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ABSTRACT
Nuclear power plants (NPPs) are complex dynamic systems with multiple sensors and actuators. The
presence of faults in the actuators and sensors can deteriorate the system’s performance and cause serious
safety issues. Although concerns about faults in the sensors and actuators in NPPs is a similarly important
topic, only a few papers have discussed it. In this study, fault detection and diagnosis (FDD) based on neural
networks (NN) and K-nearest neighbour (KNN) is addressed for a pressurized water reactor (PWR). Fault
detection is first determined based on the NN. Second, the KNN algorithm is used to classify the faults.
The proposed approach is capable of classifying a variety of actuator faults, sensor faults, and multiple
simultaneous actuator and sensor faults. A set of simulation results is provided to demonstrate the accuracy
of the FDD method. The classifier performance is further compared with other machine learning techniques.

INDEX TERMS Fault classification, fault detection, K-nearest neighbor (KNN), neural networks (NNs),
nuclear power plants (NPPs), pressurized water reactor (PWR).

I. INTRODUCTION

NUCLEAR power plants (NPPs) play a key role in re-
ducing greenhouse gas emissions. However, the safety

opposed to model-based approaches, data-driven methods do
not rely on explicit knowledge about the process. Instead,
they use the data acquired from the process to construct an
empirical model. Recent studies have developed data-driven
approaches for monitoring NPPs. For instance, the support
vector machine (SVM) algorithm has been used for FDD of
NPPs [2], [3]. The simple and flexible structure of principal
component analysis (PCA) has garnered widespread interest
in the past decade. For instance, Farhan et al. applied data-
driven techniques based on PCA along with Fisher discrim-
inant analysis for a control rod withdrawal fault and an
external reactivity insertion fault [4]. In another study, an
improved PCA was employed for FDD of sensors in an NPP
[5]. Another approach to the diagnosis of faults in an NPP
was proposed in [6] that used data acquired from a full-scope
simulator for a kernel PCA. More recently, the PCA approach
was used with multivariate contribution plots (MCP) [7].

Another alternative approach is a neural network (NN),

of their operation remains a significant concern. Nuclear 
plants are complex dynamic systems with many actuators 
and sensors. Because of their vital role in NPPs, any fault 
in actuators and sensors can degrade the system’s perfor-
mance and cause serious safety issues. Therefore, particu-
lar attention should be paid to the detection and diagnosis 
of such problems to prevent their degradation, which can 
lead to catastrophic damage. To achieve this, model-based 
fault detection and diagnosis (FDD) is applied for NPPs 
[1]. This approach uses a mathematical model to describe 
the normal behavior of the plant. Faults in the process are 
detected and isolated by comparing the system’s behavior 
with the fault-free model. However, difficulty in obtaining 
exact and accurate models of NPPs puts forth hurdles in 
practical applications of model based FDD techniques. As
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which is a network of neurons that learns complex functions
through a series of non-linear transformations. They have
been successfully employed for complex classification tasks
such as image recognition [8], speech recognition [9], and
system identification [10]–[12]. NNs have also been used to
address the fault diagnosis problem in NPPs [13]. A convo-
lutional NN model was developed for abnormality diagnosis
in an NPP in [13] . Three types of sensor fault signals were
simulated in [14] using a modified ensemble empirical mode
decomposition and probabilistic NN. In [14], a distributed
fault diagnosis approach was proposed that was based on a
fuzzy NN and data fusion, and the efficiency of the diagnostic
approach was improved in [15]. In a more recent work [16],
fault diagnosis performance was tested via the comparison of
a radial basis network and the Elman NN.

