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ABSTRACT The present work aims to introduce a nonlinear control scheme that combines intelligent
feedback linearization (FBL) and a model predictive control (MPC) for a pressurized water reactor (PWR).
The nonlinear plant model that is considered in this study is described by the first-principles approach, and it
consists of 38 state variables. First, system identification using a dynamic neural network (DNN) structure
is performed to obtain a standard affine nonlinear system. The quasi-Newton algorithm is employed to
find the best DNN model. Then, an FBL is formulated to address the nonlinearity of the DNN model. An
MPC controller is developed based on the FBL system to improve the system performance. The designed
controller is compared with a linear MPC controller that is based on state-space models to evaluate the
performance of the proposed controller. The proposed approach improves the load-following operation and
offers better disturbance rejection capability than the conventional MPC. In addition, numerical measures
are employed to compare and analyse the performances of the two control strategies.

INDEX TERMS Dynamic neural network, feedback linearization, model predictive control, pressurized
water reactor, nuclear power plant

I. INTRODUCTION

NUCLEAR power plants (NPPs) are characterized as
complex, nonlinear, time-varying, and constrained sys-

tems. Controlling an NPP is a substantial challenge due to
parameter variations that are caused by fuel burnup and inter-
nal reactivity feedback, among other factors. Moreover, the
daily load cycle variations that are due to the load-following
mode can significantly degrade plant performance. Conven-
tional controllers such as proportional-integral and linear-
quadratic controllers are unable to control a plant effectively
and robustly in an uncertain environment [1], [2]. Thus, it is
necessary to improve the regulation and control strategies to
strengthen the security, reliability, and operability of NPPs.

Receding horizon control, which is better known as model
predictive control (MPC), is a widely employed control
method that has the advantage of handling constraints ef-
fectively in multi-input-multi-output (MIMO) systems. MPC

uses an explicit model for the prediction of the system output
at future time instants and solves an online optimization
problem to obtain the future control input that gets the
system as close as possible to the reference [3]–[5]. MPC has
received considerable attention in nuclear plant control over
the last two decades. An MPC controller is proposed in [6]
for the distribution and power control of a pressurized water
reactor (PWR). A nonlinear MPC controller is designed to
control the power of a research reactor in the presence of
disturbances [7]. Eliasi et al. [8], [9] developed a robust
nonlinear MPC controller to perform a load-following opera-
tion. One of the main drawbacks of these studies is that they
require a precise mathematical model for control design. Al-
though an approximate nuclear reactor model can be obtained
using first-principles techniques, it is expensive to develop
and specific to the process. Recently, subspace-based MPC
techniques have been developed for the PWR reactor control
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[10]–[14]. These methods use linear subspace models that are
obtained directly from the input-output data of the system.
However, they are ineffective over a broad operating range
because they utilize linear models, and therefore, the control
performance can degrade substantially. Multiple predictive
control is proposed in [15] to address the nonlinearities that
are associated with the control of a movable PWR, but the
implementation of such a control strategy is nevertheless
challenging due to its complex structure.

In the past three decades, soft computing techniques, such
as neural network (NN), fuzzy logic (FL), and genetic algo-
rithm (GA), have been employed to control NPPs. The FL
and NN approaches are employed to regulate the temperature
and power of a nuclear reactor [16]–[19]. A fuzzy adaptive
robust optimal controller and an NN-based controller are
designed to control a reactor during load-following operation
[20], [21]. Some studies have applied fuzzy logic-based
PID controllers to enhance the effectiveness of NPPs [22],
[23]. An intelligent reactor core controller is developed by
combining fuzzy approaches and dynamic neural networks
[24]. In [25], a GA optimized PID is applied to the control of
the power level. In a similar context, the particle swarm opti-
mization (PSO) algorithm is used to enhance the control per-
formance [26]. In a recent paper, Elsisi et al. [27] employed
a new optimization algorithm named lightning search algo-
rithm to find the optimal parameters of a variable structure
controller. Fuzzy reasoning techniques and neural network
architectures are also used to enhance MPC performance. For
instance, Liu et al. [28], [29] and Na et al. [30] proposed
MPC strategies based on nonlinear fuzzy models. Recently, a
neural-network-based MPC controller is employed to control
the thermal power of a nuclear superheated-steam supply sys-
tem [31]. The application of machine learning techniques in
the context of optimal MPC tuning has recently been reported
in the literature. In [32], the PSO algorithm is used for the
optimal tuning of a multivariable MPC. In [33], the authors
proposed a tuning method for the MPC parameters for robotic
manipulators. In another recent work [34], the authors put
forward a framework using the newly optimization algorithm
called social ski driver algorithm (SSD) for the tuning of a
nonlinear MPC and the efficacy of the technique is validated
on an autonomous vehicle.

