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ABSTRACT Nuclear power plants (NPPs) are complex dynamic systems with multiple sensors and
actuators. The presence of faults in the actuators and sensors can deteriorate the system’s performance
and cause serious safety issues. This calls for the development of fault detection and diagnosis systems
for detection and isolation of such faults. In this study, fault detection and diagnosis (FDD) based on neural
networks (NN) and K-nearest neighbour (KNN) algorithm is applied to a pressurized water reactor (PWR).
Fault detection is first determined based on the NN. Second, the KNN algorithm is used to classify the
faults. The proposed approach is capable of classifying a variety of actuator faults, sensor faults, and multiple
simultaneous actuator and sensor faults. A set of simulation results is provided to demonstrate the accuracy
of the FDDmethod. The classifier performance is further compared with other machine learning techniques.

INDEX TERMS Fault classification, fault detection, K-nearest neighbor (KNN), neural networks (NNs),
nuclear power plants (NPPs), pressurized water reactor (PWR).

I. INTRODUCTION
Nuclear power plants (NPPs) play a key role in reducing
greenhouse gas emissions. However, the safety of their oper-
ation remains a significant concern. Nuclear plants are com-
plex dynamic systems with many actuators and sensors.
Because of their vital role in NPPs, any fault in actuators
and sensors can degrade the system’s performance and cause
serious safety issues. Therefore, particular attention should
be paid to the detection and diagnosis of such problems to
prevent their degradation, which can lead to catastrophic
damage. To achieve this, model-based fault detection and
diagnosis (FDD) is applied for NPPs [1]. This approach
uses a mathematical model to describe the normal behav-
ior of the plant. Faults in the process are detected and
isolated by comparing the system’s behavior with the
fault-free model. However, difficulty in obtaining exact and
accurate models of NPPs puts forth hurdles in practical
applications of model based FDD techniques. As opposed
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to model-based approaches, data-driven methods do not
rely on explicit knowledge about the process. Instead, they
use the data acquired from the process to construct an
empirical model. Recent studies have developed data-driven
approaches for monitoring NPPs. For instance, the support
vector machine (SVM) algorithm has been used for FDD
of NPPs [2], [3]. The simple and flexible structure of prin-
cipal component analysis (PCA) has garnered widespread
interest in the past decade. For instance, Farhan et al.
applied data-driven techniques based on PCA along with
Fisher discriminant analysis for a control rod withdrawal
fault and an external reactivity insertion fault [4]. In another
study, an improved PCA was employed for FDD of sensors
in an NPP [5]. Another approach to the diagnosis of faults
in an NPP was proposed in [6] that used data acquired
from a full-scope simulator for a kernel PCA. More recently,
the PCA approach was used with multivariate contribution
plots (MCP) [7].

Another alternative approach is a neural network (NN),
which is a network of neurons that learns complex
functions through a series of non-linear transformations.
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They have been successfully employed for complex classi-
fication tasks such as image recognition [8], speech recog-
nition [9], and system identification [10]–[12]. NNs have
also been used to address the fault diagnosis problem in
NPPs [13]. A convolutional NN model was developed for
abnormality diagnosis in an NPP in [13]. Three types of
sensor fault signals were simulated in [14] using a modified
ensemble empirical mode decomposition and probabilistic
NN. In [14], a distributed fault diagnosis approach was pro-
posed that was based on a fuzzy NN and data fusion, and the
efficiency of the diagnostic approach was improved in [15].
In a more recent work [16], fault diagnosis performance was
tested via the comparison of a radial basis network and the
Elman NN.

The K-nearest neighbour (KNN) algorithm is a non-
parametric classification method that can be used for clas-
sification, regression, and pattern recognition problems [17].
The KNN algorithm is simple and easy to implement. The
purpose of KNN classification is to categorize data points
based on the classification of their neighbours, where K
represents the number of nearest neighbors considered for
the determination of the object class. Although KNN has
been successful with fault detection in industrial processes
[18]–[20], there are only a few studies on this approach
with fault diagnosis and identification. In this study, NN and
KNN are applied for the first time for the detection and
classification of single and multiple simultaneous sensor and
actuator faults in a pressurizedwater reactor (PWR).With this
framework, faults are first detected using an NN approach,
and then the KNNmethod is used to classify them. Compared
to existing techniques, the KNN approach is more accurate
and uses less computational time.