The K-nearest neighbour (KNN) algorithm is a non-
parametric classification method that can be used for clas-
sification, regression, and pattern recognition problems [17].
The KNN algorithm is simple and easy to implement. The
purpose of KNN classification is to categorize data points
based on the classification of their neighbours, where K
represents the number of nearest neighbors considered for the
determination of the object class. Although KNN has been
successful with fault detection in industrial processes [18]–
[20], there are only a few studies on this approach with fault
diagnosis and identification. In this study, NN and KNN are
applied for the first time for the detection and classification
of single and multiple simultaneous sensor and actuator faults
in a pressurized water reactor (PWR). With this framework,
faults are first detected using an NN approach, and then the
KNN method is used to classify them. Compared to existing
techniques, the KNN approach is more accurate and uses less
computational time.

Studies in the existing body of literature have primarily fo-
cused on faults that affect either the sensor or the actuator but
not both. Moreover, most studies assume that only a single
fault is injected into the system at a time. A realistic study
should establish an FDD for both actuator and sensor failures
and should consider the injection of multiple simultaneous
faults. The proposed FDD in [5] is capable of detecting and
isolating multiple simultaneous fault but it is limited only to
sensor faults. In [21], a simple case of sensor and actuator
faults was studied by the development of a fault detection
technique based on an NN to determine the presence of
saturation faults in the actuator and bias faults in the power
and temperature sensors of a PWR. The present study can
be considered as an extension of [21] by examining drift
faults in sensors and offset faults in the actuator. Furthermore,
the injection of multiple simultaneously sensor and actuator
faults is studied in addition to the single faults. The KNN
algorithm is used to perform the classification of faults. The
main contributions of this paper are as follows:

• The NN technique and KNN algorithm are employed
for fault detection and classification in a PWR.

• Actuator offset, actuator saturation, sensor bias, and
sensor drift faults are studied.

• Both single faults and multiple simultaneous actuator
and sensor faults are considered.

• The proposed classifier is compared to other machine
learning techniques.

The rest of this paper is organized as follows: Section
II provides a description of the PWR process. Section III
presents the data collection for FDD. The two classification
methods are described in Section IV, and Section V describes
the efficacy of the proposed technique. Finally, conclusions
are drawn in Section VI.

II. PRESSURIZED WATER REACTOR
The PWR model used in this study can be found in the
literatue [22]. The PWR mathematical model assumes a point
kinetics equation coupled with six delayed neutron groups
and a lumped thermal hydraulic model. The dynamic model
is described in (1) through (5) [22].

dPr

dt
=

ρt −
6∑

i=1

βi

Λ
Pr +

6∑
i=1

λiCir (1)

dCir

dt
=

βi

Λ
Pr − λiCir, i = 1, 2, . . . 6 (2)

dTf

dt
= HfPr −

1

τf
(Tf − Tc1) (3)

dTc1

dt
= HcPr +

1

τc
(Tf − Tc1)−

2

τr
(Tc1 − Tcin) (4)

dTc2

dt
= HcPr +

1

τc
(Tf − Tc1)−

2

τr
(Tc2 − Tc1) (5)

where Pr is the neutronic power, Λ is the prompt neutron,
and Cir, λ, and βi are the delayed neutron precursors’
concentration, decay constant, and fraction of delayed neu-
trons, respectively; Hf and Hc denote the proportionality
constants; τf , τc, and τr denote the time constants; Tf , Tc1,
and Tc2 are the temperatures at the fuel (node 1) and coolant
(node 2).

III. DATA COLLECTION FOR FDD
This section discusses the application of the NN to detect
faults in the actuator and sensors of the previously described
PWR plant. Data are then collected for the fault classification
exercise. The PWR plant is assumed to be controlled by a
robust PID controller that is carefully tuned and operating in
the range of 80%–100% full power.

A. TYPES OF FAULTS
Six single faults and two simultaneous faults are considered
in this study, as shown in Table 1. The types of faults
considered in this study included bias, drift, actuator offset,
and actuator saturation faults, which are described as follows:

Bias fault. This is one of the most common faults in sen-
sors, corresponding to a constant offset added to the sensor
output, which may be caused by inappropriate calibration
or physical changes in the sensor [23]. Bias failures are a
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TABLE 1. Descriptions of Faults.

