSQL database management systems together with
MongoDB and HBase [5]. It is a highly scalable column-
oriented database NoSQL database which can store data
across many commaodity servers in multiple distributed
locations [6]. It has a ring-type architecture where data is
sharded across all nodes like a logical ring. Cassandra is
‘master-less’ data storage with no single point of failure,
meaning that all nodes are the same and any can receive
and process read/write requests. It offers linear scalabil-
ity, tuneable consistency model and data replication to
guaranty high availability and fault-tolerance.



Performance evaluation of different NoSQL data-
bases is an active area of research having important prac-
tical implication. The primary focus of [7, 8, 9] and other
studies is to compare different NoSQL databases based
on performance measures. Other works, e.g. [10, 11, 12],
use benchmarking results to model and predict databases
performance. Despite useful results showing general per-
formance limitations of different distributed data storages
existing publications do not examine in details how dif-
ferent factors and settings (deployment pattern, con-
sistency level, replication factor, etc.) affect database la-
tency and throughput. Besides, there has been little ef-
forts (e.g. [13]) made on evaluating scalability and per-
formance of distributed storages considering the impact
of distance between nodes or replicas.

Thus, more in-depth analysis studying how differ-
ent settings and deployment scenarios affect performance
of the certain NoSQL database is of a great importance.
This work continues a series of related publications eval-
uating performance of fault-tolerant distributed data stor-
ages [14, 15]. It aims at examining the impact of different
consistency settings on scalability, latency, throughput of
the 3-replicated Cassandra cluster depending on the used
single- and multi-region deployment scenario.

1 Cassandra Consistency Model and
Deployment Scenarios

1.1 Cassandra tunable consistency model

One of the main features of the Cassandra NoSQL
is the tuneable consistency model ranging from weak
consistency at one extreme to strong consistency on the
other, with varying levels of eventual consistency in be-
tween.

It defines a discrete set of consistency settings for
each ana every request specifying:

— for READ operations: a number of replicas that
are queried and must respond before the most recent
(based on timestamp comparison) read result is returned
to the client;

— for WRITE (i.e. INSERT/UPDATE) operations:
a number of replicas that must acknowledge the write op-
eration before it is considered successful (write opera-
tions are always sent to all replicas).

The main Cassandra consistency settings include:
ONE, TWO, THREE, QUORUM, ALL. Additional con-
sistency settings (EACH_QUORUM, LO-
CAL_QUORUM, LOCAL_ONE) becomes available if
Cassandra cluster runs across multiple data centres.

Cassandra also employs additional mechanisms to
reduce the duration of data inconsistency [6]: hinting,
read repair, anti-entropy node repair, NodeSync.

1.2 A notation for describing Cassandra deployment
scenarios

The largest unit of Cassandra deployment is a clus-
ter. Each cluster consists of nodes from one or more dis-
tributed locations. In AWS terms these locations could be
composed of separate geographic areas called Regions
(e.g. Canada: ca-central-1, Africa: af-south-1, US East:
us-east-1, etc.) and/or Availability Zones (isolated loca-
tions/datacentres within each Region, e.g. ca-central-1a,
ca-central-1b).

There are currently 25 AWS Regions and 69 Avail-
ability Zones (AZ) around the world. Accessibility zones
are usually located within 60 miles of each other within
a Region and connected with low-latency network links.

In this section we put forward a notation describing
distributed deployment of Cassandra cluster and its nodes
relatively to each other and to a client (a client could be
an application running on the end user devise or some
middleware application proxying end-user requests):

—round brackets () to define Cassandra cluster;

— curly brackets {} to group Cassandra client (C)
and nodes (N;) in the same AWS Region;

— square brackets [] to group nodes in the same
Availability zone.

For instance, {[C, (N1]}, {[N2], {[Nz]}) deployment
record can be read as the three-node Cassandra cluster
which nodes are deployed as following: N; node is lo-
cated together with the client app (C) in the same Avail-
ability Zone in the same Region; the rest two nodes N
and N3 are deployed in a different Region, each in a sep-
arate Availability zone.