One of the main drawbacks of the nonlinear configurations
is the high computational burden that is associated with
the online solution of the nonlinear programming problem.
The feedback linearization (FBL) approach is employed to
reduce the computational burden of nonlinear techniques.
FBL-based techniques that use empirical nonlinear models
with linear MPC have been proposed in the literature [35],
[36]. Recently, the FBL approach is combined with other
techniques to improve the control performance during the
load-following operation. For instance, an FBL-based robust
controller is developed for controlling core power peaking
during load-following operation [37]. A partial FBL-based
linear active disturbance rejection control is proposed to
improve the transient response during power control [38].

Additionally, a robust observer-based FBL controller is pre-
sented for addressing the disturbances and uncertainties to
which the system is subject [39]. In this study, an FBL-based
integrated nonlinear MPC technique is developed by employ-
ing a dynamic neural network (DNN). For the first time,
a DNN-based FBL is proposed in the context of nonlinear
control of a PWR-type nuclear reactor. The control structure
consists of an FBL approach that is based on an identified
DNN model and an MPC controller to control the linearized
system.

Most of the studies in an NPP control design literature
do not consider the coupling effects among the various sub-
systems, nor do they consider model equations of sensors
and actuators. A realistic study should incorporate control
schemes for the entire NPP process. However, only a few
papers have discussed the control design for whole NPP
system [1], [2], [40], [41]. In this respect, the proposed
FBL-based MPC control strategy is applied to the different
subsystems of the integrated NPP model. The efficacy of the
proposed controller is validated in the MATLAB/Simulink
environment. The proposed control approach is compared
with a state-space based classical MPC controller. The main
contributions of this paper are listed as follows:

• Nonlinear model predictive control using feedback lin-
earization based on dynamic neural networks is pro-
posed to enhance the control performance of a PWR.

• Control of the reactor core, steam generator (SG), pres-
surizer, and turbine are studied.

• Comparison with state-space MPC is performed.

The remainder of the paper is organized as follows: The
plant model is presented in Section II. Section III provides
a brief introduction to the neural network structure and
presents the system identification approach that is used to
estimate the dynamics of the PWR model. Section IV in-
troduces the design of the hybrid control strategy. Section
V presents and discusses the simulation results. The conclu-
sions are presented in Section VI.

II. NON-LINEAR PWR MODEL
A schematic diagram of various components of a typical
PWR plant is shown in Fig. 1. The plant comprises two main
loops: primary and secondary loops. The primary loop con-
sists of a reactor core, steam generator, pressurizer, and reac-
tor coolant pump. The reactor core is suitably described using
a point kinetics model. The reactor core is controlled using
control rods. The coolant that is heated by the reactor core is
pumped to the steam generator, where steam is produced and
supplied to the secondary loop. The pressurizer is modelled
with pressure and level equations. It aims to maintain the
primary system pressure so that there is no boiling in the
primary system. The secondary loop consists of a turbine,
moisture separators and steam reheaters. The turbine model
consists of high-, intermediate-, and low-pressure turbines.
For brevity purposes, only a summary of the reactor core
model is provided here. For a complete description of the
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entire NPP model, the readers are kindly referred to [40]–
[42].

A. POINT KINETICS REACTOR CORE MODEL
The core-neutronic system models the normalized power
and the normalized precursor concentration of six groups of
delayed neutrons. It is expressed as follows:

dPr

dt
=

ρt −
6∑

i=1

βi

Λ
Pr +

6∑
i=1

βi

Λ
Cir, (1)

dCir

dt
= λiPr − λiCir, i = 1, 2, . . . 6. (2)

where Pr and Cir denote the normalized power and normal-
ized delayed neutron precursor concentration, respectively;
λi and βi are the decay constant and fraction of delayed
neutrons, respectively; Λ is the prompt neutron lifetime; and
ρt denotes the total reactivity.