Fault ID Process variable Type

Fault 1 Reactivity Actuator offset fault
(AOF) .

Fault 2 Reactivity Actuator saturation
fault (ASF).

Fault 3 Power Power sensor bias
fault (PSBF).

Fault 4 Power Power sensor drift
fault (PSDF).

Fault 5 Temperature Temperature sensor
bias fault (TSBF).

Fault 6 Temperature Temperature sensor
drift fault (TSDF).

Fault 7 Reactivity/ Power Actuator saturation
fault (ASF) + Power
sensor bias fault
(PSBF) .

Fault 8 Reactivity/ Power Actuator saturation
fault (ASF) + Power
sensor drift fault
(PSDF).

FIGURE 1. Feed-forward neural network for fault detection:
xi(i. . . P )—inputs, wij(i. . . p, j. . . k)—weights from input to hidden
layer,bj(j. . . k)—biases of the neurons in the hidden layer, A1—activation
function in the hidden layer, w2j(j. . .K)—weighting functions from hidden to
output layer, b-bias of the output neuron, A2—linear activation function of the
output layer, Y —output.

C. DATA GENERATION FOR FAULT CLASSIFICATION

The fault classification problem is solved using the data of
power, temperature, and the two residuals (e1 and e2). To
create a meaningful representation of the data, four data
points are collected in each of the eight fault cases for 100
simulation runs and are sampled at a frequency of 1000
Hz. The four data measurements in the presence of bias-
type faults in the power sensor are shown in Fig. 3–6.
The variation of the reactor power is shown in Fig. 3. The
variation of the temperature is shown in Fig. 4. The variations
of the two residuals e1 and e2 are shown in Fig. 5 and
Fig. 6, respectively. Only five simulation runs are presented
here. The sensor bias fault was injected randomly and for
each simulation run. For instance, a bias fault occurs at
161 seconds in the first simulation. The fault effect is more

common fault in NPPs, and their maintenance can be costly 
[1]. In this study, the bias fault is injected into the power and 
temperature sensors at a certain time.

Drift fault. This consists of a time-varying offset [24]. The 
drift fault is difficult to detect because the drifting amplitude 
is initially low [25], therefore it is important to have a 
performant sensor drift FDD. Drift faults are common in 
NPPs and can cause power reduction [1]. As with the bias 
fault, the drift fault is injected into the power and temperature 
sensors at a certain time.

Actuator saturation fault. This is when the actuator (con-
trol rod system) exceeds a set saturation value. This phe-
nomenon inevitably must be considered because of physical 
limitations that, in practice, can led to important deterioration 
of the system [26].

Actuator offset fault. This corresponds to an offset added 
to the control rod system at a certain time. This failure 
can occur because of design/ manufacturing defaults in the 
actuator [27].

B. RESIDUAL GENERATION WITH NEURAL NETWORK 
The NN is used to detect faults in the PWR, with two NNs 
trained to represent the power and temperature of the original 
(non-faulty) power plants. Thus, when the nuclear plant 
presents faults, a residual is generated between the faulty 
and non-faulty NPPs. The data generated for training these 
two NNs are described in detail in [21]. Both networks are 
trained independently to adopt the behaviour of the closed-
loop process during normal operation. One NN is dedicated 
to learning the dynamics of the power, whereas the other is 
dedicated to the reactor temperature. Both NNs used in this 
study are two-layer feedforward networks as shown in Fig. 1. 
They have a tanh activation function in the hidden layer (layer 
1) and a linear function in the output layer (layer 2). The 
Levenberg–Marquardt optimization is selected to train the 
networks. This algorithm uses an approximation of Newton’s 
method rather than the gradient descent method. The best 
NNs obtained for the power has the following parameters: 
five n eurons i n t he h idden l ayer, 9 99 t raining e pochs, and 
a mean square error (MSE) of 5, 9.10−4. The best NNs 
obtained for the temperature has the following parameters: 
six neurons in the hidden layer, 1000 training epochs, and an 
MSE of 0.10225.