In case of a completely replicated Cassandra clus-
ter, e.g. when the replication factor is equal to the number
of nodes, node symbols (N;) can be replaced with replica
symbols (R;). For simplicity {} or [] brackets can be omit-
ted in the deployment record if a client and Cassandra
nodes are deployed in the same Region/Availability zone,
or when there is only one client/node in a Region.

We consider the following four deployment scenar-
ios of the three-node Cassandra cluster with a replication
factor of 3:

a) {[C], ([R], [R2], [R3])} — a client and all Cassan-
dra replicas are deployed in the same Region, each in a
separate AZ;

b) {C}, ({[R1], [Rz], [Rs]}) — a client (end user ap-
plication) is located in one geographic region while the
Cassandra cluster is in another region with each replica
is in a separate Availability zone for better fault-toler-
ance;

) {[C], ([R11}, {R2}, {R3}) — multi-region deploy-
ment pattern; a client (a proxy client application/middle-
ware) and one of Cassandra nodes are deployed in the
same region, while the rest nodes are globally distributed
across the Internet;
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Fig. 1 — Deployment scenarios of the three-node Cassandra NoSQL cluster with a replication factor of 3

d) {C}, ({Ri}, {R2}, {Rs}) — multi-region deploy-
ment pattern; a client (end user application) and Cassandra
nodes are deployed across different geographic regions.

A single region deployment pattern is the most
common setup for centralized corporate storage systems
which data storage nodes and client application(s) gener-
ating and consuming data are in the same geographic lo-
cation. For better fault-tolerance they could be deployed
in different AZ within the same region. Multi-region de-
ployment scenarios offer failover and disaster tolerance/re-
covery. They allow to meet very high availability require-
ments by deploying nodes/replicas in different geographic
regions and can reduce latency by placing data nodes near
globally distributed customers. However, requests involving
replicas from different regions could be processed much
longer due to high inter-region network delay (see Table 1).

Table 1 — AWS inter-region latency, ms
N _ N F||
AWS 8| = | 8| S
Region = (3 2 8,
3 o 3 s
us west 2 | 2.42 | 66.71 [135.22|221.57
ca_central_1[66.93 | 35 |79.87 |189.02
eu_west 2 [135.56| 80.14 | 3.95 [111.69
ap_south 1 |221.82|188.88|111.89| 3.15

2 Cassandra Performance Benchmarking

2.1 Experimental setup and benchmarking
methodology

Performance evaluation methodology used in the pa-
per is similar to one described in [14]. It employs YCSB
(YYahoo! Cloud Serving Benchmark) framework widely
used to benchmark performance of various relational and
non-relational data base management systems [16].

Four Cassandra clusters have been created and de-
ployed on Amazon AWS implementing deployment pat-
terns presented in Fig. 1. Each cluster node was build us-
ing the compute-optimized instance type c3.xlarge
(vCPUs — 4, RAM - 7.5 GB, SSD - 2x40 GB, OS - Ub-
untu Server 16.04 LTS).

Unlike other researches analysing performance of
distributed data storages (e.g. of [7, 8, 9]) we put the pri-
mary focus on analysing Cassandra scalability and exam-
ining the impact of data consistency on read/write latency
and throughput. For this purpose, the number of threads
in our experiments was linearly scaled from 100 to 1000
(until Cassandra performance began to saturate, as it is
shown in our previous study [14]). The operation count
within each thread was set to 1000.



The above scenario was repeated for consistency
settings ONE (the weakest consistency), QUORUM, and
ALL (the strongest consistency).

2.2 Cassandra read/write throughput

Fig. 2 and 3 show Cassandra read/write throughput
for different deployment scenarios and consistency set-
tings. For example, when a client and all Cassandra nodes
are deployed in the same AWS Region is saturated with
around 800 threads on average. When Cassandra operates
close to its maximal throughput. delays become highly
volatile and begin to increase in exponential progression.
The presented graphs clearly show that the stronger con-
sistency setting, the lower the throughput. Moreover, the
throughput drops dramatically when QUORUM and
ALL consistency settings are applied in multi-region de-
ployment scenarios (see Fig. 1,c and Fig. 1,d).