Studies in the existing body of literature have primarily
focused on faults that affect either the sensor or the actuator
but not both. Moreover, most studies assume that only a
single fault is injected into the system at a time. A real-
istic study should establish an FDD for both actuator and
sensor failures and should consider the injection of multiple
simultaneous faults. The proposed FDD in [5] is capable
of detecting and isolating multiple simultaneous fault but it
is limited only to sensor faults. In [21], a simple case of
sensor and actuator faults was studied by the development
of a fault detection technique based on an NN to determine
the presence of saturation faults in the actuator and bias
faults in the power and temperature sensors of a PWR. The
present study can be considered as an extension of [21] by
examining drift faults in sensors and offset faults in the actu-
ator. Furthermore, the injection of multiple simultaneously
sensor and actuator faults is studied in addition to the single
faults. The KNN algorithm is used to perform the classi-
fication of faults. The main contributions of this paper are
as follows:
• The NN technique and KNN algorithm are employed for
fault detection and classification in a PWR.

• Actuator offset, actuator saturation, sensor bias, and
sensor drift faults are studied.

• Both single faults and multiple simultaneous actuator
and sensor faults are considered.

• The proposed classifier is compared to other machine
learning techniques.

The rest of this paper is organized as follows: Section II
provides a description of the PWR process. Section III
presents the data collection for FDD. The two classification
methods are described in Section IV, and Section V describes
the efficacy of the proposed technique. Finally, conclusions
are drawn in Section VI.

II. PRESSURIZED WATER REACTOR
The PWR model used in this study can be found in the
literatue [22]. The PWRmathematical model assumes a point
kinetics equation coupled with six delayed neutron groups
and a lumped thermal hydraulic model. The dynamic model
is described in (1) through (5) [22].

dP
dt
=

ρt −
6∑
i=1
βi

3
P+

6∑
i=1

λiCi (1)

dCi
dt
=
βi

3
P− λiCi, i = 1, 2, . . . 6 (2)

dTf
dt
= Hf P−

1
τf

(
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)
(3)

dTc1
dt
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1
τc

(
Tf − Tc1

)
−

2
τr
(Tc1 − Tcin) (4)

dTc2
dt
= HcP+

1
τc

(
Tf − Tc1

)
−

2
τr
(Tc2 − Tc1) (5)

where P is the neutronic power,3 is the prompt neutron gen-
eration time, andCi, λi, and βi are the delayed neutron precur-
sors’ concentration, decay constant, and fraction of delayed
neutrons, respectively; Hf and Hc denote the proportionality
constants; τf , τc, and τr denote the time constants; Tf , Tc1,
and Tc2 are the temperatures of fuel, coolant nodes 1 and 2,
respectively.

III. DATA COLLECTION FOR FDD
This section discusses the application of the NN to detect
faults in the actuator and sensors of the previously described
PWR plant. The PWR plant is assumed to be controlled by a
robust PID controller that is carefully tuned and operating in
the range of 80%–100% full power.

A. TYPES OF FAULTS
Six single faults and two simultaneous faults are considered in
this study, as shown in Table 1. The types of faults considered
in this study included bias, drift, actuator offset, and actuator
saturation faults, which are described as follows:
Bias fault. This is one of the most common faults in

sensors, corresponding to a constant offset added to the sensor
output, which may be caused by inappropriate calibration
or physical changes in the sensor [23]. Bias failures are
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a common fault in NPPs, and their maintenance can be
costly [1]. In this study, the bias fault is injected into the power
and temperature sensors at a certain time.
Drift fault. This consists of a time-varying offset [24]. The

drift fault is difficult to detect because the drifting amplitude
is initially low [25], therefore it is important to have a perfor-
mant sensor drift FDD. Drift faults are common in NPPs and
can cause power reduction [1]. As with the bias fault, the drift
fault is injected into the power and temperature sensors at a
certain time.
Actuator saturation fault. This is when the actuator

(control rod system) exceeds a set saturation value. This phe-
nomenon inevitably must be considered because of physical
limitations that, in practice, can led to important deterioration
of the system [26].
Actuator offset fault. This corresponds to an offset added

to the control rod system at a certain time. This failure
can occur because of design/ manufacturing defects in the
actuator [27].