The proposed fault detection method is based on the 
scheme shown in Fig.2. The input Pdem corresponds to 
power demand and the outputs P and T correspond to the 
power and temperature measures, respectively. The residuals 
result from the measurement error between the sensor mea-
sures and NN estimations, where e1 corresponds to the mea-
surement error between the measured power and the power 
estimated by neural network 1 and e2 corresponds to the 
measurement error between the measured temperature and 
the temperature estimated by neural network 2. Threshold 
alarms are defined t o d etect t he f aults, w hich i s w hen a 
residual value is greater than the alarm threshold.

3



Amine NAIMI et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. Block diagram of the fault detection approach .

obvious for the temperature, whereas it is less noticeable for
the power, which is controlled by the PID controller.
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FIGURE 3. Reactor power in the presence of bias-type faults in the power
sensor.

IV. FAULT CLASSIFICATION METHODS
Three classification algorithms are analysed for this study,
which are the KNN, SVM and NN classifiers. The SVM and
NN classifiers are employed to benchmark the performance
of the KNN classifier.

A. NN-BASED CLASSIFICATION
The standard NN that is used for classification purposes is
characterized by a two-layer feedforward network. They have
a sigmoid function in the hidden layer and a softmax transfer
function in the output layer. The NN structure is shown in
Fig. 7. The hidden layers transform the input data into higher
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FIGURE 4. Reactor temperature in the presence of bias-type faults in the
power sensor.
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FIGURE 5. e1 in the presence of bias-type faults in the power sensor.
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FIGURE 6. e2 in the presence of bias-type faults in the power sensor.
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representations by using the nonlinear transformations:

h = σ(ωx+ b) (6)

where x and h are the input vectors and hidden represen-
tations, respectively; b are the biases of the neurons in the
hidden layer; w are the weights from the input to the hidden
layer; and σ is a sigmoid activation function. The transfor-
mation of (7) without the activation function is applied to the
output of the last hidden layer, as follows:

h′ = ω′h+ b′ (7)

where h′ represents the last hidden layer, b′ represents the
biases of the output neuron, and w′ is the weighting function
from the hidden to the output layer. The softmax function
is then used to calculate each output neuron. In this study,
the neural network is trained using scaled conjugate gradient
back propagation. The goal of training the network is to
maximize its accuracy, which can be defined as follows [28]:

Accuracy =
Number of correct predictions

Total number of predictions
(8)

FIGURE 7. Feed-forward neural network for fault classification, where
xi(i. . .m)—input, Y —output.

B. KNN-BASED CLASSIFICATION

in the Euclidean space and it is assumed that x = (x1, x2, x3,
x4,..., xn) and y = (y1, y2, y3, y4,..., yn), then, the Euclidean
distance of line segment xs can be expressed as follows [31]:

Dist(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2

=

√√√√ n∑
i=1

(xi − yi)
2 (9)

C. SVM CLASSIFIER
The SVM is a machine learning algorithm based on structural
risk minimization and statistical learning that is used for data
classification and regression [32]. The SVM method has been
successfully employed for various applications separating
data into two or more classes. The aim of using the SVM
is to find an optimal hyperplane that separates data points of
one class from those of another class. An optimal hyperplane
is defined as one that maximizes the margin of separation
between two classes. Thus, the SVM is basically employed
to address classes that are linearly separable. For nonlinear
cases, the classifier may not be performant. Hence, kernel
functions are used for nonlinear transformation. A kernel
function turns a nonlinearly separable object into a linearly
separable one by mapping it into a higher dimensional feature
space. Common kernel functions include the linear kernel,
polynomial kernel, and Gaussian radial basis function kernel
[33].