It is also worth noting that we were not able to sat-
urate Cassandra cluster even with 1000 threads in case of
(b: all consistency settings) and (d: ONE) deployment
scenarios. Thus, Cassandra cluster were not able to
achieve its maximum throughput due to overwhelming
contribution of the network delay into the overall re-
sponse time (see Table 1). In all other scenarios the high-
est Cassandra throughput achieved at peak workload (see
Table 2) was close to its maximum/asymptotic through-
put.
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For the single-region Cassandra deployment (a: all
consistency settings) and (b: ONE) write throughput
overperforms read performance by 9% on average. This
confirm the claim that Cassandra was specially designed
as a distributed storage system capable of very high write
throughput.

Another interesting observation is the fact that
read/write throughput in the deployment scenario (a:
ONE) overperforms (c: ONE) by 13% despite the appar-
ent similarity.

This can be explained by the fact that in the case of
(c: ONE) deployment all client requests are always sent
to the same nearest coordination node in accordance to
Cassandra’s load balancing policy which takes ‘network
distance’ into account. In scenario (a: ONE) the client
workload is equally distributed among all replicas in the
same region, which increases the overall throughput.

Table 2 — The highest Cassandra throughput, ops/s

ONE QUORUM ALL

Deployment scenarios Read | Write | Read | Write | Read | Write

a: {[C], ([Ru]. [Ra], [Rs])} |16830[18338|16074|17384|13735 | 15434

b: {C}, {[Ru], [R], [Rs]}) |3450%|3357*|3424*|3340%|3320* | 3319*

c: {[C], ([R]}. {R2}, {Rs}) |15160(15906| 517 | 478 | 355 | 312

d: {C}, {R.}, {R-}, {R=}) |3381*[3313*| 518 | 491 | 390 | 357

* The maximum (asymptotic) throughput was not achieved due to sig-
nificant network delays
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Fig. 2 — Cassandra READ Trhoughput
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Fig. 3 — Cassandra WRITE Trhoughput

2.3 Cassandra read/write latency

Cassandra read/write latency statistics is summa-
rized in Tables 3-4. It is shown that the average delay for
both read and write requests increases almost linearly as
the number of threads increases apart from (d: ONE) and
(b: all consistency settings) deployment scenarios for
which response latency is almost flat independently on
the number of threads. This is due to significant contri-
bution of network delay into the overall response time
and inability of a single YCSB client to saturate Cassan-
dra cluster over the Internet.

For the single-region Cassandra cluster deployment
(@) latency of read/write performed under the strongest
consistency level ALL is higher (by 36% and 22% re-
spectively) than the average response time of the weakest
consistency setting ONE. For the multi-region deploy-
ment (b) these values are 47 and 53 times higher (!) while
(b: ONE) deployment is almost as quick as (a: ONE).

When a client and all Cassandra replicas are glob-
ally distributed across the Internet (Fig. 1,d), AWS inter-
region network delay is the main contributor to read/write
latency performed under the ONE consistency setting in-
dependently of a number of threads. However, scenario
(d: ALL) latency is higher than scenario (d: ONE) latency
by an average of 560% for reads and 600% for writes.

Because Internet downlinks are generally faster
than uplinks in all deployment scenarios except for (a)
and partly (c: ONE) write operations were performed

slightly longer that reads even despite higher write
throughput of the Cassandra NoSQL database.

Conclusions and Lessons Learnt

Availability, consistency and performance of dis-
tributed database systems are tightly connected. Alt-
hough these relations have been identified by the CAP
and PACELC theorems in qualitative terms [17, 18], it is
still necessary to quantify how different consistency set-
tings, database architectures and deployment scenarios
affect system performance and user experience.

In the paper we report results of Cassandra perfor-
mance benchmarking and examine the impact of differ-
ent consistency settings on scalability, latency and
throughput of the 3-replicated Cassandra cluster depend-
ing on the used deployment scenario.