B. RESIDUAL GENERATION WITH NEURAL NETWORK
The NN is used to detect faults in the PWR, with two NNs
trained to represent the power and temperature of the origi-
nal (non-faulty) power plants. Thus, when the nuclear plant
presents faults, a residual is generated between the faulty
and non-faulty NPPs. The data generated for training these
two NNs are described in detail in [21]. Both networks are
trained independently to adopt the behaviour of the closed-
loop process during normal operation. One NN is dedicated
to learning the dynamics of the power, whereas the other
is dedicated to the reactor temperature. Both NNs used in
this study are two-layer feedforward networks as shown in
Fig. 1. They have a tanh activation function in the hidden layer
(layer 1) and a linear function in the output layer (layer 2). The
Levenberg–Marquardt optimization is selected to train the
networks. This algorithm uses an approximation of Newton’s
method rather than the gradient descent method. The best
NNs obtained for the power has the following parameters:
five neurons in the hidden layer, 999 training epochs, and
a mean square error (MSE) of 5, 9.10−4. The best NNs
obtained for the temperature has the following parameters:
six neurons in the hidden layer, 1000 training epochs, and an
MSE of 0.10225.

The proposed fault detection method is based on the
scheme shown in Fig.2. The input Pdem corresponds to power
demand and the outputs P and T correspond to the power
and temperature measures, respectively. The residuals result
from the measurement error between the sensor measures and
NN estimations, where e1 corresponds to the measurement
error between the measured power and the power estimated
by neural network 1 and e2 corresponds to the measurement
error between the measured temperature and the temperature
estimated by neural network 2. Threshold alarms are defined
to detect the faults, which is when a residual value is greater
than the alarm threshold.

TABLE 1. Descriptions of faults.

FIGURE 1. Feed-forward neural network for fault detection:
xi (i . . . P)—inputs, wij (i . . . p, j . . . k)—weights from input to hidden layer,
bj (j . . . k)—biases of the neurons in the hidden layer, A1—activation
function in the hidden layer, w2j (j . . . K )—weighting functions from
hidden to output layer, b-bias of the output neuron, A2—linear activation
function of the output layer, Y —output.

C. DATA GENERATION FOR FAULT CLASSIFICATION
The fault classification problem is solved using the data of
power, temperature, and the two residuals (e1 and e2). To cre-
ate a meaningful representation of the data, four data points
are collected in each of the eight fault cases for 100 simulation
runs and are sampled at a frequency of 1000 Hz. The four data
measurements in the presence of bias-type faults in the power
sensor are shown in Fig. 3–6. The variation of the reactor
power is shown in Fig. 3. The variation of the temperature
is shown in Fig. 4. The variations of the two residuals e1
and e2 are shown in Fig. 5 and Fig. 6, respectively. Only five
simulation runs are presented here. The sensor bias fault was
injected randomly and for each simulation run. For instance,
a bias fault occurs at 161 seconds in the first simulation. The
fault effect is more obvious for the temperature, whereas it is
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FIGURE 2. Block diagram of the fault detection approach.

FIGURE 3. Reactor power in the presence of bias-type faults in the power
sensor.

less noticeable for the power, which is controlled by the PID
controller.

IV. FAULT CLASSIFICATION METHODS
Three classification algorithms are analysed for this study,
which are the KNN, SVM and NN classifiers. The SVM and
NN classifiers are employed to benchmark the performance
of the KNN classifier.

A. NN-BASED CLASSIFICATION
The standard NN that is used for classification purposes
is characterized by a two-layer feedforward network. They
have a sigmoid function in the hidden layer and a soft-
max transfer function in the output layer. The NN struc-
ture is shown in Fig. 7. The hidden layers transform the
input data into higher representations by using the nonlinear
transformations:

h = σ (ωx + b) (6)

FIGURE 4. Reactor temperature in the presence of bias-type faults in the
power sensor.