D. TRAINING PROCESS
1) DATA PREPROCESSING
The data collected in Section III are used for training the three
classifiers. Before training the classifiers, it is necessary to
transform the raw measured data into a form that can be input
to the learning classifiers. To succeed with this, the data are
transformed through preprocessing steps. First, the data are
normalized between 0 and 1. The data are then re-sampled
to 100 Hz because the datasets are too large for a personal
computer to accommodate. Finally, the data are reshaped as
a vector matrix.

2) NEURAL NETWORK
For the purpose of training the NN classifier, the data col-
lected are sorted into a training set (50%), validation set
(25%) and testing set (25%). Validation, and testing sets
are used to avoid overfitting and to check the generalization
properties, respectively. The NN is trained using a scaled
conjugate gradient for 1000 training epochs. The number
of hidden layers is increased to 5 because that is where the
largest improvement is achieved. The number output layer is
fixed to 8 as it corresponds to the number of elements in the
target vector.

3) KNN
For the KNN classifier, six different methods available in
MATLAB are trained, namely the fine KNN, medium KNN,
coarse KNN, cosine KNN, and cubic KNN. Table 2 presents

The KNN method is a simple non-parametric classification 
method. Despite the simplicity of the algorithm, it is known 
to perform well. Furthermore, it is an important benchmark 
method [29], [30]. KNN performs the classification task 
based on the similarity index considering the distance mea-
sure; k corresponds to the integer value that is mostly lying 
within the range [3-10]. It is advisable to choose an odd 
value of k to obtain a clear prediction. Among all the input 
classes that are stored in the algorithm, the class decision 
selection is predicted based on the majority votes given by the 
neighboring points correspondingly nearer to the class. Dis-
tance is a key word in this algorithm. Distance measurements 
are used to measure the distance between individuals in a 
space. The Euclidean distance is the most common distance 
measurement method. For example, if x and y are two points
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the definition of each classifier. In this paper, a fivefold
cross validation is performed to avoid overfitting. In this
approach, the data are divided into five folds, of which four
folds are used for training and one is used for testing. This
operation is repeated five times in such a manner that each
fold is used for testing exactly once. The average test error
is obtained by averaging all five folds. Among the six KNN
classifiers, the one presenting the best performance is found
to be the weighted KNN. The classification accuracy of the
six classifiers are detailed in the appendix (Table 8). For the
rest of the paper, the KNN model considered is the weighted
one.

4) SVM
For the SVM classifier, six different methods available in
MATLAB are trained: linear SVM, quadratic SVM, cubic
SVM, fine Gaussian SVM, medium Gaussian SVM, and
coarse Gaussian SVM. The definition of each classifier is
presented in Table 2. As KNN, the performance of SVM is
also evaluated using the fivefold cross-validation. Among the
six SVM classifiers, the fine Gaussian SVM is found to be
the most performant. The classification accuracy of the six
classifiers are provided in the appendix (Table 8). For the
remainder of the paper, the SVM model considered is the fine
Gaussian SVM.

V. FAULT CLASSIFICATION RESULTS
The simulation is performed to test the performance of the
three classifiers: the KNN, NN, and SVM classifiers. The
three classifiers are trained to classify the eight fault cases
(Table 1). Fig. 8 shows the training performance of the NN. It
can be seen that the training performance of the NN is good.
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FIGURE 8. Mean square error performance of the network.

The performances of the three classifiers are evaluated
with confusion matrix tables. The basic statistical results of
the confusion matrix can be extended to the following three
indicators: accuracy, precision, and recall, and the indicators
are calculated as follows [31]:

TABLE 2. Classifiers from MATLAB Machine learning toolbox [34].

Classification
algorithms

Classifier types Description (from
Matlab)

SVM

Linear SVM Proceeds to a linear
separation between
classes, using the
linear kernel.

Quadratic SVM uses the quadratic
kernel.

Cubic SVM Uses the cubic ker-
nel.