Our experiments confirm a general expectation that
stronger data consistency guaranties reduce database
throughput and increase latency of read/write operations.
However, the single datacentre/region Cassandra deploy-
ment offers the best performance for all consistency set-
tings. At the same time, Cassandra can hardly achieve the
maximum throughput if its clients are located in other ge-
ographic regions. Deployment of a middleware applica-
tion in the same region as a Cassandra cluster that aggre-
gates and proxies read/write requests from numerous dis-
tributed clients can mitigate the dominant impact of high
network delays. Another solution which can improve per-
formance of the deployment scenario (b) is implementing



Table 3 — Cassandra READ latency (ms)
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asynchronous database requests instead of synchronous
ones which block the client until the current operation
completes.

Distributing Cassandra nodes across geographic
zones close to the database clients also helps to reduce
database latency in case of weak consistency settings
(ONE, LOCAL_ONE or LOCAL_QUORUM). How-
ever, strengthening data consistency by querying replicas
from other geographic regions dramatically degrades
Cassandra performance and can cause timeout excep-
tions.

It is worth to remember that timeout settings play an
important role of major failure detection mechanism in
distributed computer systems [19] and affect efficiency
of many Cassandra mechanisms (e.g. speculative retries,
hinting, read repairs). Our previous experiments [20]
show that the optimal timeout settings should be applica-
tion specific and need to be adjusted dynamically at run-
time taking into account current system workload, con-
sistency settings, deployment scenario and other factors.
Setting timeouts dynamically at runtime can help effec-
tively balance performance, availability, and fault-toler-
ance of distributed data storages.
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JOCJIJKEHHA TPOJIYKTUBHOCTI PI3BHUX CIIEHAPIIB PO3IOPTAHHSA KJIACTEPA
CASSANDRA NOSQL 3 TPBOMA PEIUVIIKAMU Y XMAPHOMY CEPEJOBHIII AWS

A. B. I'opoenxo, A. C. Kapnenko, O. M. Tapaciok

KoHuemnuist po3noaijieHux perulikoBaHUX HepesiHHIX CXOBHIIL JaHUX, TakuXx sk Cassandra, HBase, MongoDB
Oynla 3ampornoHoBaHa Uil €(EeKTUBHOTO YIPABIiHHS BEJIMKUMH IaHUMH, OOCST SIKMX IEPEBHUILYE MOXIJIHUBOCTI
TpaIMUIHUX PEJSILIHHUX CHUCTEM KepyBaHHA 0a3aMu naHuX 1o ix edexktuBHOMY 30epiraHHi0 it 0OpoOui. Taki
CHUCTEMHU XapaKTepU3YIOThCSI HASBHICTIO KOMIIPOMICY MIDX Y3TOJDKEHICTIO, JOCTYITHICTIO, CTIHKICTIO JI0 MOJUTY Ta
YacOBUMH 3aTpPUMKaMH. X04a SKiCHI Bi/ITHOCHHU MiXk I[IMH BJIIACTHBOCTSIMH OYyJTH paHilie Bu3HadeHi B Teopemax CAP
ta PACELC, nporte, akTyallbHOFO 3aJIMIIAETHCA KiTbKICHA OIIIHKA CTYTICHS Ta XapaKTepy BIUIMBY Pi3HAX HAJAIITYBaHb
Y3rOJKEHOCTI JIaHMX, CLEHApiiB pO3TOPTaHHS Ta iHIIMX BIACTHBOCTEH HA MPOJIYKTUBHICTH TAKUX CHCTEM. Y CTaTTi
aHaJI3yeThC MPOAYKTUBHICTH Kiactepa nmaHux Cassandra NoSQL Ta BHBYA€ThCS KOMIIPOMIC MK TapaHTisIMA
y3ro/KeHOCTI iH(dopMalii Ta TPOAYKTHBHICTIO B PO3MOIUICHUX CXOBHUIAX JaHMX. OCHOBHA yBara 30cepe/DkeHa Ha
JIOCITI/DKeHH] KiTbKICHOTO B3a€MO3B’SI3Ky MK dacoMm obciyroByBanHs Cassandra, i mpormycKHO 3JaTHICTIO Ta
HaJIAIITYBAHHSIMH Y3TOJDKEHOCTI 3 YpaxyBaHHSIM PI3HUX CILEHapiiB pO3rOpTaHHS KJIACTEPYy B OJAHOMY Ta KUIBKOX
XMapHHX perioHax. Y CTaTTi HaBeIeHO pe3yIbTaTH BUKOHAHHS TECTIB MPOAYKTUBHOCTI Kiactepa Cassandra 3 tppoma
peIuTikaMu PO3rOpHYTOro y xmapHoMy cepemosuini Amazon AWS, mo oTpumani 3a IOMOMOIrOK HabOpy TECTiB
YCSB. Takox aBTopaMu 3arpornoHOBaHO HOTALO /s (POPMAIBHOIO ONKCY CIIEHAPIiB PO3IIOIIEHOTO PO3rOpTaHHS
kinactepa Cassandra Ta #oro By3iiB BiIHOCHO OJMH OJHOTO Ta KI€HTIB 0Oa3u maHuX. [IpeacTaBiceHO KijbKiCHI
pe3yibTaTh, SKi IIOKa3yloTh, SIK Pi3HI HaJalITyBaHHsS Y3TOJUKEHOCTI Ta CIEHapii pO3rOpTaHHS BIUIMBAIOTH Ha
npoxyktuBHicTh Cassandra 1u1st pi3sHHX poOOYMX HABaHTAXKEHb. 30KpeMa, Hallll eKCIIEPUMEHTH JIEMOHCTPYIOTh, 110
CTpOTra y3ro/DKEHICTh JaHUX KOLITYE B CEpeIHbOMY 110 22% NPOJYKTHUBHOCTI Y pa3i IEHTPai30BaHOTO PO3rOPTaHHS
KJIacTepa, a TaKoX MOJKE MPU3BECTH JI0 301IBIICHHS Yacy BUKOHAHHS olepauiil unranss/3anucy po 600% y pasi,
SIKIIO PeITiKK 0a3M AaHuX Ta 11 KIi€HTH T1o0aIbHO po3MoIiieHl M pisHUMH perionamu AWS.