FIGURE 5. e1 in the presence of bias-type faults in the power sensor.

FIGURE 6. e2 in the presence of bias-type faults in the power sensor.

where x and h are the input vectors and hidden representa-
tions, respectively; b are the biases of the neurons in the hid-
den layer;w are theweights from the input to the hidden layer;
and σ is a sigmoid activation function. The transformation
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FIGURE 7. Feed-forward neural network for fault classification, where
xi (i . . . m)—input, Y —output.

of (7) without the activation function is applied to the output
of the last hidden layer, as follows:

h′ = ω′h+ b′ (7)

where h′ represents the last hidden layer, b′ represents the
biases of the output neuron, and w′ is the weighting function
from the hidden to the output layer. The softmax function
is then used to calculate each output neuron. In this study,
the neural network is trained using scaled conjugate gradient
back propagation. The goal of training the network is to
maximize its accuracy, which can be defined as follows [28]:

Accuracy =
Number of correct predictions
Total number of predictions

(8)

B. KNN-BASED CLASSIFICATION
The KNN method is a simple non-parametric classification
method. Despite the simplicity of the algorithm, it is known
to perform well. Furthermore, it is an important benchmark
method [29], [30]. KNN performs the classification task
based on the similarity index considering the distance mea-
sure; k corresponds to the integer value that is mostly lying
within the range [3-10]. It is advisable to choose an odd
value of k to obtain a clear prediction. Among all the input
classes that are stored in the algorithm, the class decision
selection is predicted based on the majority votes given by
the neighboring points correspondingly nearer to the class.
Distance is a key word in this algorithm. Distance measure-
ments are used tomeasure the distance between individuals in
a space. The Euclidean distance is the most common distance
measurement method. For example, if x and y are two points
in the Euclidean space and it is assumed that x = (x1, x2,
x3, x4, . . . , xn) and y = (y1, y2, y3, y4, . . . , yn), then, the
Euclidean distance of line segment xs can be expressed as
follows [31]:

Dist(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2

=

√√√√ n∑
i=1

(xi − yi)2 (9)

C. SVM CLASSIFIER
The SVM is a machine learning algorithm based on structural
risk minimization and statistical learning that is used for data
classification and regression [32]. The SVMmethod has been
successfully employed for various applications separating
data into two or more classes. The aim of using the SVM is
to find an optimal hyperplane that separates data points of
one class from those of another class. An optimal hyperplane
is defined as one that maximizes the margin of separation
between two classes. Thus, the SVM is basically employed
to address classes that are linearly separable. For nonlinear
cases, the classifier may not perform well. Hence, kernel
functions are used for nonlinear transformation. A kernel
function turns a nonlinearly separable object into a linearly
separable one by mapping it into a higher dimensional fea-
ture space. Common kernel functions include the linear ker-
nel, polynomial kernel, and Gaussian radial basis function
kernel [33].

D. TRAINING PROCESS
1) DATA PREPROCESSING
The data collected in Section III are used for training the three
classifiers. Before training the classifiers, it is necessary to
transform the raw measured data into a form that can be input
to the learning classifiers. To succeed with this, the data are
transformed through preprocessing steps. First, the data are
normalized between 0 and 1. The data are then re-sampled
to 100 Hz because the datasets are too large for a personal
computer to accommodate. Finally, the data are reshaped as
a vector matrix.

2) NEURAL NETWORK
For the purpose of training the NN classifier, the data col-
lected are sorted into a training set (50%), validation set
(25%) and testing set (25%). Validation, and testing sets are
used to avoid overfitting and to check the generalization
properties, respectively. The NN is trained using a scaled
conjugate gradient for 1000 training epochs. The number of
neurons in the hidden layer is increased to five because that
is where the largest improvement is achieved. The number of
neurons in the output layer is fixed to eight as it corresponds
to the number of elements in the target vector.