B. THERMAL-HYDRAULICS MODEL
The core thermal-hydraulics model comprises two lumps that
represent the coolant node and one lump that represents the
fuel node. The model is expressed as follows:

dTf

dt
= HfPr −

1

τf
(Tf − Tc1) , (3)

dTc1

dt
= HcPr +

1

τc
(Tf − Tc1)−

2

τr
(Tc1 − Tcin) ,(4)

dTc2

dt
= HcPr +

1

τc
(Tf − Tc1)−

2

τr
(Tc2 − Tc1) . (5)

where Tf denotes the fuel temperature; Tc1 and Tc2 denote
the temperatures at coolant nodes 1 and 2, respectively; Hf

and Hc are proportionality constants; and τf , τc, and τr are
system time constants.

C. REACTIVITY MODEL
The variations of the temperatures of the fuel and coolant
introduces internal reactivity feedback into the system. The
reactivity is controlled using control rods, and hence, the total
reactivity is represented as:

ρt = ρrod + ρf + ρc1 + ρc2,

ρt = ρrod + αfTf + αc (Tc1 + Tc2) . (6)

where ρrod, ρf , ρc1, and ρc2 are the reactivities that are
related to the control rod, fuel temperature, and coolant
temperatures at node 1 and 2, respectively; and αf and αc

are temperature coefficients of reactivity due to the fuel
and coolant, respectively. Definitions of various inputs and
outputs for the loops of the PWR are presented in Table 1.
The values of the system parameters are obtained from [40]–
[42].

III. IDENTIFICATION OF THE PWR USING DYNAMIC
NEURAL NETWORK

FIGURE 1: Layout of a typical PWR.

TABLE 1: Definition of PWR model variables

Variable Definition
Pr Reactor core power
Ptur Mechanical power output of the turbine
Qh Rate of heat addition by the heater
lw Pressurizer level

ṁsur Mass surge flow rate
pp Pressurizer pressure
ps Steam generator pressure
utg Input signal to the turbine-governor valve
vrod Control rod speed
wtur Turbine speed

A. DNN STRUCTURE
The dynamic neural network that was introduced in [43]
has notable potential for learning the dynamics of complex
nonlinear systems, whereas static NNs are limited and fail
to realize acceptable modelling and mapping performance.
A dynamic neuron model consists of internal dynamics that
are added to a static neuron, which cause the activity of the
neuron to depend on its internal states. Fig. 2 illustrates the
DNN structure that is used in this work. The equation for the
DNN is:

ẋi = −βixi +

N∑
j=1

ωijσ (xj)+

m∑
j=1

γijuj (7)

where βi, ωi, and γi are adjustable weights; xi is the state of
the system; and uj is the input signal. The vectorized form of
(7) is expressed as:

ẋ = −βx+ ωσ (x) + γu (8)
ŷ = Cx (9)

where x corresponds to the coordinates of RN , ω ∈ RN×N ,
σ (x) =

[
σ (x1) · · · σ (xN )

]T
, γ ∈ RN×m, u ∈

Rm, C =
[
Ip×p 0p×(N−p)

]
, and β ∈ RN×N is

a matrix that is diagnosable and has diagonal elements{
β1 · · · βN

}
.
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FIGURE 2: DNN structure (reprinted from [44]).

B. TRAINING DNNS
Assume that the data has been collected from the process for
the training exercise of the DNNs. Consider a training data
set with M input-output pairs and sampling time Ts:

Zm =
[
y (tk) u (tk)

]
k=1,2··· ,M (10)

where y (tk) is the measured output; u (tk) is the measured
input; and k is a sampling index. The identification procedure
that uses DNNs is based on a comparison of the plant output
measurement and the simulated output. The objective is to
adjust the model such that the dynamic behaviour of the
model and the real plant is identical. To succeed in this, a
cost function is defined and minimized:

Fm (θ, Zm) =
1

2M

M∑
k=1

∥y (tk)− ŷ (tk |θ )∥2 (11)

where ŷ (tk |θ ) is the estimated output; and θ is a vector
parameter. The minimization is performed using an optimiza-
tion algorithm. The training problem can be formulated as a
nonlinear unconstrained optimization problem:

min
θ

Fm (θ, Zm) (12)