Kumrouosi ciioBa: Cassandra; NoSQL,; posnozisiieHi 6a3u qaHux; perliKalis; BUNPOOyBaHHS IPOAYyKTHBHOCTI;
YCSB,; y3ro/pkeHicTh JaHHX; HPOIYCKHA 3/IaTHICTH; 3aTpUMKa OOCIYroBYBaHHs; CIEHapii po3ropranHs; Amazon
AWS.

NCCIEJOBAHUE MPON3BOAUTEJIBHOCTHU PA3JINYHBIX CHEHAPUEB PA3ZBEPTBIBAHUSA
KJACTEPA CASSANDRA NOSQL C TPEMSI PEINIMKAMHJ B OBJIAYHOM CPEJIE AWS

A. B. I'opoenxo, A. C. Kapnenko, O. M. Tapaciok

Konnenuus pacnpeneneHHbIX PeIIMINPOBAHHBIX HEPEIAHUOHHBIX XPaHWINI JaHHBIX, Takux Kak Cassandra,
HBase, MongoDB u ap. 6bu1a npetoxxena st 3 (HEeKTUBHOTO yIpaBiIeHHs OONBIIMMH JaHHBIMHU, 00BEM KOTOPBIX
MIPEBBIIACT BO3MOKHOCTH TPAJUIMOHHBIX PEIISIIIMOHHBIX CHCTEM YIPaBJICHUS PENISIIMOHHBIMHU 0a3aMH JaHHBIX 110
nx 3((eKTHBHOMY XpaHEeHUIO U 00paboTke. Takue CHCTEMBI XapaKTepH3YIOTCs HAJIMYMEM KOMIPOMHCCA MEXIY
COIJIaCOBAHHOCTBIO, JIOCTYIHOCTBIO, YCTOWYHMBOCTBIO K pa3/eJICHHI0O W BPEMEHHBIMU 3aJepKKaMH. XOTs
KayeCTBEHHbIC OTHOIICHHS MEX/y STHMHU CBOWCTBaMU U ObuIN panee omnpezeiens! B reopemax CAP u PACELC, tem