3) KNN
For the KNN classifier, six different methods available in
MATLAB are trained, namely the fine KNN, medium KNN,
coarse KNN, cosine KNN, and cubic KNN. Table 2 presents
the definition of each classifier. In this paper, a fivefold cross
validation is performed to avoid overfitting. In this approach,
the data are divided into five folds, of which four folds are
used for training and one is used for testing. This operation
is repeated five times in such a manner that each fold is used
for testing exactly once. The average test error is obtained
by averaging all five folds. Among the six KNN classifiers,
the one presenting the best performance is found to be the
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weighted KNN. The classification accuracy of the six classi-
fiers are detailed in the appendix (Table 8). For the rest of the
paper, the KNN model considered is the weighted one.

4) SVM
For the SVM classifier, six different methods available in
MATLAB are trained: linear SVM, quadratic SVM, cubic
SVM, fine Gaussian SVM, medium Gaussian SVM, and
coarse Gaussian SVM. The definition of each classifier is
presented in Table 2. As KNN, the performance of SVM is
also evaluated using the fivefold cross-validation. Among the
six SVM classifiers, the fine Gaussian SVM is found to be
the most performant. The classification accuracy of the six
classifiers are provided in the appendix (Table 8). For the
remainder of the paper, the SVMmodel considered is the fine
Gaussian SVM.

V. FAULT CLASSIFICATION RESULTS
The simulation is performed to test the performance of the
three classifiers: the KNN, NN, and SVM classifiers. The
three classifiers are trained to classify the eight fault cases
(Table 1). Fig. 8 shows the training performance of the NN.
It can be seen that the training performance of the NN is good.

FIGURE 8. Mean square error performance of the network.

The performances of the three classifiers are evaluated
with confusion matrix tables. The basic statistical results of
the confusion matrix can be extended to the following three
indicators: accuracy, precision, and recall, and the indicators
are calculated as follows [31]:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

Precision =
TP

TP+ FP
(11)

Recall =
TP

TP+ FN
(12)

where TP and TN are true positive and true negative,
respectively; FP and FN are, respectively, false positive and
negative.

TABLE 2. Classifiers from MATLAB machine learning toolbox [34].

Table 3-5 show the confusion matrices obtained for the dif-
ferent classifiers, with the diagonal elements representing the
test samples that are correctly classified and the off-diagonal
elements representing those that are wrongly classified. The
rows of the tables correspond to all faults in the true class.
The columns denote the predicted class. Table 3 shows the
confusion matrix of the NN classifier. Only faults that belong
to F2 or F5 are correctly classified. Conversely, the other
six faults have poor classification accuracy, notably those
that belong to F1, F3 or F4. Of the faults belonging to F1,
44.9% are correctly classified, whereas 42.6% are incorrectly
classified as F4. Thus, F1 and F4 have an equal chance
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TABLE 3. Confusion matrix of the dataset using NN classifier (test set).

TABLE 4. Confusion matrix of the dataset using SVM classifer
(validation set).

TABLE 5. Confusion matrix of the dataset using KNN classifier
(validation set).

of being the classification outcome when F1 occurs. There
is a similar problem for faults belonging to F4; 36.5% are
correctly classified as F4, and 35.4% are misclassified as F1.
Faults belonging to F3 have 46.7% correctly classified and
10.1%, 15.1%, and 20.2% incorrectly classified as F2, F5,
and F6, respectively. These facts demonstrate that the NN
classifier is imprecise and unreliable. Table 4 is the confusion
matrix of the SVM classifier. In general, the results are more
or less correct, except that there are two fault modes that are
poorly classified (those belonging to F3 or F4). Of the faults
belonging to F3, 24.1% are misclassified as F1, and 22.7%
are misclassified as F4. Faults belonging to F4 have only
31.6% correctly classified and 54.5% incorrectly classified.
This means that faults belonging to F4 have a greater chance
of being wrongly classified than of being correctly classified.
The overall 65.3% accuracy of SVM shows that it has better
overall accuracy than the NN classifier (57.5%). However,
the SVM classification accuracy performed poorly in one
fault mode (F4). Table 5 is the confusion matrix with the
KNN classifier. It is worth noting that the KNN classifier
has better accuracy than the others. The overall accuracy is
correct, but it can be seen that faults belonging to F4 are the
least accurate. They have 69% correctly classified and 24.9%
incorrectly classified as F3. The KNN classifier presents an
overall accuracy of 85.3%, as compared to 68.5% and 57.5%
for the SVM and NN classifiers, respectively, meaning that
KNN is undoubtedly a better performer than the others.