The optimization problem (12) can be solved using local
optimization techniques; therefore, the quasi-Newton algo-
rithm is chosen here. Quasi-Newton methods are developed
to solve nonlinear optimization problems. The main principle
of this algorithm is to progress step by step from an initial
point θ0 along with line search directions hk until the optimal
point θopt is obtained. At each iteration, the inverse of the
Hessian matrix Hk is computed to obtain the search direc-
tion. Here, The matrix Hk is obtained using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [45]:

Hk+1 = Hk +
qkq

T
k

qTk sk
− Hksks

T
kH

T
k

sTkHksk
(13)

where sk = θk+1 − θk is the parameter change between two
iterations and qk = ∇f (θk+1) − ∇f (θk) is the gradient
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FIGURE 3: Evolution of the cost function versus iteration
number.

change between two iterations. The basic approach of the
algorithm is described as follows:

1) Choose a starting point θ0 and initialize H0.
2) Compute the gradient ∇f (θk) and the search direction

hk = −Hk∇f (θk).
3) Perform a line search from θk in the direction hk using

the following equation: θk+1 = θk + Tshk, where Ts

is the step size.
4) Compute Hk+1 using the BFGS formula (13) and

return to step 2.

C. SYSTEM IDENTIFICATION

The technique that was explained in the previous subsection
is used to identify five different subsystems: a reactor core-
power loop, a steam generator loop, a pressurizer-pressure
loop, a pressurizer-level loop, and a turbine-speed loop. For
simplicity, only the identification of the reactor core-power
loop is discussed here. The remaining loops can be identified
similarly using the corresponding input and output of the
loop. Reactor power loop identification is carried out using
3000 input-output data samples, and the sampling time Ts is
1 second. The control rod speed is considered as a random
step input signal and the reactor power as an output signal.
DNN training is performed with the help of the quasi-Newton
algorithm. The optimal model that is obtained is a 2nd order
system. The identified DNN model that is obtained for the
reactor is presented in (14-16).The evolution curves for the
cost function is shown in Fig. 3. Fig. 4 shows the training
and validation outputs that are employed for the system iden-
tification exercise. It is observed the obtained DNN model
accurately tracks the reactor power. A similar procedure is
applied to all other loops, and the DNN models that are
obtained for each subsystem are also found to be of 2nd order.
The inputs and outputs that are used for the training of the
DNNs are presented in detail in Table 2. The DNN models
for the other loops are presented in Appendix A.
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FIGURE 4: Trajectories of the measured and estimated nor-
malized reactor power signals.

[
ẋ1

ẋ2

]
= −

[
β1 0
0 β2

]
︸ ︷︷ ︸

βr

[
x1

x2

]
+

[
ω11 ω12

ω21 ω22

]
︸ ︷︷ ︸

ωr

[
σ (x1)
σ (x2)

]
+

[
γ1
γ2

]
︸︷︷ ︸
γr

vrod

(14)

y1 = Cr

[
x1

x2

]
=

[
1 0

] [x1

x2

]
= x1 (15)

where x1 and x2 are the output and hidden state, respectively,
of DNN1 and βr, ωr and γr are the adjustable weights
with respect to DNN1. The parameter values of DNN1 are
represented as follows:

βr =

[
0.0516 0

0 +0.1027

]
;ωr =

[
0.4523 0.0539
−0.141 0.0536

]
;

γr =
[
0.1152 −0.0734

]T
; (16)

TABLE 2: Inputs and outputs that are used for identification

Case Input Output DNN order
Reactor core (DNN1) vrod Pr 2

Steam generator (DNN2) utg ps 2
Pressurizer pressure (DNN3) Qheat pp 2

Pressurizer level (DNN4) ṁsur lw 2
Turbine speed (DNN5) utg wtur 2

IV. CONTROLLER IMPLEMENTATION
Two controllers are implemented, namely, an MPC controller
that is based on the linear state-space model, which is also
known as the state-space MPC (SS-MPC), and an MPC
controller that is based on FBL and DNN (MPC-FBL-DNN).
The performance of the proposed controller (MPC-FBL-
DNN) is compared with that of the SS-MPC controller. The
two controllers are tested under identical operating condi-
tions.