HEe MeHee, aKTyalbHOW OCTaeTCsi KOJMYECTBEHHAs OLIEHKA CTENeHW M XapaKTepa BIUSHUS Pa3IMYHBIX HACTPOCK
COTJIACOBAHHOCTH JIaHHBIX, MATTEPHOB Pa3BEPTHIBAHMS M APYIUX XapaKTEPHCTHK Ha MPOM3BOAUTEIBHOCTH TaKHX
cucrteM. B crarbe aHanmm3upyeTcss IpPOW3BOAMTENILHOCTH Kiactepa gaHHbIX Cassandra NoSQL u wuccnemyercs
KOMITPOMHCC MEXAY TapaHTHSIMH COTJIACOBAHHOCTH HMH(OpMAalUM ¥ NPOHU3BOIUTEIBHOCTBHIO PACIPENEICHHBIX
XpaHunuiL JaHHbIX. OCHOBHOE BHUMaHHUE YJIEJICHO UCCIIeJOBAHHIO KOJIMYECTBEHHON B3aUMOCBSI3H MEXK/Iy BpEMEHEM
obciyxuBanus Cassandra, ee IPOITYCKHOM CIIOCOOHOCTBIO M HACTPOMKAMHU COTJIACOBAHHOCTH C YYETOM Pa3InYHBIX
CIICHapHeB Pa3BEPTHIBAHMS KJIACTEPa B OJTHOM M HECKOJIBKUX OOJIaYHBIX PETHOHaX. B cTaThe NpUBENEHBI Pe3yIbTaThl
M3MEpEHUs MPOU3BOIUTENBHOCTH KilacTepa Cassandra ¢ TpeMs peluIMKaMH Pa3BepHyTOTo B 00IagHON cpeae Amazon
AWS, mnonydeHHble ¢ momoripio Habopa TectoB YCSB. Kpome Toro, aBTopamu mpemyiokeHa HOTAIMS st
(hopMabHOTrO ONMUCAHUsI CliEHApHEB pa3BepThiBaHus KiacTepa Cassandra u ero y3JI0B OTHOCHTENBHO IPYT JApyra
KIMEHTOB 0a3bl NaHHBIX. [IpeicTaBiIeHbl KOJIMYECTBEHHBIC PE3YJIbTAThI, KOTOPHIC IOKA3bIBAIOT, KAaK pa3HbIC
HACTPOWKM COTJIACOBAHHOCTH U CIIGHAPHH Pa3BEPTHIBAHHUS BIHUSIOT Ha Mpou3BojuTesnbHOCTh Cassandra mams
pa3nMYHBIX pabouyMx HArpy3ok. B 4acTHOCTH, HAIIM 3KCIEPUMEHTHI JEMOHCTPHUPYIOT TOT (hakT, yTo cTporas
COTJIAaCOBAaHHOCTh JIaHHBIX YXYALIaeT IPOU3BOJUTEIBLHOCTh KilacTepa B cpeaHeM Ha 22% B cioydae ero
LEHTPAIN30BaHHOTO pPa3BEPTHIBAHUS, a TaKKe INPHBOAUT K YBEIMYCHUIO BPEMEHH BBINIOJHEHHS OIEpaluil
yreHust/3amucu 10 600% B ciaydae, Koraa perutiku 6a3el qaHHbsix Cassandra u eé KITHEHTHI r100anbHO PacpeaeIeHb!
MEXJy pa3sHbIMU pernoHaMu AWS.

KaroueBbie caoBa: Cassandra; NoSQL; pacmpenenensble 0a3bl JaHHBIX; PEIUIMKALUS, TECTHPOBAHHE
npousBoautenbHocTH; YCSB; coriacoBaHHOCTh JaHHBIX; MPOIYCKHAas CIHOCOOHOCTH; 3aJepXKKa O0OCITyKUBaHUS;
CIIeHapHH pa3BepThiBaHMA; Amazon AWS.
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