Fine Gaussian SVM Makes finely-
detailed distinctions
between classes
using the Gaussian
kernel with the
kernel scale set to√
P/4 where P

is the number of
predictors.

Medium Gaussian SVM Makes fewer
distinctions than
a Fine Gaussian
SVM, using the
Gaussian kernel with
the kernel scale set
to

√
P where P

is the number of
predictors.

Coarse Gaussian SVM Makes coarse
distinctions between
the classes using the
Gaussian kernel with
the kernel scale set
to

√
P × 4 where

P is the number of
predictors.

KNN

Fine KNN makes finely detailed
distinctions between
classes, with K=1.

Medium KNN Makes fewer distinc-
tions than a Fine
KNN, with K=10.

Coarse KNN Makes coarse
distinction between
classes, with K=100.

Cosine KNN Uses a cosine
distance metric, with
K=10.

Cubic KNN Uses a cubic distance
metric, with K=10.

Weighted KNN Uses a weighted
distance metric, with
K=10.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

6
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where TP and TN are true positive and true negative, re-
spectively; FP and FN are, respectively, false positive and
negative.

Table 3-5 show the confusion matrices obtained for the dif-
ferent classifiers, with the diagonal elements representing the
test samples that are correctly classified and the off-diagonal
elements representing those that are wrongly classified. The
rows of the tables correspond to all faults in the true class.
The columns denote the predicted class. Table 3 shows the
confusion matrix of the NN classifier. Only faults that belong
to F2 or F5 are correctly classified. Conversely, the other
six faults have poor classification accuracy, notably those
that belong to F1, F3 or F4. Of the faults belonging to F1,
44.9% are correctly classified, whereas 42.6% are incorrectly
classified as F4. Thus, F1 and F4 have an equal chance
of being the classification outcome when F1 occurs. There
is a similar problem for faults belonging to F4; 36.5% are
correctly classified as F4, and 35.4% are misclassified as F1.
Faults belonging to F3 have 46.7% correctly classified and
10.1%, 15.1%, and 20.2% incorrectly classified as F2, F5,
and F6, respectively. These facts demonstrate that the NN
classifier is imprecise and unreliable. Table 4 is the confusion
matrix of the SVM classifier. In general, the results are more
or less correct, except that there are two fault modes that are
poorly classified (those belonging to F3 or F4). Of the faults
belonging to F3, 24.1% are misclassified as F1, and 22.7%
are misclassified as F4. Faults belonging to F4 have only
31.6% correctly classified and 54.5% incorrectly classified.
This means that faults belonging to F4 have a greater chance
of being wrongly classified than of being correctly classified.
The overall 65.3% accuracy of SVM shows that it has better
overall accuracy than the NN classifier (57.5%). However,
the SVM classification accuracy performed poorly in one
fault mode (F4). Table 5 is the confusion matrix with the
KNN classifier. It is worth noting that the KNN classifier
has better accuracy than the others. The overall accuracy is
correct, but it can be seen that faults belonging to F4 are the
least accurate. They have 69% correctly classified and 24.9%
incorrectly classified as F3. The KNN classifier presents an
overall accuracy of 85.3%, as compared to 68.5% and 57.5%
for the SVM and NN classifiers, respectively, meaning that
KNN is undoubtedly a better performer than the others.

TABLE 3. Confusion matrix of the dataset using NN classifier (test set)

F1 F2 F3 F4 F5 F6 F7 F8
Fault 1 (F1) 44.9% 0% 0% 42.6% 0.3% 0% 5.7% 6.5%
Fault 2 (F2) 1.2% 71.6% 4.7% 1.2% 3.8% 4.3% 11.5% 1.7%
Fault 3 (F3) 1.8% 10.1% 46.7% 1.7% 15.1% 20.2% 3.7% 0.7%
Fault 4 (F4) 35.4% 0% 0% 36.5% 0% 0% 15.2% 12.8%
Fault 5 (F5) 0% 0% 1.7% 0% 88.9% 0% 4.8% 1.5%
Fault 6 (F6) 2.2% 3% 29.4% 2.2% 9.3% 52% 1.3% 0.2%
Fault 7 (F7) 6.7% 1% 0.2% 7.9% 0% 0% 61.3% 22.4%
Fault 8 (F8) 2.9% 0% 0% 2.7% 0% 0% 23.6% 70.7%