A. MODEL PREDICTIVE CONTROL
In this study, the MPC approach [35] is employed to control
the feedback-linearized system. It uses a discrete-time linear
state-space model of the open-loop process. The resulting
process model is expressed as:

xr(t+ 1) = Axr(t) +Bur(t), (17)
yr(t) = Cyxr(t), (18)
zr(t) = Czxr(t). (19)

where xr represents the state vector at the time t, ur(t) repre-
sents the vector of inputs, and yr(t) and zr(t) are the vector
of the measured outputs and the vector of the outputs that
are to be controlled, respectively. In this study, the controller
employs a steady-state Kalman filter. It can be expressed as:

x̂r(t+ 1|t) = Ax̂r(t|t− 1) +Bur(t) +Kr êr(t|t), (20)
ŷr(t|t− 1) = Cyx̂r(t|t− 1), (21)
ẑr(t|t− 1)) = Czx̂r(t|t− 1), (22)

where x̂r(t + 1|t) represents the estimated state vector that
depends on the conditions at time t; ŷr(t|t − 1) is the
estimated output vector; Kr is the Kalman gain matrix, which
is chosen to minimize the estimation error variance; and
êr(t|t) is the error that is estimated, which is expressed as
êr(t|t) = yr(t)− ŷr(t|t− 1). The MPC algorithm computes
the control move at each sampling instance t, which ensures
the minimization of the cost function that has the form:

J(t) =

Np∑
i=1

∥ẑr (t+ i|t)− rr (t+ i|t)∥2Qr(i)

+

Nu−1∑
i=0

∥δur (t+ i|t)∥2Rr(i)

(23)

subject to the control constraints:

umax(t) ≥ ur(t+ i− 1|t) ≥ umin(t), (24)
δumax(t) ≥ δur(t+ i− 1|t) ≥ δumin(t), (25)

zmax ≥ zr(t+ j|t) ≥ zmin(t), (26)

where Np and Nu are the prediction and control horizons,
respectively; i = 1, 2, ..., Nu and j = 1, 2, ..., Np; ẑr(t+ i|t)
is the predicted controlled input; rr(t + i|t) is the refer-
ence; and Rr(i) and Qr(i) represent the input and output
weight matrices, respectively. The prediction horizon Np is
increased to enhance the system performance. The control
horizon Nu is set in such manner as Nu ≤ 0.2 Np [46].
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FIGURE 5: Structure of the control strategy.

B. PROPOSED MPC-FBL-DNN CONTROL APPROACH
The FBL uses DNN models to produce a control law
that removes the system nonlinearities. The MPC controller
that was discussed previously is applied afterwards to the
feedback-linearized plant to achieve improved performance.
Fig. 5 presents a schematic diagram of the designed con-
troller. The FBL approach is based on the DNN models that
are of the following form:{

ẋ = f (x) + g (x)u,
y = h (x) ,

(27)

where x represents the state vector, u is the control input and
y is the controlled output; f(x) and g(x) are vector fields
in the state space; and h(x) is a scalar function of x. The
Lie derivative of the function h(x) with respect to f(x) is
expressed as follows [43]:

Lfh(x) =
∂h(x)

∂x
f(x), (28)

Lk
fh(x) = Lf (L

k−1
f h(x)), (29)

L0
fh(x) = h(x), (30)

Likewise, for the case of the vector field g

LgLfh (x) =
∂Lfh(x)

∂x
g(x), (31)

The system presents a relative degree re if:{
LgL

k
fh (x) = 0,

LgL
re−1
f h (x) ̸= 0,

(32)

Based on this relative degree condition and DNN1 (14-16),
the system relative degree is found to be re = 1. Hence, the
system is feedback linearizable, and the FBL control law can
be expressed as follows:

u = R (x) + S (x) v (33)

where v is the virtual control input and R(x) and S(x) are
given by:

R (x) = −E (x)
−1

F (x) (34)
S (x) = E (x)

−1 (35)

with

E (x) =


λ̂1re1 0 . . . 0

0 λ̂2re2 . . . 0
...

...
. . .

...
0 0 . . . λ̂prep

C (x) (36)

=


λ̂1re1Lg1L

re1−1
f h (x) . . . λ̂1re1LgpL

re1−1
f h1 (x)

...
. . .