FIGURE 9. ROC curves of the dataset using NN classifier.

TABLE 6. AUC values of the classifers.

TABLE 7. Performance comparison of the classifiers.

Receiver operating characteristic (ROC) curves are also
used to analyse the performance of the classifiers. By defi-
nition, an ROC curve shows the true positive rate versus the
false positive rate for different thresholds of the classifier
output. This approach is then used to visualize the clas-
sification performance under different decision thresholds;
therefore, it is a good tool for evaluating the performance of
an algorithm. The ROC curves generated to evaluate the NN
classifier are shown in Fig. 9. From ROC curve shapes, it can
be said that NN is a reasonably accurate algorithm for the
eight faults because the curves are all away from the diagonal.
For the sake of brevity, the ROC curves for KNN and SVM
are not provided. Instead, the area under curve (AUC) is used
as a summary of the ROC curve and describes how much the
curve is stretched toward the upper left corner of the diago-
nal [35]. The AUC for the different classifiers is summarized
in Table 6, and the overall performance is given in Table 7.
The AUC measurements reveal good classification accuracy
for the three classifiers. Nevertheless, the KNN classifier has
far better classification performance, with an average AUC
of 0.95. The SVM and NN classifiers present an average
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TABLE 8. Performance of the SVM and KNN classifiers.

AUC of 0.91 and 0.87, respectively. In addition to being
accurate, the KNN classifier has the lowest computational
time with a training time of 3.7× 101 seconds, as compared
to 1.15× 103 seconds and 4.5× 104 seconds for the NN and
SVM classifiers, respectively.

VI. CONCLUSION
This paper proposes a (FDD) method using NN and KNN
approaches, where NN is used for fault detection and KNN
is used for fault classification. In the diagnosis process, the
data obtained from the PWR reactor are used to train the
classifiers. Actuator faults and some types of sensor faults,
such as drift and bias faults, are employed to test the classi-
fiers. Moreover, the injection of multiple simultaneous faults
is considered. The proposed classification method demon-
strates good performance and can be used effectively for the
diagnosis of PWR faults. Eight different faults have been
successfully classified.

The KNN classifier is also compared to two other machine
learning algorithms (NN and SVM). The performance of
the KNN classifier is better than the other classifiers in
identifying the single and multiple simultanous sensor and
actuator faults. A detailed analysis has been performed to
compare the performance of the classifiers by computing
ROC curves, AUC measures, and confusion matrices. It has
been observed that the KNN has the highest AUC average
than the NN and SVM classifiers. The confusion matrices
confirm the outstanding performance of the KNN classifier
over the other techniques. The KNN classifier has indeed
an overall accuracy of 85.3%, as compared to 68.5% and
57.5% for the SVM and NN classifiers, respectively. The
KNN algorithm is then doubtessly a better performer than
the other techniques. SVM has a better overall accuracy than
the NN classifier. However, the SVM classifier is defec-
tive as it fails in classifying the fault F4; the fault F4 has
more chance of being wrongly classified as F1 (54.5%)
than of being correctly classified (31.6%). The NN classifier

performs poorly in classifying faults belonging to F1 and F4
but it is not classified as defective. In addition to providing
better classification accuracy, the KNN is also found to be
less computationally expensive in comparison to the NN and
SVM methods.

The simple architecture of the proposed KNN algorithm
allows easy implementation. But before that the integration
of the proposed classifier in a real power plant must follow
several stages of verification and validation (V&V), review,
and approvals [36], [37]. Future work will investigate an
ensemble classifier that combines NN and KNN to improve
the efficiency and accuracy of the detection and diagnosis of
faults in a PWR.

APPENDIX
Table 8 presents the classification accuracy of the KNN and
SVM classifiers.
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