TABLE 4. Confusion matrix of the dataset using SVM classifer (validation set)

F1 F2 F3 F4 F5 F6 F7 F8
Fault 1 (F1) 60.2% 3.4% 5.1% 29.5% 0% 1.8% 0% 0%
Fault 2 (F2) 7.7% 81.5% 1.9% 7.8% 0% 1% 0.1% 0%
Fault 3 (F3) 24.1% 3.3% 48.4% 22.7% 0.1% 1.2% 0.1% 0%
Fault 4 (F4) 54.5% 3.4% 8.9% 31.6% 0% 1.7% 0% 0.0%
Fault 5 (F5) 12.9% 2.9% 6.9% 12.6% 64% 0.2% 0.5% 0.1%
Fault 6 (F6) 12.3% 1.9% 3.6% 7.4% 0% 73.8% 1% 0%
Fault 7 (F7) 0.3% 5.3% 1.8% 0.6% 1.7% 5.5% 82.1% 2.7%
Fault 8 (F8) 0% 0.7% 0.7% 0% 0.5% 0.6% 16.4% 81.1%

TABLE 5. Confusion matrix of the dataset using KNN classifier (validation set)

F1 F2 F3 F4 F5 F6 F7 F8
Fault 1 (F1) 91.8% 0.1% 1.3% 6.4% 0.3% 0.1% 0% 0%
Fault 2 (F2) 16.0% 82.2% 0.5% 0.1% 0% 0% 1% 0.1%
Fault 3 (F3) 1.5% 0.4% 80.5% 15.4% 1.5% 0.3% 0.4% 0.1%
Fault 4 (F4) 5.5% 0.1% 24.9% 69% 0.4% 0.2% 0% 0.0%
Fault 5 (F5) 7.7% 0.3% 3.2% 0.3% 87.5% 0% 0.9% 0.1%
Fault 6 (F6) 0% 0.1% 0.1% 0.3% 0% 98.4% 0.6% 0.4%
Fault 7 (F7) 0% 4.6% 1.1% 0.1% 1.2% 1.3% 86% 5.7%
Fault 8 (F8) 0% 0.6% 0.2% 0% 0.2% 3.1% 9% 86.9%

performance under different decision thresholds; therefore, it
is a good tool for evaluating the performance of an algorithm.
The ROC curves generated to evaluate the NN classifier are
shown in Fig. 9. From ROC curve shapes, it can be said that
NN is a reasonably accurate algorithm for the eight faults
because the curves are all away from the diagonal. For the
sake of brevity, the ROC curves for KNN and SVM are not
provided. Instead, the area under curve (AUC) is used as a
summary of the ROC curve and describes how much the
curve is stretched toward the upper left corner of the diagonal
[35]. The AUC for the different classifiers is summarized in
Table 6, and the overall performance is given in Table 7.
The AUC measurements reveal good classification accuracy
for the three classifiers. Nevertheless, the KNN classifier has
far better classification performance, with an average AUC
of 0.95. The SVM and NN classifiers present an average
AUC of 0.91 and 0.87, respectively. In addition to being
accurate, the KNN classifier has the lowest computational
time with a training time of 3.7× 101 seconds, as compared
to 1.15× 103 seconds and 4.5× 104 seconds for the NN and
SVM classifiers, respectively.