...
λ̂prepLg1L

rep−1

f hp (x) . . . λ̂prepLgpL
rep−1

f hp (x)


p×p

(37)

and

F (x) =



re1∑
k=0

λ̂1kL
k
fh1 (x)

...
rep∑
k=0

λ̂pkL
k
fhp (x)


p×1

(38)

u =
v − λ0x1 + λ1(β1x1 − ω11σ(x1)− ω12σ(x2))

λ1γ1
(39)

where, the parameter λ̂1k corresponds to an arbitrary value.
λ0 and λ1 are tuned to have the similar static gain and
constant time with respect to DNN1 for the linearized system.
Then, a linear MPC controller is added to the outer control
loop, as illustrated in the block diagram in Fig.5.

V. SIMULATION RESULTS
Simulations are carried out to assess the performance of the
proposed controller on the nonlinear PWR model. The plant
is initially presumed to operate at a steady state. The five
control loops of the PWR are studied here: the reactor, steam
generator, pressurizer pressure and level, and turbine loop. In
all cases, the MPC-FBL-DNN controller is compared with
the SS-MPC controller. In this study, external disturbances
are considered and are injected into the control signal for
each loop. The considered disturbance (ζ(t)) is a sinusoid
signal with a magnitude of ζ0. This disturbance is represented
as follows [2]:

ζ(t) = ζ0sin(10
−1t) (40)

To analyse the control performance, two numerical mea-
sures are computed: the percentage-root mean square error
(PRMSE), which is used to obtain the error between the sys-
tem state and the reference trajectory, and the total variation
of input (TVI), which is employed to analyse the control
action effect on the input. These are expressed as follows:

PRMSE =

√√√√ 1

N

N∑
i=1

(yi − ri)
2 × 100% (41)

TV I =

N∑
i=1

|ui+1 − ui| (42)
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FIGURE 6: Trajectories of the reactor power signals during
the load-following mode of operation

A. REACTOR POWER LOOP

The reactor loop is assessed in the context of a load-following
procedure in the presence of disturbances. A disturbance
(ζ(t)) is injected into the rod speed and with a magnitude
of ζ0 = 10−3. The reference setpoint to be followed by the
reactor is detailed as follows: the plant is initially assumed
to be at fractional full-power (FFP). The demand is main-
tained at FFP for 200 seconds. Then, it is reduced to 0.8
FFP in 100 seconds and maintained at 0.8 FFP for 300
seconds. Finally, it returns to its initial value. Fig. 6 shows the
tracking performances of the controllers. The reactor power
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FIGURE 7: Trajectories of the output and input signals
during a set-point change in the SG pressure.

response is shown in Fig. 6a. It is observed that the SS-MPC
controller fails to deal with the disturbances, as it presents
bounded variations with a constant amplitude that remains
within 0.25% of the reference. The MPC-FBL-DNN con-
troller realizes a better tracking accuracy and does not exhibit
oscillations. The control rod speed and reactivity variations
are shown in Fig. 6b and 6c, respectively. It is observed that
the control input of the SS-MPC controller is affected by
the disturbances because it contains oscillations. These are
not recommended and can damage the actuator [40]. Table
3 presents the values of the PRMSE and TVI measures that
are computed to evaluate the performance of the controllers.
The PRMSE measure is computed using the reactor power
measure and the power set-point. TVI is computed from
the control rod speed. It is observed that the MPC-FBL-
DNN controller has a lower PRMSE value than the SS-MPC
controller, and there is indeed an approximately one order
of magnitude difference between the PRMSE values of the
two controllers. Both controllers require similar control effort
with respect to TVI, although the MPC-FBL-DNN controller
is subject to fewer variations in the control signal.

B. STEAM GENERATOR LOOP
The proposed controller is tested for a reference change in the
steam pressure in the presence of disturbances. A disturbance
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(ζ(t)) with a magnitude of ζ0 = 5.10−4 is added to the steam
generator actuator. Fig. 7 shows the performances of the two
controllers. The steam pressure and control signal responses
are shown in Fig. 7a and 7b, respectively. Although both con-
trollers are able to follow the reference value, the MPC-FBL-
DNN controller does so 3 seconds sooner and is disturbance-
free. The SS-MPC controller is observed to be affected by
the disturbances, as it exhibits sustained oscillations with a
constant amplitude that remains within 0.8% of the refer-
ence. The control efforts of both controllers are comparable;
however, oscillations in the control signal are noticeable for
the SS-MPC controller. For this case, the PRMSE measure
is computed based on the steam pressure measure and the
pressure reference. TVI is computed from the control signal
to the turbine governor valve. The control efforts of both
controllers are similar in terms of TVI. However, the MPC-
FBL-DNN controller offers better tracking performance and
produces less error in terms of PRMSE. The MPC-FBL-
DNN controller has a PRMSE that is approximately half of
an order of magnitude lower than that of the PRMSE of the
SS-MPC controller.