TABLE 6. AUC values of the classifers

Fault type in PWR ANN classifier KNN classifier SVM classifier
Fault 1 0.88 0.97 0.86
Fault 2 0.92 0.90 0.98
Fault 3 0.85 0.96 0.88
Fault 4 0.85 0.94 0.82
Fault 5 0.90 0.95 0.91
Fault 6 0.88 1 0.96
Fault 7 0.82 0.97 0.97
Fault 8 0.90 0.97 0.93

TABLE 7. Performance comparison of the classifiers

Methods Average AUC Average accuracy Execution time
KNN 0.95 85.3% 3.7× 101 s
SVM 0.91 63.3% 4.5× 104 s
NN 0.87 57.5% 1.15× 103 s

Receiver operating characteristic (ROC) curves are also 
used to analyse the performance of the classifiers. By defi-
nition, an ROC curve shows the true positive rate versus the 
false positive rate for different thresholds of the classifier out-
put. This approach is then used to visualize the classification
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FIGURE 9. ROC curves of the dataset using NN classifier.

VI. CONCLUSIONS
This paper proposes a (FDD) method using NN and KNN
approaches, where NN is used for fault detection and KNN
is used for fault classification. In the diagnosis process,
the data obtained from the PWR reactor are used to train
the classifiers. Actuator faults and some types of sensor
faults, such as drift and bias faults, are employed to test
the classifiers. Moreover, the injection of multiple simultane-
ous faults is considered. The proposed classification method
demonstrates good performance and can be used effectively
for the diagnosis of PWR faults. Eight different faults have
been successfully classified, and the KNN classifier is also
compared to two other machine learning algorithms (NN and
SVM). The performance of the KNN classifier is better than
the other classifiers in identifying the single and multiple
simultanous sensor and actuator faults.

A detailed analysis has been performed to compare the per-
formance of the classifiers by computing ROC curves, AUC
measures, and confusion matrices. It has been observed that
the KNN has the highest AUC average than the NN and SVM
classifiers. The confusion matrices confirm the outstanding
performance of the KNN classifier over the other techniques.
The KNN classifier has indeed an overall accuracy of 85.3%,
as compared to 68.5% and 57.5% for the SVM and NN clas-
sifiers, respectively. The KNN algorithm is then doubtessly a
better performer than the other techniques. SVM has a better
overall accuracy than the NN classifier. However, the SVM
classifier is defective as it fails in classifying the fault F4;
the fault F4 has more chance of being wrongly classified as
F1 (54.5%) than of being correctly classified (31.6%). The
NN classifier performs poorly in classifying faults belonging
to F1 and F4 but it is not classified as defective. In addition
to providing better classification accuracy, the KNN is also
found to be less computationally expensive in comparison to
the NN and SVM methods.

The simple architecture of the proposed KNN algorithm

allows easy implementation. But before that the integration
of the proposed classifier in a real power plant must follow
several stages of verification and validation (V&V), review,
and approvals [36], [37] . Future work will investigate an
ensemble classifier that combines NN and KNN to improve
the efficiency and accuracy of the detection and diagnosis of
faults in a PWR.

APPENDIX. A
Table 8 presents the classification accuracy of the KNN and
SVM classifiers.

TABLE 8. Performance of the SVM and KNN Classifiers.

Machine
learning
method

Subgroup Average
accuracy
(%)

Training time
(s)

SVM

Linear SVM 22.1 1.215× 105

Quadratic SVM 34.4 1.497× 105

Cubic SVM 19.9 1, 309× 105

Fine Gaussian
SVM

65.5 4, 550× 104.

Medium
Gaussian SVM

62.3 4, 052× 104

Coarse Gaussian
SVM

57.9 5, 365× 104

KNN

Fine KNN 82.6 2, 037× 101

Medium KNN 84.7 2, 255× 101

Coarse KNN 77.6 7, 812× 101

Cosine KNN 74.3 2, 935× 102

Cubic KNN 84.7 4, 152× 101

Weighted KNN 85.3 3, 700× 101
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