C. PRESSURIZER PRESSURE LOOP
The pressurizer pressure is controlled by the actuation of a
bank of heaters. The controllers are evaluated for a reference
change in the pressurizer pressure and in the presence of
disturbances. A disturbance (ζ(t)) is introduced into the
pressurizer actuator with a magnitude of ζ0 = 5.10−1. The
performances of the controllers are shown in Fig. 8, and the
variation in the pressurizer pressure is depicted in Fig.8a. It
is found that the SS-MPC controller is less accurate than the
MPC-FBL-DNN controller. This is particularly noticeable in
the ramp-up period (100 to 200 seconds), where the SS-MPC
controller is subject to a static error of 8%. Moreover, the SS-
MPC controller is observed to be slower, as it needs 5 more
seconds to reach stability and it presents a peak overshoot
ratio of 2%. The control signal response is shown in Fig.8b.
The control effort of the SS-MPC controller is found to be
more important for the SS-MPC, as the control signal is
subject to bounded variations. The PRMSE and TVI values
confirm that the MPC-FBL-DNN controller outperforms the
SS-MPC controller. In addition to producing less error, the
MPC-FBL-DNN exerts significantly less control effort and is
able to deal with the disturbances with success.

D. PRESSURIZER LEVEL
A pressurizer level controller aims to maintain the water
level of the reactor coolant system. The pressurizer level
controllers are evaluated in the presence of disturbances.
The same disturbance signal as in V-C is injected into the
pressurizer level actuator. Fig. 9 shows the responses of the
controllers to a set-point change in the pressurizer level.
The pressurizer level response is shown in Fig. 9a. The
MPC-FBL-DNN controller has a better tracking accuracy
and reaches the demand faster than the SS-MPC controller.
In addition to being slower, the SS-MPC controller presents
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FIGURE 8: Trajectories of the output and input signals in the
pressurizer pressure

a peak overshoot ratio of 0.6% and settles with residual oscil-
lations. The control signal variation is shown in Fig. 9b. The
SS-MPC controller presents bounded variations, whereas the
MPC-FBL-DNN exerts less control effort. Based on Table 3,
the MPC-FBL-DNN controller has a better setpoint tracking
with the smallest PRMSE value. The PRMSE of the MPC-
FBL-DNN controller is less than that of the SS-MPC con-
troller by an order of magnitude. The proposed controller
also exerts slightly fewer control efforts with respect to TVI.
The MPC-FBL-DNN controller is found to produce two
times less control variation than the SS-MPC controller. The
PRMSE is computed from the pressurizer level and the level
demand. The TVI measure is computed using the mass surge
flow rate.

E. TURBINE SPEED LOOP
The performance of the turbine speed loop is evaluated in
the load-following mode and the load-rejection mode in the
presence of disturbances. A disturbance (ζ(t)) is added to
the actuator with a magnitude of ζ0 = 10−4 . Fig. 10 shows
the simulation results of the controllers in the load-following
mode. The turbine output trajectory is shown in Fig. 10a.
The turbine output for the MPC-FBL-DNN controller tracks
the reference steadily, whereas the turbine output for the
SS-MPC controller requires more time to track the setpoint.
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FIGURE 9: Trajectories of the output and input signals in the
pressurizer level.

The SS-MPC controller reaches the 0.9 FFP at 485 seconds,
whereas the MPC-FBL-DNN controller reaches it 85 seconds
earlier. The simulation results for the load rejection mode
are shown in Fig. 11. The response of the turbine output
is shown in Fig. 11a. In addition to being slower, the SS-
MPC controller is subject to an undershoot ratio of 0.6%
at 500 seconds. The responses of the turbine speed and
control signal are shown in Fig. 11 and 11b, respectively. The
MPC-FBL-DNN exerts more control efforts for the system
output to follow the power level change faster with mini-
mum error. The mechanical power demand and the turbine
output are used to compute the PRMSE measure. TVI is
computed from the control signal to the turbine governor
valve. The PRMSE and TVI values from Table 3 confirm
the outstanding performance of the proposed controller. The
MPC-FBL-DNN controller has a better tracking precision in
terms of PRMSE. The PRMSE value of the MPC-FBL-DNN
controller is indeed half of an order of magnitude lower than
that of the SS-MPC controller. In addition, the MPC-FBL-
DNN controller is found to produce fewer variations in the
control signal.

VI. CONCLUSIONS
A hybrid control technique that integrates a DNN-based
FBL approach with MPC for the control of a PWR-type
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(b) Control signal to turbine govervor valve.
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FIGURE 10: Trajectories of the turbine signals during load-
following mode.

nuclear plant has been presented. The simulation results
show that the proposed controller offers improved tracking
performance and enhanced robustness under bounded dis-
turbances. The efficacy of the proposed control architecture
has been validated for the reactor core, steam generator,
pressurizer pressure and level, and turbine subsystems. The
proposed controller has been compared with the state-space
based conventional MPC and the control performance have
been validated using two numerical measures. The proposed
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FIGURE 11: Trajectories of turbine signals during transient
load-rejection.

technique has a better tracking accuracy and exerts less
control efforts than the conventional technique. Furthermore,
the designed control law has demonstrated to handle the
disturbances effectively, whereas the conventional MPC fails
in doing so. Future works involve the development of a fault-
tolerant control scheme that can integrate the process failures
that are due to defective sensors and actuators.

APPENDIX. A
The obtained DNN models are described in detail as follows:

TABLE 3: Comparison of the control techniques

Case Technique PRMSE TVI

Reactor SS-MPC 2.173× 10−1 2.762× 10−2

MPC-FBL-DNN 6.924× 10−2 2.425× 10−2

Steam generator SS-MPC 9.754× 10−1 5.490× 10−2

MPC-FBL-DNN 3.138× 10−2 5.266× 10−2

Pressurizer pressure SS-MPC 2.075× 10−1 2.187× 101

MPC-FBL-DNN 4.403× 10−2 1.672× 101

Pressurizer level SS-MPC 2.522× 10−1 7.128× 100

MPC-FBL-DNN 2.496× 10−2 4.717× 100

Turbine SS-MPC 3.122× 100 4.487× 100

MPC-FBL-DNN 9.3× 10−1 4.439× 100

DNN2:[
ẋ3

ẋ4

]
= −

[
2.26 0
0 0.13

] [
x3

x4

]
+

[
0.11 −2.01
0.26 0.31

] [
σ (x3)
σ (x4)

]
+

[
−0.34
0.10

]
utg

(43)

y2 =
[
1 0

] [x3

x4

]
= x3 (44)

DNN3:[
ẋ5

ẋ6

]
= −

[
0.002 0

0 1.09

] [
x5

x6

]
+

[
0.003 −0.001
0.15 1.3450

] [
σ (x5)
σ (x6)

]
+

[
0.0089
−0.7986

]
Qheat

(45)

y3 =
[
1 0

] [x5

x6

]
= x5 (46)

DNN4:[
ẋ7

ẋ8

]
= −

[
0.03 0
0 0.17

] [
x7

x8

]
+

[
−0.038 −0.028
0.02 0.116

] [
σ (x7)
σ (x8)

]
+

[
0.030
−0.034

]
ṁsur

(47)

y4 =
[
1 0

] [x7

x8

]
= x7 (48)

DNN5:[
ẋ9

ẋ10

]
= −

[
0.06 0
0 0.048

] [
x9

x10

]
+

[
0.08 0.03
−0.03 0.01

] [
σ (x9)
σ (x10)

]
+

[
0.02
0.06

]
utg

(49)

y5 =
[
1 0

] [ x9

x10

]
= x9 (50)

where
x3: output state of DNN2
x4: hidden state of DNN2
x5: output state of DNN3
x6: hidden state of DNN3
x7: output state of DNN4
x8: hidden state of DNN4
x9: output state of DNN5
x10: hidden state of DNN5
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